GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / dma / ppc4xx / adma.c
blob0d58a4a4487fbbaefc167182a627c6b0b0f222b3
1 /*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
50 enum ppc_adma_init_code {
51 PPC_ADMA_INIT_OK = 0,
52 PPC_ADMA_INIT_MEMRES,
53 PPC_ADMA_INIT_MEMREG,
54 PPC_ADMA_INIT_ALLOC,
55 PPC_ADMA_INIT_COHERENT,
56 PPC_ADMA_INIT_CHANNEL,
57 PPC_ADMA_INIT_IRQ1,
58 PPC_ADMA_INIT_IRQ2,
59 PPC_ADMA_INIT_REGISTER
62 static char *ppc_adma_errors[] = {
63 [PPC_ADMA_INIT_OK] = "ok",
64 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
65 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
66 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
67 "structure",
68 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
69 "hardware descriptors",
70 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
71 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
72 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
73 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
76 static enum ppc_adma_init_code
77 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
79 struct ppc_dma_chan_ref {
80 struct dma_chan *chan;
81 struct list_head node;
84 /* The list of channels exported by ppc440spe ADMA */
85 struct list_head
86 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
88 /* This flag is set when want to refetch the xor chain in the interrupt
89 * handler
91 static u32 do_xor_refetch;
93 /* Pointer to DMA0, DMA1 CP/CS FIFO */
94 static void *ppc440spe_dma_fifo_buf;
96 /* Pointers to last submitted to DMA0, DMA1 CDBs */
97 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
98 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
100 /* Pointer to last linked and submitted xor CB */
101 static struct ppc440spe_adma_desc_slot *xor_last_linked;
102 static struct ppc440spe_adma_desc_slot *xor_last_submit;
104 /* This array is used in data-check operations for storing a pattern */
105 static char ppc440spe_qword[16];
107 static atomic_t ppc440spe_adma_err_irq_ref;
108 static dcr_host_t ppc440spe_mq_dcr_host;
109 static unsigned int ppc440spe_mq_dcr_len;
111 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
112 * the block size in transactions, then we do not allow to activate more than
113 * only one RXOR transactions simultaneously. So use this var to store
114 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
115 * set) or not (PPC440SPE_RXOR_RUN is clear).
117 static unsigned long ppc440spe_rxor_state;
119 /* These are used in enable & check routines
121 static u32 ppc440spe_r6_enabled;
122 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
123 static struct completion ppc440spe_r6_test_comp;
125 static int ppc440spe_adma_dma2rxor_prep_src(
126 struct ppc440spe_adma_desc_slot *desc,
127 struct ppc440spe_rxor *cursor, int index,
128 int src_cnt, u32 addr);
129 static void ppc440spe_adma_dma2rxor_set_src(
130 struct ppc440spe_adma_desc_slot *desc,
131 int index, dma_addr_t addr);
132 static void ppc440spe_adma_dma2rxor_set_mult(
133 struct ppc440spe_adma_desc_slot *desc,
134 int index, u8 mult);
136 #ifdef ADMA_LL_DEBUG
137 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
138 #else
139 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
140 #endif
142 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
144 struct dma_cdb *cdb;
145 struct xor_cb *cb;
146 int i;
148 switch (chan->device->id) {
149 case 0:
150 case 1:
151 cdb = block;
153 pr_debug("CDB at %p [%d]:\n"
154 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
155 "\t sg1u 0x%08x sg1l 0x%08x\n"
156 "\t sg2u 0x%08x sg2l 0x%08x\n"
157 "\t sg3u 0x%08x sg3l 0x%08x\n",
158 cdb, chan->device->id,
159 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
160 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
161 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
162 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
164 break;
165 case 2:
166 cb = block;
168 pr_debug("CB at %p [%d]:\n"
169 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
170 "\t cbtah 0x%08x cbtal 0x%08x\n"
171 "\t cblah 0x%08x cblal 0x%08x\n",
172 cb, chan->device->id,
173 cb->cbc, cb->cbbc, cb->cbs,
174 cb->cbtah, cb->cbtal,
175 cb->cblah, cb->cblal);
176 for (i = 0; i < 16; i++) {
177 if (i && !cb->ops[i].h && !cb->ops[i].l)
178 continue;
179 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
180 i, cb->ops[i].h, cb->ops[i].l);
182 break;
186 static void print_cb_list(struct ppc440spe_adma_chan *chan,
187 struct ppc440spe_adma_desc_slot *iter)
189 for (; iter; iter = iter->hw_next)
190 print_cb(chan, iter->hw_desc);
193 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
194 unsigned int src_cnt)
196 int i;
198 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
199 for (i = 0; i < src_cnt; i++)
200 pr_debug("\t0x%016llx ", src[i]);
201 pr_debug("dst:\n\t0x%016llx\n", dst);
204 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
205 unsigned int src_cnt)
207 int i;
209 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
210 for (i = 0; i < src_cnt; i++)
211 pr_debug("\t0x%016llx ", src[i]);
212 pr_debug("dst: ");
213 for (i = 0; i < 2; i++)
214 pr_debug("\t0x%016llx ", dst[i]);
217 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
218 unsigned int src_cnt,
219 const unsigned char *scf)
221 int i;
223 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
224 if (scf) {
225 for (i = 0; i < src_cnt; i++)
226 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
227 } else {
228 for (i = 0; i < src_cnt; i++)
229 pr_debug("\t0x%016llx(no) ", src[i]);
232 pr_debug("dst: ");
233 for (i = 0; i < 2; i++)
234 pr_debug("\t0x%016llx ", src[src_cnt + i]);
237 /******************************************************************************
238 * Command (Descriptor) Blocks low-level routines
239 ******************************************************************************/
241 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
242 * pseudo operation
244 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
245 struct ppc440spe_adma_chan *chan)
247 struct xor_cb *p;
249 switch (chan->device->id) {
250 case PPC440SPE_XOR_ID:
251 p = desc->hw_desc;
252 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
253 /* NOP with Command Block Complete Enable */
254 p->cbc = XOR_CBCR_CBCE_BIT;
255 break;
256 case PPC440SPE_DMA0_ID:
257 case PPC440SPE_DMA1_ID:
258 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
259 /* NOP with interrupt */
260 set_bit(PPC440SPE_DESC_INT, &desc->flags);
261 break;
262 default:
263 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
264 __func__);
265 break;
270 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
271 * pseudo operation
273 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
275 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
276 desc->hw_next = NULL;
277 desc->src_cnt = 0;
278 desc->dst_cnt = 1;
282 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
284 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
285 int src_cnt, unsigned long flags)
287 struct xor_cb *hw_desc = desc->hw_desc;
289 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
290 desc->hw_next = NULL;
291 desc->src_cnt = src_cnt;
292 desc->dst_cnt = 1;
294 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
295 if (flags & DMA_PREP_INTERRUPT)
296 /* Enable interrupt on completion */
297 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
301 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
302 * operation in DMA2 controller
304 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
305 int dst_cnt, int src_cnt, unsigned long flags)
307 struct xor_cb *hw_desc = desc->hw_desc;
309 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
310 desc->hw_next = NULL;
311 desc->src_cnt = src_cnt;
312 desc->dst_cnt = dst_cnt;
313 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
314 desc->descs_per_op = 0;
316 hw_desc->cbc = XOR_CBCR_TGT_BIT;
317 if (flags & DMA_PREP_INTERRUPT)
318 /* Enable interrupt on completion */
319 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
322 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
323 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
324 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
327 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
328 * with DMA0/1
330 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
331 int dst_cnt, int src_cnt, unsigned long flags,
332 unsigned long op)
334 struct dma_cdb *hw_desc;
335 struct ppc440spe_adma_desc_slot *iter;
336 u8 dopc;
338 /* Common initialization of a PQ descriptors chain */
339 set_bits(op, &desc->flags);
340 desc->src_cnt = src_cnt;
341 desc->dst_cnt = dst_cnt;
343 /* WXOR MULTICAST if both P and Q are being computed
344 * MV_SG1_SG2 if Q only
346 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
347 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
349 list_for_each_entry(iter, &desc->group_list, chain_node) {
350 hw_desc = iter->hw_desc;
351 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
353 if (likely(!list_is_last(&iter->chain_node,
354 &desc->group_list))) {
355 /* set 'next' pointer */
356 iter->hw_next = list_entry(iter->chain_node.next,
357 struct ppc440spe_adma_desc_slot, chain_node);
358 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
359 } else {
360 /* this is the last descriptor.
361 * this slot will be pasted from ADMA level
362 * each time it wants to configure parameters
363 * of the transaction (src, dst, ...)
365 iter->hw_next = NULL;
366 if (flags & DMA_PREP_INTERRUPT)
367 set_bit(PPC440SPE_DESC_INT, &iter->flags);
368 else
369 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
373 /* Set OPS depending on WXOR/RXOR type of operation */
374 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
375 /* This is a WXOR only chain:
376 * - first descriptors are for zeroing destinations
377 * if PPC440SPE_ZERO_P/Q set;
378 * - descriptors remained are for GF-XOR operations.
380 iter = list_first_entry(&desc->group_list,
381 struct ppc440spe_adma_desc_slot,
382 chain_node);
384 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
385 hw_desc = iter->hw_desc;
386 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
387 iter = list_first_entry(&iter->chain_node,
388 struct ppc440spe_adma_desc_slot,
389 chain_node);
392 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
393 hw_desc = iter->hw_desc;
394 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
395 iter = list_first_entry(&iter->chain_node,
396 struct ppc440spe_adma_desc_slot,
397 chain_node);
400 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
401 hw_desc = iter->hw_desc;
402 hw_desc->opc = dopc;
404 } else {
405 /* This is either RXOR-only or mixed RXOR/WXOR */
407 /* The first 1 or 2 slots in chain are always RXOR,
408 * if need to calculate P & Q, then there are two
409 * RXOR slots; if only P or only Q, then there is one
411 iter = list_first_entry(&desc->group_list,
412 struct ppc440spe_adma_desc_slot,
413 chain_node);
414 hw_desc = iter->hw_desc;
415 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
417 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
418 iter = list_first_entry(&iter->chain_node,
419 struct ppc440spe_adma_desc_slot,
420 chain_node);
421 hw_desc = iter->hw_desc;
422 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
425 /* The remaining descs (if any) are WXORs */
426 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
427 iter = list_first_entry(&iter->chain_node,
428 struct ppc440spe_adma_desc_slot,
429 chain_node);
430 list_for_each_entry_from(iter, &desc->group_list,
431 chain_node) {
432 hw_desc = iter->hw_desc;
433 hw_desc->opc = dopc;
440 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
441 * for PQ_ZERO_SUM operation
443 static void ppc440spe_desc_init_dma01pqzero_sum(
444 struct ppc440spe_adma_desc_slot *desc,
445 int dst_cnt, int src_cnt)
447 struct dma_cdb *hw_desc;
448 struct ppc440spe_adma_desc_slot *iter;
449 int i = 0;
450 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
451 DMA_CDB_OPC_MV_SG1_SG2;
453 * Initialize starting from 2nd or 3rd descriptor dependent
454 * on dst_cnt. First one or two slots are for cloning P
455 * and/or Q to chan->pdest and/or chan->qdest as we have
456 * to preserve original P/Q.
458 iter = list_first_entry(&desc->group_list,
459 struct ppc440spe_adma_desc_slot, chain_node);
460 iter = list_entry(iter->chain_node.next,
461 struct ppc440spe_adma_desc_slot, chain_node);
463 if (dst_cnt > 1) {
464 iter = list_entry(iter->chain_node.next,
465 struct ppc440spe_adma_desc_slot, chain_node);
467 /* initialize each source descriptor in chain */
468 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
469 hw_desc = iter->hw_desc;
470 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
471 iter->src_cnt = 0;
472 iter->dst_cnt = 0;
474 /* This is a ZERO_SUM operation:
475 * - <src_cnt> descriptors starting from 2nd or 3rd
476 * descriptor are for GF-XOR operations;
477 * - remaining <dst_cnt> descriptors are for checking the result
479 if (i++ < src_cnt)
480 /* MV_SG1_SG2 if only Q is being verified
481 * MULTICAST if both P and Q are being verified
483 hw_desc->opc = dopc;
484 else
485 /* DMA_CDB_OPC_DCHECK128 operation */
486 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
488 if (likely(!list_is_last(&iter->chain_node,
489 &desc->group_list))) {
490 /* set 'next' pointer */
491 iter->hw_next = list_entry(iter->chain_node.next,
492 struct ppc440spe_adma_desc_slot,
493 chain_node);
494 } else {
495 /* this is the last descriptor.
496 * this slot will be pasted from ADMA level
497 * each time it wants to configure parameters
498 * of the transaction (src, dst, ...)
500 iter->hw_next = NULL;
501 /* always enable interrupt generation since we get
502 * the status of pqzero from the handler
504 set_bit(PPC440SPE_DESC_INT, &iter->flags);
507 desc->src_cnt = src_cnt;
508 desc->dst_cnt = dst_cnt;
512 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
514 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
515 unsigned long flags)
517 struct dma_cdb *hw_desc = desc->hw_desc;
519 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
520 desc->hw_next = NULL;
521 desc->src_cnt = 1;
522 desc->dst_cnt = 1;
524 if (flags & DMA_PREP_INTERRUPT)
525 set_bit(PPC440SPE_DESC_INT, &desc->flags);
526 else
527 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
529 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
533 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
535 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
536 int value, unsigned long flags)
538 struct dma_cdb *hw_desc = desc->hw_desc;
540 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
541 desc->hw_next = NULL;
542 desc->src_cnt = 1;
543 desc->dst_cnt = 1;
545 if (flags & DMA_PREP_INTERRUPT)
546 set_bit(PPC440SPE_DESC_INT, &desc->flags);
547 else
548 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
550 hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
551 hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
552 hw_desc->opc = DMA_CDB_OPC_DFILL128;
556 * ppc440spe_desc_set_src_addr - set source address into the descriptor
558 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
559 struct ppc440spe_adma_chan *chan,
560 int src_idx, dma_addr_t addrh,
561 dma_addr_t addrl)
563 struct dma_cdb *dma_hw_desc;
564 struct xor_cb *xor_hw_desc;
565 phys_addr_t addr64, tmplow, tmphi;
567 switch (chan->device->id) {
568 case PPC440SPE_DMA0_ID:
569 case PPC440SPE_DMA1_ID:
570 if (!addrh) {
571 addr64 = addrl;
572 tmphi = (addr64 >> 32);
573 tmplow = (addr64 & 0xFFFFFFFF);
574 } else {
575 tmphi = addrh;
576 tmplow = addrl;
578 dma_hw_desc = desc->hw_desc;
579 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
580 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
581 break;
582 case PPC440SPE_XOR_ID:
583 xor_hw_desc = desc->hw_desc;
584 xor_hw_desc->ops[src_idx].l = addrl;
585 xor_hw_desc->ops[src_idx].h |= addrh;
586 break;
591 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
593 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
594 struct ppc440spe_adma_chan *chan, u32 mult_index,
595 int sg_index, unsigned char mult_value)
597 struct dma_cdb *dma_hw_desc;
598 struct xor_cb *xor_hw_desc;
599 u32 *psgu;
601 switch (chan->device->id) {
602 case PPC440SPE_DMA0_ID:
603 case PPC440SPE_DMA1_ID:
604 dma_hw_desc = desc->hw_desc;
606 switch (sg_index) {
607 /* for RXOR operations set multiplier
608 * into source cued address
610 case DMA_CDB_SG_SRC:
611 psgu = &dma_hw_desc->sg1u;
612 break;
613 /* for WXOR operations set multiplier
614 * into destination cued address(es)
616 case DMA_CDB_SG_DST1:
617 psgu = &dma_hw_desc->sg2u;
618 break;
619 case DMA_CDB_SG_DST2:
620 psgu = &dma_hw_desc->sg3u;
621 break;
622 default:
623 BUG();
626 *psgu |= cpu_to_le32(mult_value << mult_index);
627 break;
628 case PPC440SPE_XOR_ID:
629 xor_hw_desc = desc->hw_desc;
630 break;
631 default:
632 BUG();
637 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
639 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
640 struct ppc440spe_adma_chan *chan,
641 dma_addr_t addrh, dma_addr_t addrl,
642 u32 dst_idx)
644 struct dma_cdb *dma_hw_desc;
645 struct xor_cb *xor_hw_desc;
646 phys_addr_t addr64, tmphi, tmplow;
647 u32 *psgu, *psgl;
649 switch (chan->device->id) {
650 case PPC440SPE_DMA0_ID:
651 case PPC440SPE_DMA1_ID:
652 if (!addrh) {
653 addr64 = addrl;
654 tmphi = (addr64 >> 32);
655 tmplow = (addr64 & 0xFFFFFFFF);
656 } else {
657 tmphi = addrh;
658 tmplow = addrl;
660 dma_hw_desc = desc->hw_desc;
662 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
663 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
665 *psgl = cpu_to_le32((u32)tmplow);
666 *psgu |= cpu_to_le32((u32)tmphi);
667 break;
668 case PPC440SPE_XOR_ID:
669 xor_hw_desc = desc->hw_desc;
670 xor_hw_desc->cbtal = addrl;
671 xor_hw_desc->cbtah |= addrh;
672 break;
677 * ppc440spe_desc_set_byte_count - set number of data bytes involved
678 * into the operation
680 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
681 struct ppc440spe_adma_chan *chan,
682 u32 byte_count)
684 struct dma_cdb *dma_hw_desc;
685 struct xor_cb *xor_hw_desc;
687 switch (chan->device->id) {
688 case PPC440SPE_DMA0_ID:
689 case PPC440SPE_DMA1_ID:
690 dma_hw_desc = desc->hw_desc;
691 dma_hw_desc->cnt = cpu_to_le32(byte_count);
692 break;
693 case PPC440SPE_XOR_ID:
694 xor_hw_desc = desc->hw_desc;
695 xor_hw_desc->cbbc = byte_count;
696 break;
701 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
703 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
705 /* assume that byte_count is aligned on the 512-boundary;
706 * thus write it directly to the register (bits 23:31 are
707 * reserved there).
709 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
713 * ppc440spe_desc_set_dcheck - set CHECK pattern
715 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
716 struct ppc440spe_adma_chan *chan, u8 *qword)
718 struct dma_cdb *dma_hw_desc;
720 switch (chan->device->id) {
721 case PPC440SPE_DMA0_ID:
722 case PPC440SPE_DMA1_ID:
723 dma_hw_desc = desc->hw_desc;
724 iowrite32(qword[0], &dma_hw_desc->sg3l);
725 iowrite32(qword[4], &dma_hw_desc->sg3u);
726 iowrite32(qword[8], &dma_hw_desc->sg2l);
727 iowrite32(qword[12], &dma_hw_desc->sg2u);
728 break;
729 default:
730 BUG();
735 * ppc440spe_xor_set_link - set link address in xor CB
737 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
738 struct ppc440spe_adma_desc_slot *next_desc)
740 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
742 if (unlikely(!next_desc || !(next_desc->phys))) {
743 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
744 __func__, next_desc,
745 next_desc ? next_desc->phys : 0);
746 BUG();
749 xor_hw_desc->cbs = 0;
750 xor_hw_desc->cblal = next_desc->phys;
751 xor_hw_desc->cblah = 0;
752 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
756 * ppc440spe_desc_set_link - set the address of descriptor following this
757 * descriptor in chain
759 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
760 struct ppc440spe_adma_desc_slot *prev_desc,
761 struct ppc440spe_adma_desc_slot *next_desc)
763 unsigned long flags;
764 struct ppc440spe_adma_desc_slot *tail = next_desc;
766 if (unlikely(!prev_desc || !next_desc ||
767 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
768 /* If previous next is overwritten something is wrong.
769 * though we may refetch from append to initiate list
770 * processing; in this case - it's ok.
772 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
773 "prev->hw_next=0x%p\n", __func__, prev_desc,
774 next_desc, prev_desc ? prev_desc->hw_next : 0);
775 BUG();
778 local_irq_save(flags);
780 /* do s/w chaining both for DMA and XOR descriptors */
781 prev_desc->hw_next = next_desc;
783 switch (chan->device->id) {
784 case PPC440SPE_DMA0_ID:
785 case PPC440SPE_DMA1_ID:
786 break;
787 case PPC440SPE_XOR_ID:
788 /* bind descriptor to the chain */
789 while (tail->hw_next)
790 tail = tail->hw_next;
791 xor_last_linked = tail;
793 if (prev_desc == xor_last_submit)
794 /* do not link to the last submitted CB */
795 break;
796 ppc440spe_xor_set_link(prev_desc, next_desc);
797 break;
800 local_irq_restore(flags);
804 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
806 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
807 struct ppc440spe_adma_chan *chan, int src_idx)
809 struct dma_cdb *dma_hw_desc;
810 struct xor_cb *xor_hw_desc;
812 switch (chan->device->id) {
813 case PPC440SPE_DMA0_ID:
814 case PPC440SPE_DMA1_ID:
815 dma_hw_desc = desc->hw_desc;
816 /* May have 0, 1, 2, or 3 sources */
817 switch (dma_hw_desc->opc) {
818 case DMA_CDB_OPC_NO_OP:
819 case DMA_CDB_OPC_DFILL128:
820 return 0;
821 case DMA_CDB_OPC_DCHECK128:
822 if (unlikely(src_idx)) {
823 printk(KERN_ERR "%s: try to get %d source for"
824 " DCHECK128\n", __func__, src_idx);
825 BUG();
827 return le32_to_cpu(dma_hw_desc->sg1l);
828 case DMA_CDB_OPC_MULTICAST:
829 case DMA_CDB_OPC_MV_SG1_SG2:
830 if (unlikely(src_idx > 2)) {
831 printk(KERN_ERR "%s: try to get %d source from"
832 " DMA descr\n", __func__, src_idx);
833 BUG();
835 if (src_idx) {
836 if (le32_to_cpu(dma_hw_desc->sg1u) &
837 DMA_CUED_XOR_WIN_MSK) {
838 u8 region;
840 if (src_idx == 1)
841 return le32_to_cpu(
842 dma_hw_desc->sg1l) +
843 desc->unmap_len;
845 region = (le32_to_cpu(
846 dma_hw_desc->sg1u)) >>
847 DMA_CUED_REGION_OFF;
849 region &= DMA_CUED_REGION_MSK;
850 switch (region) {
851 case DMA_RXOR123:
852 return le32_to_cpu(
853 dma_hw_desc->sg1l) +
854 (desc->unmap_len << 1);
855 case DMA_RXOR124:
856 return le32_to_cpu(
857 dma_hw_desc->sg1l) +
858 (desc->unmap_len * 3);
859 case DMA_RXOR125:
860 return le32_to_cpu(
861 dma_hw_desc->sg1l) +
862 (desc->unmap_len << 2);
863 default:
864 printk(KERN_ERR
865 "%s: try to"
866 " get src3 for region %02x"
867 "PPC440SPE_DESC_RXOR12?\n",
868 __func__, region);
869 BUG();
871 } else {
872 printk(KERN_ERR
873 "%s: try to get %d"
874 " source for non-cued descr\n",
875 __func__, src_idx);
876 BUG();
879 return le32_to_cpu(dma_hw_desc->sg1l);
880 default:
881 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
882 __func__, dma_hw_desc->opc);
883 BUG();
885 return le32_to_cpu(dma_hw_desc->sg1l);
886 case PPC440SPE_XOR_ID:
887 /* May have up to 16 sources */
888 xor_hw_desc = desc->hw_desc;
889 return xor_hw_desc->ops[src_idx].l;
891 return 0;
895 * ppc440spe_desc_get_dest_addr - extract the destination address from the
896 * descriptor
898 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
899 struct ppc440spe_adma_chan *chan, int idx)
901 struct dma_cdb *dma_hw_desc;
902 struct xor_cb *xor_hw_desc;
904 switch (chan->device->id) {
905 case PPC440SPE_DMA0_ID:
906 case PPC440SPE_DMA1_ID:
907 dma_hw_desc = desc->hw_desc;
909 if (likely(!idx))
910 return le32_to_cpu(dma_hw_desc->sg2l);
911 return le32_to_cpu(dma_hw_desc->sg3l);
912 case PPC440SPE_XOR_ID:
913 xor_hw_desc = desc->hw_desc;
914 return xor_hw_desc->cbtal;
916 return 0;
920 * ppc440spe_desc_get_src_num - extract the number of source addresses from
921 * the descriptor
923 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
924 struct ppc440spe_adma_chan *chan)
926 struct dma_cdb *dma_hw_desc;
927 struct xor_cb *xor_hw_desc;
929 switch (chan->device->id) {
930 case PPC440SPE_DMA0_ID:
931 case PPC440SPE_DMA1_ID:
932 dma_hw_desc = desc->hw_desc;
934 switch (dma_hw_desc->opc) {
935 case DMA_CDB_OPC_NO_OP:
936 case DMA_CDB_OPC_DFILL128:
937 return 0;
938 case DMA_CDB_OPC_DCHECK128:
939 return 1;
940 case DMA_CDB_OPC_MV_SG1_SG2:
941 case DMA_CDB_OPC_MULTICAST:
943 * Only for RXOR operations we have more than
944 * one source
946 if (le32_to_cpu(dma_hw_desc->sg1u) &
947 DMA_CUED_XOR_WIN_MSK) {
948 /* RXOR op, there are 2 or 3 sources */
949 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
950 DMA_CUED_REGION_OFF) &
951 DMA_CUED_REGION_MSK) == DMA_RXOR12) {
952 /* RXOR 1-2 */
953 return 2;
954 } else {
955 /* RXOR 1-2-3/1-2-4/1-2-5 */
956 return 3;
959 return 1;
960 default:
961 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
962 __func__, dma_hw_desc->opc);
963 BUG();
965 case PPC440SPE_XOR_ID:
966 /* up to 16 sources */
967 xor_hw_desc = desc->hw_desc;
968 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
969 default:
970 BUG();
972 return 0;
976 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
977 * this descriptor
979 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
980 struct ppc440spe_adma_chan *chan)
982 struct dma_cdb *dma_hw_desc;
984 switch (chan->device->id) {
985 case PPC440SPE_DMA0_ID:
986 case PPC440SPE_DMA1_ID:
987 /* May be 1 or 2 destinations */
988 dma_hw_desc = desc->hw_desc;
989 switch (dma_hw_desc->opc) {
990 case DMA_CDB_OPC_NO_OP:
991 case DMA_CDB_OPC_DCHECK128:
992 return 0;
993 case DMA_CDB_OPC_MV_SG1_SG2:
994 case DMA_CDB_OPC_DFILL128:
995 return 1;
996 case DMA_CDB_OPC_MULTICAST:
997 if (desc->dst_cnt == 2)
998 return 2;
999 else
1000 return 1;
1001 default:
1002 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1003 __func__, dma_hw_desc->opc);
1004 BUG();
1006 case PPC440SPE_XOR_ID:
1007 /* Always only 1 destination */
1008 return 1;
1009 default:
1010 BUG();
1012 return 0;
1016 * ppc440spe_desc_get_link - get the address of the descriptor that
1017 * follows this one
1019 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1020 struct ppc440spe_adma_chan *chan)
1022 if (!desc->hw_next)
1023 return 0;
1025 return desc->hw_next->phys;
1029 * ppc440spe_desc_is_aligned - check alignment
1031 static inline int ppc440spe_desc_is_aligned(
1032 struct ppc440spe_adma_desc_slot *desc, int num_slots)
1034 return (desc->idx & (num_slots - 1)) ? 0 : 1;
1038 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1039 * XOR operation
1041 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1042 int *slots_per_op)
1044 int slot_cnt;
1046 /* each XOR descriptor provides up to 16 source operands */
1047 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1049 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1050 return slot_cnt;
1052 printk(KERN_ERR "%s: len %d > max %d !!\n",
1053 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1054 BUG();
1055 return slot_cnt;
1059 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1060 * DMA2 PQ operation
1062 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1063 int src_cnt, size_t len)
1065 signed long long order = 0;
1066 int state = 0;
1067 int addr_count = 0;
1068 int i;
1069 for (i = 1; i < src_cnt; i++) {
1070 dma_addr_t cur_addr = srcs[i];
1071 dma_addr_t old_addr = srcs[i-1];
1072 switch (state) {
1073 case 0:
1074 if (cur_addr == old_addr + len) {
1075 /* direct RXOR */
1076 order = 1;
1077 state = 1;
1078 if (i == src_cnt-1)
1079 addr_count++;
1080 } else if (old_addr == cur_addr + len) {
1081 /* reverse RXOR */
1082 order = -1;
1083 state = 1;
1084 if (i == src_cnt-1)
1085 addr_count++;
1086 } else {
1087 state = 3;
1089 break;
1090 case 1:
1091 if (i == src_cnt-2 || (order == -1
1092 && cur_addr != old_addr - len)) {
1093 order = 0;
1094 state = 0;
1095 addr_count++;
1096 } else if (cur_addr == old_addr + len*order) {
1097 state = 2;
1098 if (i == src_cnt-1)
1099 addr_count++;
1100 } else if (cur_addr == old_addr + 2*len) {
1101 state = 2;
1102 if (i == src_cnt-1)
1103 addr_count++;
1104 } else if (cur_addr == old_addr + 3*len) {
1105 state = 2;
1106 if (i == src_cnt-1)
1107 addr_count++;
1108 } else {
1109 order = 0;
1110 state = 0;
1111 addr_count++;
1113 break;
1114 case 2:
1115 order = 0;
1116 state = 0;
1117 addr_count++;
1118 break;
1120 if (state == 3)
1121 break;
1123 if (src_cnt <= 1 || (state != 1 && state != 2)) {
1124 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1125 __func__, src_cnt, state, addr_count, order);
1126 for (i = 0; i < src_cnt; i++)
1127 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1128 BUG();
1131 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1135 /******************************************************************************
1136 * ADMA channel low-level routines
1137 ******************************************************************************/
1139 static u32
1140 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1141 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1144 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1146 static void ppc440spe_adma_device_clear_eot_status(
1147 struct ppc440spe_adma_chan *chan)
1149 struct dma_regs *dma_reg;
1150 struct xor_regs *xor_reg;
1151 u8 *p = chan->device->dma_desc_pool_virt;
1152 struct dma_cdb *cdb;
1153 u32 rv, i;
1155 switch (chan->device->id) {
1156 case PPC440SPE_DMA0_ID:
1157 case PPC440SPE_DMA1_ID:
1158 /* read FIFO to ack */
1159 dma_reg = chan->device->dma_reg;
1160 while ((rv = ioread32(&dma_reg->csfpl))) {
1161 i = rv & DMA_CDB_ADDR_MSK;
1162 cdb = (struct dma_cdb *)&p[i -
1163 (u32)chan->device->dma_desc_pool];
1165 /* Clear opcode to ack. This is necessary for
1166 * ZeroSum operations only
1168 cdb->opc = 0;
1170 if (test_bit(PPC440SPE_RXOR_RUN,
1171 &ppc440spe_rxor_state)) {
1172 /* probably this is a completed RXOR op,
1173 * get pointer to CDB using the fact that
1174 * physical and virtual addresses of CDB
1175 * in pools have the same offsets
1177 if (le32_to_cpu(cdb->sg1u) &
1178 DMA_CUED_XOR_BASE) {
1179 /* this is a RXOR */
1180 clear_bit(PPC440SPE_RXOR_RUN,
1181 &ppc440spe_rxor_state);
1185 if (rv & DMA_CDB_STATUS_MSK) {
1186 /* ZeroSum check failed
1188 struct ppc440spe_adma_desc_slot *iter;
1189 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1192 * Update the status of corresponding
1193 * descriptor.
1195 list_for_each_entry(iter, &chan->chain,
1196 chain_node) {
1197 if (iter->phys == phys)
1198 break;
1201 * if cannot find the corresponding
1202 * slot it's a bug
1204 BUG_ON(&iter->chain_node == &chan->chain);
1206 if (iter->xor_check_result) {
1207 if (test_bit(PPC440SPE_DESC_PCHECK,
1208 &iter->flags)) {
1209 *iter->xor_check_result |=
1210 SUM_CHECK_P_RESULT;
1211 } else
1212 if (test_bit(PPC440SPE_DESC_QCHECK,
1213 &iter->flags)) {
1214 *iter->xor_check_result |=
1215 SUM_CHECK_Q_RESULT;
1216 } else
1217 BUG();
1222 rv = ioread32(&dma_reg->dsts);
1223 if (rv) {
1224 pr_err("DMA%d err status: 0x%x\n",
1225 chan->device->id, rv);
1226 /* write back to clear */
1227 iowrite32(rv, &dma_reg->dsts);
1229 break;
1230 case PPC440SPE_XOR_ID:
1231 /* reset status bits to ack */
1232 xor_reg = chan->device->xor_reg;
1233 rv = ioread32be(&xor_reg->sr);
1234 iowrite32be(rv, &xor_reg->sr);
1236 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1237 if (rv & XOR_IE_RPTIE_BIT) {
1238 /* Read PLB Timeout Error.
1239 * Try to resubmit the CB
1241 u32 val = ioread32be(&xor_reg->ccbalr);
1243 iowrite32be(val, &xor_reg->cblalr);
1245 val = ioread32be(&xor_reg->crsr);
1246 iowrite32be(val | XOR_CRSR_XAE_BIT,
1247 &xor_reg->crsr);
1248 } else
1249 pr_err("XOR ERR 0x%x status\n", rv);
1250 break;
1253 /* if the XORcore is idle, but there are unprocessed CBs
1254 * then refetch the s/w chain here
1256 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1257 do_xor_refetch)
1258 ppc440spe_chan_append(chan);
1259 break;
1264 * ppc440spe_chan_is_busy - get the channel status
1266 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1268 struct dma_regs *dma_reg;
1269 struct xor_regs *xor_reg;
1270 int busy = 0;
1272 switch (chan->device->id) {
1273 case PPC440SPE_DMA0_ID:
1274 case PPC440SPE_DMA1_ID:
1275 dma_reg = chan->device->dma_reg;
1276 /* if command FIFO's head and tail pointers are equal and
1277 * status tail is the same as command, then channel is free
1279 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1280 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1281 busy = 1;
1282 break;
1283 case PPC440SPE_XOR_ID:
1284 /* use the special status bit for the XORcore
1286 xor_reg = chan->device->xor_reg;
1287 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1288 break;
1291 return busy;
1295 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1297 static void ppc440spe_chan_set_first_xor_descriptor(
1298 struct ppc440spe_adma_chan *chan,
1299 struct ppc440spe_adma_desc_slot *next_desc)
1301 struct xor_regs *xor_reg = chan->device->xor_reg;
1303 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1304 printk(KERN_INFO "%s: Warn: XORcore is running "
1305 "when try to set the first CDB!\n",
1306 __func__);
1308 xor_last_submit = xor_last_linked = next_desc;
1310 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1312 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1313 iowrite32be(0, &xor_reg->cblahr);
1314 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1315 &xor_reg->cbcr);
1317 chan->hw_chain_inited = 1;
1321 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1322 * called with irqs disabled
1324 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1325 struct ppc440spe_adma_desc_slot *desc)
1327 u32 pcdb;
1328 struct dma_regs *dma_reg = chan->device->dma_reg;
1330 pcdb = desc->phys;
1331 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1332 pcdb |= DMA_CDB_NO_INT;
1334 chan_last_sub[chan->device->id] = desc;
1336 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1338 iowrite32(pcdb, &dma_reg->cpfpl);
1342 * ppc440spe_chan_append - update the h/w chain in the channel
1344 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1346 struct xor_regs *xor_reg;
1347 struct ppc440spe_adma_desc_slot *iter;
1348 struct xor_cb *xcb;
1349 u32 cur_desc;
1350 unsigned long flags;
1352 local_irq_save(flags);
1354 switch (chan->device->id) {
1355 case PPC440SPE_DMA0_ID:
1356 case PPC440SPE_DMA1_ID:
1357 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1359 if (likely(cur_desc)) {
1360 iter = chan_last_sub[chan->device->id];
1361 BUG_ON(!iter);
1362 } else {
1363 /* first peer */
1364 iter = chan_first_cdb[chan->device->id];
1365 BUG_ON(!iter);
1366 ppc440spe_dma_put_desc(chan, iter);
1367 chan->hw_chain_inited = 1;
1370 /* is there something new to append */
1371 if (!iter->hw_next)
1372 break;
1374 /* flush descriptors from the s/w queue to fifo */
1375 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1376 ppc440spe_dma_put_desc(chan, iter);
1377 if (!iter->hw_next)
1378 break;
1380 break;
1381 case PPC440SPE_XOR_ID:
1382 /* update h/w links and refetch */
1383 if (!xor_last_submit->hw_next)
1384 break;
1386 xor_reg = chan->device->xor_reg;
1387 /* the last linked CDB has to generate an interrupt
1388 * that we'd be able to append the next lists to h/w
1389 * regardless of the XOR engine state at the moment of
1390 * appending of these next lists
1392 xcb = xor_last_linked->hw_desc;
1393 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1395 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1396 /* XORcore is idle. Refetch now */
1397 do_xor_refetch = 0;
1398 ppc440spe_xor_set_link(xor_last_submit,
1399 xor_last_submit->hw_next);
1401 ADMA_LL_DBG(print_cb_list(chan,
1402 xor_last_submit->hw_next));
1404 xor_last_submit = xor_last_linked;
1405 iowrite32be(ioread32be(&xor_reg->crsr) |
1406 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1407 &xor_reg->crsr);
1408 } else {
1409 /* XORcore is running. Refetch later in the handler */
1410 do_xor_refetch = 1;
1413 break;
1416 local_irq_restore(flags);
1420 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1422 static u32
1423 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1425 struct dma_regs *dma_reg;
1426 struct xor_regs *xor_reg;
1428 if (unlikely(!chan->hw_chain_inited))
1429 /* h/w descriptor chain is not initialized yet */
1430 return 0;
1432 switch (chan->device->id) {
1433 case PPC440SPE_DMA0_ID:
1434 case PPC440SPE_DMA1_ID:
1435 dma_reg = chan->device->dma_reg;
1436 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1437 case PPC440SPE_XOR_ID:
1438 xor_reg = chan->device->xor_reg;
1439 return ioread32be(&xor_reg->ccbalr);
1441 return 0;
1445 * ppc440spe_chan_run - enable the channel
1447 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1449 struct xor_regs *xor_reg;
1451 switch (chan->device->id) {
1452 case PPC440SPE_DMA0_ID:
1453 case PPC440SPE_DMA1_ID:
1454 /* DMAs are always enabled, do nothing */
1455 break;
1456 case PPC440SPE_XOR_ID:
1457 /* drain write buffer */
1458 xor_reg = chan->device->xor_reg;
1460 /* fetch descriptor pointed to in <link> */
1461 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1462 &xor_reg->crsr);
1463 break;
1467 /******************************************************************************
1468 * ADMA device level
1469 ******************************************************************************/
1471 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1472 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1474 static dma_cookie_t
1475 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1477 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1478 dma_addr_t addr, int index);
1479 static void
1480 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1481 dma_addr_t addr, int index);
1483 static void
1484 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1485 dma_addr_t *paddr, unsigned long flags);
1486 static void
1487 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1488 dma_addr_t addr, int index);
1489 static void
1490 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1491 unsigned char mult, int index, int dst_pos);
1492 static void
1493 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1494 dma_addr_t paddr, dma_addr_t qaddr);
1496 static struct page *ppc440spe_rxor_srcs[32];
1499 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1501 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1503 int i, order = 0, state = 0;
1504 int idx = 0;
1506 if (unlikely(!(src_cnt > 1)))
1507 return 0;
1509 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1511 /* Skip holes in the source list before checking */
1512 for (i = 0; i < src_cnt; i++) {
1513 if (!srcs[i])
1514 continue;
1515 ppc440spe_rxor_srcs[idx++] = srcs[i];
1517 src_cnt = idx;
1519 for (i = 1; i < src_cnt; i++) {
1520 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1521 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1523 switch (state) {
1524 case 0:
1525 if (cur_addr == old_addr + len) {
1526 /* direct RXOR */
1527 order = 1;
1528 state = 1;
1529 } else if (old_addr == cur_addr + len) {
1530 /* reverse RXOR */
1531 order = -1;
1532 state = 1;
1533 } else
1534 goto out;
1535 break;
1536 case 1:
1537 if ((i == src_cnt - 2) ||
1538 (order == -1 && cur_addr != old_addr - len)) {
1539 order = 0;
1540 state = 0;
1541 } else if ((cur_addr == old_addr + len * order) ||
1542 (cur_addr == old_addr + 2 * len) ||
1543 (cur_addr == old_addr + 3 * len)) {
1544 state = 2;
1545 } else {
1546 order = 0;
1547 state = 0;
1549 break;
1550 case 2:
1551 order = 0;
1552 state = 0;
1553 break;
1557 out:
1558 if (state == 1 || state == 2)
1559 return 1;
1561 return 0;
1565 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1566 * the operation given on this channel. It's assumed that 'chan' is
1567 * capable to process 'cap' type of operation.
1568 * @chan: channel to use
1569 * @cap: type of transaction
1570 * @dst_lst: array of destination pointers
1571 * @dst_cnt: number of destination operands
1572 * @src_lst: array of source pointers
1573 * @src_cnt: number of source operands
1574 * @src_sz: size of each source operand
1576 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1577 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1578 struct page **src_lst, int src_cnt, size_t src_sz)
1580 int ef = 1;
1582 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1583 /* If RAID-6 capabilities were not activated don't try
1584 * to use them
1586 if (unlikely(!ppc440spe_r6_enabled))
1587 return -1;
1589 /* In the current implementation of ppc440spe ADMA driver it
1590 * makes sense to pick out only pq case, because it may be
1591 * processed:
1592 * (1) either using Biskup method on DMA2;
1593 * (2) or on DMA0/1.
1594 * Thus we give a favour to (1) if the sources are suitable;
1595 * else let it be processed on one of the DMA0/1 engines.
1596 * In the sum_product case where destination is also the
1597 * source process it on DMA0/1 only.
1599 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1601 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1602 ef = 0; /* sum_product case, process on DMA0/1 */
1603 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1604 ef = 3; /* override (DMA0/1 + idle) */
1605 else
1606 ef = 0; /* can't process on DMA2 if !rxor */
1609 /* channel idleness increases the priority */
1610 if (likely(ef) &&
1611 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1612 ef++;
1614 return ef;
1617 struct dma_chan *
1618 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1619 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1620 int src_cnt, size_t src_sz)
1622 struct dma_chan *best_chan = NULL;
1623 struct ppc_dma_chan_ref *ref;
1624 int best_rank = -1;
1626 if (unlikely(!src_sz))
1627 return NULL;
1628 if (src_sz > PAGE_SIZE) {
1630 * should a user of the api ever pass > PAGE_SIZE requests
1631 * we sort out cases where temporary page-sized buffers
1632 * are used.
1634 switch (cap) {
1635 case DMA_PQ:
1636 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1637 return NULL;
1638 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1639 return NULL;
1640 break;
1641 case DMA_PQ_VAL:
1642 case DMA_XOR_VAL:
1643 return NULL;
1644 default:
1645 break;
1649 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1650 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1651 int rank;
1653 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1654 dst_cnt, src_lst, src_cnt, src_sz);
1655 if (rank > best_rank) {
1656 best_rank = rank;
1657 best_chan = ref->chan;
1662 return best_chan;
1664 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1667 * ppc440spe_get_group_entry - get group entry with index idx
1668 * @tdesc: is the last allocated slot in the group.
1670 static struct ppc440spe_adma_desc_slot *
1671 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1673 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1674 int i = 0;
1676 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1677 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1678 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1679 BUG();
1682 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1683 if (i++ == entry_idx)
1684 break;
1686 return iter;
1690 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1691 * @slot: Slot to free
1692 * Caller must hold &ppc440spe_chan->lock while calling this function
1694 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1695 struct ppc440spe_adma_chan *chan)
1697 int stride = slot->slots_per_op;
1699 while (stride--) {
1700 slot->slots_per_op = 0;
1701 slot = list_entry(slot->slot_node.next,
1702 struct ppc440spe_adma_desc_slot,
1703 slot_node);
1707 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1708 struct ppc440spe_adma_desc_slot *desc)
1710 u32 src_cnt, dst_cnt;
1711 dma_addr_t addr;
1714 * get the number of sources & destination
1715 * included in this descriptor and unmap
1716 * them all
1718 src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1719 dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1721 /* unmap destinations */
1722 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1723 while (dst_cnt--) {
1724 addr = ppc440spe_desc_get_dest_addr(
1725 desc, chan, dst_cnt);
1726 dma_unmap_page(chan->device->dev,
1727 addr, desc->unmap_len,
1728 DMA_FROM_DEVICE);
1732 /* unmap sources */
1733 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1734 while (src_cnt--) {
1735 addr = ppc440spe_desc_get_src_addr(
1736 desc, chan, src_cnt);
1737 dma_unmap_page(chan->device->dev,
1738 addr, desc->unmap_len,
1739 DMA_TO_DEVICE);
1745 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1746 * upon completion
1748 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1749 struct ppc440spe_adma_desc_slot *desc,
1750 struct ppc440spe_adma_chan *chan,
1751 dma_cookie_t cookie)
1753 int i;
1755 BUG_ON(desc->async_tx.cookie < 0);
1756 if (desc->async_tx.cookie > 0) {
1757 cookie = desc->async_tx.cookie;
1758 desc->async_tx.cookie = 0;
1760 /* call the callback (must not sleep or submit new
1761 * operations to this channel)
1763 if (desc->async_tx.callback)
1764 desc->async_tx.callback(
1765 desc->async_tx.callback_param);
1767 /* unmap dma addresses
1768 * (unmap_single vs unmap_page?)
1770 * actually, ppc's dma_unmap_page() functions are empty, so
1771 * the following code is just for the sake of completeness
1773 if (chan && chan->needs_unmap && desc->group_head &&
1774 desc->unmap_len) {
1775 struct ppc440spe_adma_desc_slot *unmap =
1776 desc->group_head;
1777 /* assume 1 slot per op always */
1778 u32 slot_count = unmap->slot_cnt;
1780 /* Run through the group list and unmap addresses */
1781 for (i = 0; i < slot_count; i++) {
1782 BUG_ON(!unmap);
1783 ppc440spe_adma_unmap(chan, unmap);
1784 unmap = unmap->hw_next;
1789 /* run dependent operations */
1790 dma_run_dependencies(&desc->async_tx);
1792 return cookie;
1796 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1798 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1799 struct ppc440spe_adma_chan *chan)
1801 /* the client is allowed to attach dependent operations
1802 * until 'ack' is set
1804 if (!async_tx_test_ack(&desc->async_tx))
1805 return 0;
1807 /* leave the last descriptor in the chain
1808 * so we can append to it
1810 if (list_is_last(&desc->chain_node, &chan->chain) ||
1811 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1812 return 1;
1814 if (chan->device->id != PPC440SPE_XOR_ID) {
1815 /* our DMA interrupt handler clears opc field of
1816 * each processed descriptor. For all types of
1817 * operations except for ZeroSum we do not actually
1818 * need ack from the interrupt handler. ZeroSum is a
1819 * special case since the result of this operation
1820 * is available from the handler only, so if we see
1821 * such type of descriptor (which is unprocessed yet)
1822 * then leave it in chain.
1824 struct dma_cdb *cdb = desc->hw_desc;
1825 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1826 return 1;
1829 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1830 desc->phys, desc->idx, desc->slots_per_op);
1832 list_del(&desc->chain_node);
1833 ppc440spe_adma_free_slots(desc, chan);
1834 return 0;
1838 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1839 * which runs through the channel CDBs list until reach the descriptor
1840 * currently processed. When routine determines that all CDBs of group
1841 * are completed then corresponding callbacks (if any) are called and slots
1842 * are freed.
1844 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1846 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1847 dma_cookie_t cookie = 0;
1848 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1849 int busy = ppc440spe_chan_is_busy(chan);
1850 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1852 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1853 chan->device->id, __func__);
1855 if (!current_desc) {
1856 /* There were no transactions yet, so
1857 * nothing to clean
1859 return;
1862 /* free completed slots from the chain starting with
1863 * the oldest descriptor
1865 list_for_each_entry_safe(iter, _iter, &chan->chain,
1866 chain_node) {
1867 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1868 "busy: %d this_desc: %#llx next_desc: %#x "
1869 "cur: %#x ack: %d\n",
1870 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1871 ppc440spe_desc_get_link(iter, chan), current_desc,
1872 async_tx_test_ack(&iter->async_tx));
1873 prefetch(_iter);
1874 prefetch(&_iter->async_tx);
1876 /* do not advance past the current descriptor loaded into the
1877 * hardware channel,subsequent descriptors are either in process
1878 * or have not been submitted
1880 if (seen_current)
1881 break;
1883 /* stop the search if we reach the current descriptor and the
1884 * channel is busy, or if it appears that the current descriptor
1885 * needs to be re-read (i.e. has been appended to)
1887 if (iter->phys == current_desc) {
1888 BUG_ON(seen_current++);
1889 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1890 /* not all descriptors of the group have
1891 * been completed; exit.
1893 break;
1897 /* detect the start of a group transaction */
1898 if (!slot_cnt && !slots_per_op) {
1899 slot_cnt = iter->slot_cnt;
1900 slots_per_op = iter->slots_per_op;
1901 if (slot_cnt <= slots_per_op) {
1902 slot_cnt = 0;
1903 slots_per_op = 0;
1907 if (slot_cnt) {
1908 if (!group_start)
1909 group_start = iter;
1910 slot_cnt -= slots_per_op;
1913 /* all the members of a group are complete */
1914 if (slots_per_op != 0 && slot_cnt == 0) {
1915 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1916 int end_of_chain = 0;
1918 /* clean up the group */
1919 slot_cnt = group_start->slot_cnt;
1920 grp_iter = group_start;
1921 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1922 &chan->chain, chain_node) {
1924 cookie = ppc440spe_adma_run_tx_complete_actions(
1925 grp_iter, chan, cookie);
1927 slot_cnt -= slots_per_op;
1928 end_of_chain = ppc440spe_adma_clean_slot(
1929 grp_iter, chan);
1930 if (end_of_chain && slot_cnt) {
1931 /* Should wait for ZeroSum completion */
1932 if (cookie > 0)
1933 chan->completed_cookie = cookie;
1934 return;
1937 if (slot_cnt == 0 || end_of_chain)
1938 break;
1941 /* the group should be complete at this point */
1942 BUG_ON(slot_cnt);
1944 slots_per_op = 0;
1945 group_start = NULL;
1946 if (end_of_chain)
1947 break;
1948 else
1949 continue;
1950 } else if (slots_per_op) /* wait for group completion */
1951 continue;
1953 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1954 cookie);
1956 if (ppc440spe_adma_clean_slot(iter, chan))
1957 break;
1960 BUG_ON(!seen_current);
1962 if (cookie > 0) {
1963 chan->completed_cookie = cookie;
1964 pr_debug("\tcompleted cookie %d\n", cookie);
1970 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1972 static void ppc440spe_adma_tasklet(unsigned long data)
1974 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1976 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1977 __ppc440spe_adma_slot_cleanup(chan);
1978 spin_unlock(&chan->lock);
1982 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1984 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1986 spin_lock_bh(&chan->lock);
1987 __ppc440spe_adma_slot_cleanup(chan);
1988 spin_unlock_bh(&chan->lock);
1992 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1994 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1995 struct ppc440spe_adma_chan *chan, int num_slots,
1996 int slots_per_op)
1998 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1999 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2000 struct list_head chain = LIST_HEAD_INIT(chain);
2001 int slots_found, retry = 0;
2004 BUG_ON(!num_slots || !slots_per_op);
2005 /* start search from the last allocated descrtiptor
2006 * if a contiguous allocation can not be found start searching
2007 * from the beginning of the list
2009 retry:
2010 slots_found = 0;
2011 if (retry == 0)
2012 iter = chan->last_used;
2013 else
2014 iter = list_entry(&chan->all_slots,
2015 struct ppc440spe_adma_desc_slot,
2016 slot_node);
2017 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2018 slot_node) {
2019 prefetch(_iter);
2020 prefetch(&_iter->async_tx);
2021 if (iter->slots_per_op) {
2022 slots_found = 0;
2023 continue;
2026 /* start the allocation if the slot is correctly aligned */
2027 if (!slots_found++)
2028 alloc_start = iter;
2030 if (slots_found == num_slots) {
2031 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2032 struct ppc440spe_adma_desc_slot *last_used = NULL;
2034 iter = alloc_start;
2035 while (num_slots) {
2036 int i;
2037 /* pre-ack all but the last descriptor */
2038 if (num_slots != slots_per_op)
2039 async_tx_ack(&iter->async_tx);
2041 list_add_tail(&iter->chain_node, &chain);
2042 alloc_tail = iter;
2043 iter->async_tx.cookie = 0;
2044 iter->hw_next = NULL;
2045 iter->flags = 0;
2046 iter->slot_cnt = num_slots;
2047 iter->xor_check_result = NULL;
2048 for (i = 0; i < slots_per_op; i++) {
2049 iter->slots_per_op = slots_per_op - i;
2050 last_used = iter;
2051 iter = list_entry(iter->slot_node.next,
2052 struct ppc440spe_adma_desc_slot,
2053 slot_node);
2055 num_slots -= slots_per_op;
2057 alloc_tail->group_head = alloc_start;
2058 alloc_tail->async_tx.cookie = -EBUSY;
2059 list_splice(&chain, &alloc_tail->group_list);
2060 chan->last_used = last_used;
2061 return alloc_tail;
2064 if (!retry++)
2065 goto retry;
2067 /* try to free some slots if the allocation fails */
2068 tasklet_schedule(&chan->irq_tasklet);
2069 return NULL;
2073 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
2075 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2077 struct ppc440spe_adma_chan *ppc440spe_chan;
2078 struct ppc440spe_adma_desc_slot *slot = NULL;
2079 char *hw_desc;
2080 int i, db_sz;
2081 int init;
2083 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2084 init = ppc440spe_chan->slots_allocated ? 0 : 1;
2085 chan->chan_id = ppc440spe_chan->device->id;
2087 /* Allocate descriptor slots */
2088 i = ppc440spe_chan->slots_allocated;
2089 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2090 db_sz = sizeof(struct dma_cdb);
2091 else
2092 db_sz = sizeof(struct xor_cb);
2094 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2095 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2096 GFP_KERNEL);
2097 if (!slot) {
2098 printk(KERN_INFO "SPE ADMA Channel only initialized"
2099 " %d descriptor slots", i--);
2100 break;
2103 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2104 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2105 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2106 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2107 INIT_LIST_HEAD(&slot->chain_node);
2108 INIT_LIST_HEAD(&slot->slot_node);
2109 INIT_LIST_HEAD(&slot->group_list);
2110 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2111 slot->idx = i;
2113 spin_lock_bh(&ppc440spe_chan->lock);
2114 ppc440spe_chan->slots_allocated++;
2115 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2116 spin_unlock_bh(&ppc440spe_chan->lock);
2119 if (i && !ppc440spe_chan->last_used) {
2120 ppc440spe_chan->last_used =
2121 list_entry(ppc440spe_chan->all_slots.next,
2122 struct ppc440spe_adma_desc_slot,
2123 slot_node);
2126 dev_dbg(ppc440spe_chan->device->common.dev,
2127 "ppc440spe adma%d: allocated %d descriptor slots\n",
2128 ppc440spe_chan->device->id, i);
2130 /* initialize the channel and the chain with a null operation */
2131 if (init) {
2132 switch (ppc440spe_chan->device->id) {
2133 case PPC440SPE_DMA0_ID:
2134 case PPC440SPE_DMA1_ID:
2135 ppc440spe_chan->hw_chain_inited = 0;
2136 /* Use WXOR for self-testing */
2137 if (!ppc440spe_r6_tchan)
2138 ppc440spe_r6_tchan = ppc440spe_chan;
2139 break;
2140 case PPC440SPE_XOR_ID:
2141 ppc440spe_chan_start_null_xor(ppc440spe_chan);
2142 break;
2143 default:
2144 BUG();
2146 ppc440spe_chan->needs_unmap = 1;
2149 return (i > 0) ? i : -ENOMEM;
2153 * ppc440spe_desc_assign_cookie - assign a cookie
2155 static dma_cookie_t ppc440spe_desc_assign_cookie(
2156 struct ppc440spe_adma_chan *chan,
2157 struct ppc440spe_adma_desc_slot *desc)
2159 dma_cookie_t cookie = chan->common.cookie;
2161 cookie++;
2162 if (cookie < 0)
2163 cookie = 1;
2164 chan->common.cookie = desc->async_tx.cookie = cookie;
2165 return cookie;
2169 * ppc440spe_rxor_set_region_data -
2171 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2172 u8 xor_arg_no, u32 mask)
2174 struct xor_cb *xcb = desc->hw_desc;
2176 xcb->ops[xor_arg_no].h |= mask;
2180 * ppc440spe_rxor_set_src -
2182 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2183 u8 xor_arg_no, dma_addr_t addr)
2185 struct xor_cb *xcb = desc->hw_desc;
2187 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2188 xcb->ops[xor_arg_no].l = addr;
2192 * ppc440spe_rxor_set_mult -
2194 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2195 u8 xor_arg_no, u8 idx, u8 mult)
2197 struct xor_cb *xcb = desc->hw_desc;
2199 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2203 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2204 * has been achieved
2206 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2208 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2209 chan->device->id, chan->pending);
2211 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2212 chan->pending = 0;
2213 ppc440spe_chan_append(chan);
2218 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2219 * (it's not necessary that descriptors will be submitted to the h/w
2220 * chains too right now)
2222 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2224 struct ppc440spe_adma_desc_slot *sw_desc;
2225 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2226 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2227 int slot_cnt;
2228 int slots_per_op;
2229 dma_cookie_t cookie;
2231 sw_desc = tx_to_ppc440spe_adma_slot(tx);
2233 group_start = sw_desc->group_head;
2234 slot_cnt = group_start->slot_cnt;
2235 slots_per_op = group_start->slots_per_op;
2237 spin_lock_bh(&chan->lock);
2239 cookie = ppc440spe_desc_assign_cookie(chan, sw_desc);
2241 if (unlikely(list_empty(&chan->chain))) {
2242 /* first peer */
2243 list_splice_init(&sw_desc->group_list, &chan->chain);
2244 chan_first_cdb[chan->device->id] = group_start;
2245 } else {
2246 /* isn't first peer, bind CDBs to chain */
2247 old_chain_tail = list_entry(chan->chain.prev,
2248 struct ppc440spe_adma_desc_slot,
2249 chain_node);
2250 list_splice_init(&sw_desc->group_list,
2251 &old_chain_tail->chain_node);
2252 /* fix up the hardware chain */
2253 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2256 /* increment the pending count by the number of operations */
2257 chan->pending += slot_cnt / slots_per_op;
2258 ppc440spe_adma_check_threshold(chan);
2259 spin_unlock_bh(&chan->lock);
2261 dev_dbg(chan->device->common.dev,
2262 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2263 chan->device->id, __func__,
2264 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2266 return cookie;
2270 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2272 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2273 struct dma_chan *chan, unsigned long flags)
2275 struct ppc440spe_adma_chan *ppc440spe_chan;
2276 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2277 int slot_cnt, slots_per_op;
2279 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2281 dev_dbg(ppc440spe_chan->device->common.dev,
2282 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2283 __func__);
2285 spin_lock_bh(&ppc440spe_chan->lock);
2286 slot_cnt = slots_per_op = 1;
2287 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2288 slots_per_op);
2289 if (sw_desc) {
2290 group_start = sw_desc->group_head;
2291 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2292 group_start->unmap_len = 0;
2293 sw_desc->async_tx.flags = flags;
2295 spin_unlock_bh(&ppc440spe_chan->lock);
2297 return sw_desc ? &sw_desc->async_tx : NULL;
2301 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2303 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2304 struct dma_chan *chan, dma_addr_t dma_dest,
2305 dma_addr_t dma_src, size_t len, unsigned long flags)
2307 struct ppc440spe_adma_chan *ppc440spe_chan;
2308 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2309 int slot_cnt, slots_per_op;
2311 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2313 if (unlikely(!len))
2314 return NULL;
2316 BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2318 spin_lock_bh(&ppc440spe_chan->lock);
2320 dev_dbg(ppc440spe_chan->device->common.dev,
2321 "ppc440spe adma%d: %s len: %u int_en %d\n",
2322 ppc440spe_chan->device->id, __func__, len,
2323 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2324 slot_cnt = slots_per_op = 1;
2325 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2326 slots_per_op);
2327 if (sw_desc) {
2328 group_start = sw_desc->group_head;
2329 ppc440spe_desc_init_memcpy(group_start, flags);
2330 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2331 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2332 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2333 sw_desc->unmap_len = len;
2334 sw_desc->async_tx.flags = flags;
2336 spin_unlock_bh(&ppc440spe_chan->lock);
2338 return sw_desc ? &sw_desc->async_tx : NULL;
2342 * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2344 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
2345 struct dma_chan *chan, dma_addr_t dma_dest, int value,
2346 size_t len, unsigned long flags)
2348 struct ppc440spe_adma_chan *ppc440spe_chan;
2349 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2350 int slot_cnt, slots_per_op;
2352 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2354 if (unlikely(!len))
2355 return NULL;
2357 BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2359 spin_lock_bh(&ppc440spe_chan->lock);
2361 dev_dbg(ppc440spe_chan->device->common.dev,
2362 "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2363 ppc440spe_chan->device->id, __func__, value, len,
2364 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2366 slot_cnt = slots_per_op = 1;
2367 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2368 slots_per_op);
2369 if (sw_desc) {
2370 group_start = sw_desc->group_head;
2371 ppc440spe_desc_init_memset(group_start, value, flags);
2372 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2373 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2374 sw_desc->unmap_len = len;
2375 sw_desc->async_tx.flags = flags;
2377 spin_unlock_bh(&ppc440spe_chan->lock);
2379 return sw_desc ? &sw_desc->async_tx : NULL;
2383 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2385 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2386 struct dma_chan *chan, dma_addr_t dma_dest,
2387 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2388 unsigned long flags)
2390 struct ppc440spe_adma_chan *ppc440spe_chan;
2391 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2392 int slot_cnt, slots_per_op;
2394 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2396 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2397 dma_dest, dma_src, src_cnt));
2398 if (unlikely(!len))
2399 return NULL;
2400 BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2402 dev_dbg(ppc440spe_chan->device->common.dev,
2403 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2404 ppc440spe_chan->device->id, __func__, src_cnt, len,
2405 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2407 spin_lock_bh(&ppc440spe_chan->lock);
2408 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2409 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2410 slots_per_op);
2411 if (sw_desc) {
2412 group_start = sw_desc->group_head;
2413 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2414 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2415 while (src_cnt--)
2416 ppc440spe_adma_memcpy_xor_set_src(group_start,
2417 dma_src[src_cnt], src_cnt);
2418 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2419 sw_desc->unmap_len = len;
2420 sw_desc->async_tx.flags = flags;
2422 spin_unlock_bh(&ppc440spe_chan->lock);
2424 return sw_desc ? &sw_desc->async_tx : NULL;
2427 static inline void
2428 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2429 int src_cnt);
2430 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2433 * ppc440spe_adma_init_dma2rxor_slot -
2435 static void ppc440spe_adma_init_dma2rxor_slot(
2436 struct ppc440spe_adma_desc_slot *desc,
2437 dma_addr_t *src, int src_cnt)
2439 int i;
2441 /* initialize CDB */
2442 for (i = 0; i < src_cnt; i++) {
2443 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2444 desc->src_cnt, (u32)src[i]);
2449 * ppc440spe_dma01_prep_mult -
2450 * for Q operation where destination is also the source
2452 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2453 struct ppc440spe_adma_chan *ppc440spe_chan,
2454 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2455 const unsigned char *scf, size_t len, unsigned long flags)
2457 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2458 unsigned long op = 0;
2459 int slot_cnt;
2461 set_bit(PPC440SPE_DESC_WXOR, &op);
2462 slot_cnt = 2;
2464 spin_lock_bh(&ppc440spe_chan->lock);
2466 /* use WXOR, each descriptor occupies one slot */
2467 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2468 if (sw_desc) {
2469 struct ppc440spe_adma_chan *chan;
2470 struct ppc440spe_adma_desc_slot *iter;
2471 struct dma_cdb *hw_desc;
2473 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2474 set_bits(op, &sw_desc->flags);
2475 sw_desc->src_cnt = src_cnt;
2476 sw_desc->dst_cnt = dst_cnt;
2477 /* First descriptor, zero data in the destination and copy it
2478 * to q page using MULTICAST transfer.
2480 iter = list_first_entry(&sw_desc->group_list,
2481 struct ppc440spe_adma_desc_slot,
2482 chain_node);
2483 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2484 /* set 'next' pointer */
2485 iter->hw_next = list_entry(iter->chain_node.next,
2486 struct ppc440spe_adma_desc_slot,
2487 chain_node);
2488 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2489 hw_desc = iter->hw_desc;
2490 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2492 ppc440spe_desc_set_dest_addr(iter, chan,
2493 DMA_CUED_XOR_BASE, dst[0], 0);
2494 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2495 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2496 src[0]);
2497 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2498 iter->unmap_len = len;
2501 * Second descriptor, multiply data from the q page
2502 * and store the result in real destination.
2504 iter = list_first_entry(&iter->chain_node,
2505 struct ppc440spe_adma_desc_slot,
2506 chain_node);
2507 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2508 iter->hw_next = NULL;
2509 if (flags & DMA_PREP_INTERRUPT)
2510 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2511 else
2512 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2514 hw_desc = iter->hw_desc;
2515 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2516 ppc440spe_desc_set_src_addr(iter, chan, 0,
2517 DMA_CUED_XOR_HB, dst[1]);
2518 ppc440spe_desc_set_dest_addr(iter, chan,
2519 DMA_CUED_XOR_BASE, dst[0], 0);
2521 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2522 DMA_CDB_SG_DST1, scf[0]);
2523 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2524 iter->unmap_len = len;
2525 sw_desc->async_tx.flags = flags;
2528 spin_unlock_bh(&ppc440spe_chan->lock);
2530 return sw_desc;
2534 * ppc440spe_dma01_prep_sum_product -
2535 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2536 * the source.
2538 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2539 struct ppc440spe_adma_chan *ppc440spe_chan,
2540 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2541 const unsigned char *scf, size_t len, unsigned long flags)
2543 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2544 unsigned long op = 0;
2545 int slot_cnt;
2547 set_bit(PPC440SPE_DESC_WXOR, &op);
2548 slot_cnt = 3;
2550 spin_lock_bh(&ppc440spe_chan->lock);
2552 /* WXOR, each descriptor occupies one slot */
2553 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2554 if (sw_desc) {
2555 struct ppc440spe_adma_chan *chan;
2556 struct ppc440spe_adma_desc_slot *iter;
2557 struct dma_cdb *hw_desc;
2559 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2560 set_bits(op, &sw_desc->flags);
2561 sw_desc->src_cnt = src_cnt;
2562 sw_desc->dst_cnt = 1;
2563 /* 1st descriptor, src[1] data to q page and zero destination */
2564 iter = list_first_entry(&sw_desc->group_list,
2565 struct ppc440spe_adma_desc_slot,
2566 chain_node);
2567 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2568 iter->hw_next = list_entry(iter->chain_node.next,
2569 struct ppc440spe_adma_desc_slot,
2570 chain_node);
2571 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2572 hw_desc = iter->hw_desc;
2573 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2575 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2576 *dst, 0);
2577 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2578 ppc440spe_chan->qdest, 1);
2579 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2580 src[1]);
2581 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2582 iter->unmap_len = len;
2584 /* 2nd descriptor, multiply src[1] data and store the
2585 * result in destination */
2586 iter = list_first_entry(&iter->chain_node,
2587 struct ppc440spe_adma_desc_slot,
2588 chain_node);
2589 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2590 /* set 'next' pointer */
2591 iter->hw_next = list_entry(iter->chain_node.next,
2592 struct ppc440spe_adma_desc_slot,
2593 chain_node);
2594 if (flags & DMA_PREP_INTERRUPT)
2595 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2596 else
2597 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2599 hw_desc = iter->hw_desc;
2600 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2601 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2602 ppc440spe_chan->qdest);
2603 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2604 *dst, 0);
2605 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2606 DMA_CDB_SG_DST1, scf[1]);
2607 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2608 iter->unmap_len = len;
2611 * 3rd descriptor, multiply src[0] data and xor it
2612 * with destination
2614 iter = list_first_entry(&iter->chain_node,
2615 struct ppc440spe_adma_desc_slot,
2616 chain_node);
2617 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2618 iter->hw_next = NULL;
2619 if (flags & DMA_PREP_INTERRUPT)
2620 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2621 else
2622 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2624 hw_desc = iter->hw_desc;
2625 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2626 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2627 src[0]);
2628 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2629 *dst, 0);
2630 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2631 DMA_CDB_SG_DST1, scf[0]);
2632 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2633 iter->unmap_len = len;
2634 sw_desc->async_tx.flags = flags;
2637 spin_unlock_bh(&ppc440spe_chan->lock);
2639 return sw_desc;
2642 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2643 struct ppc440spe_adma_chan *ppc440spe_chan,
2644 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2645 const unsigned char *scf, size_t len, unsigned long flags)
2647 int slot_cnt;
2648 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2649 unsigned long op = 0;
2650 unsigned char mult = 1;
2652 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2653 __func__, dst_cnt, src_cnt, len);
2654 /* select operations WXOR/RXOR depending on the
2655 * source addresses of operators and the number
2656 * of destinations (RXOR support only Q-parity calculations)
2658 set_bit(PPC440SPE_DESC_WXOR, &op);
2659 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2660 /* no active RXOR;
2661 * do RXOR if:
2662 * - there are more than 1 source,
2663 * - len is aligned on 512-byte boundary,
2664 * - source addresses fit to one of 4 possible regions.
2666 if (src_cnt > 1 &&
2667 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2668 (src[0] + len) == src[1]) {
2669 /* may do RXOR R1 R2 */
2670 set_bit(PPC440SPE_DESC_RXOR, &op);
2671 if (src_cnt != 2) {
2672 /* may try to enhance region of RXOR */
2673 if ((src[1] + len) == src[2]) {
2674 /* do RXOR R1 R2 R3 */
2675 set_bit(PPC440SPE_DESC_RXOR123,
2676 &op);
2677 } else if ((src[1] + len * 2) == src[2]) {
2678 /* do RXOR R1 R2 R4 */
2679 set_bit(PPC440SPE_DESC_RXOR124, &op);
2680 } else if ((src[1] + len * 3) == src[2]) {
2681 /* do RXOR R1 R2 R5 */
2682 set_bit(PPC440SPE_DESC_RXOR125,
2683 &op);
2684 } else {
2685 /* do RXOR R1 R2 */
2686 set_bit(PPC440SPE_DESC_RXOR12,
2687 &op);
2689 } else {
2690 /* do RXOR R1 R2 */
2691 set_bit(PPC440SPE_DESC_RXOR12, &op);
2695 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2696 /* can not do this operation with RXOR */
2697 clear_bit(PPC440SPE_RXOR_RUN,
2698 &ppc440spe_rxor_state);
2699 } else {
2700 /* can do; set block size right now */
2701 ppc440spe_desc_set_rxor_block_size(len);
2705 /* Number of necessary slots depends on operation type selected */
2706 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2707 /* This is a WXOR only chain. Need descriptors for each
2708 * source to GF-XOR them with WXOR, and need descriptors
2709 * for each destination to zero them with WXOR
2711 slot_cnt = src_cnt;
2713 if (flags & DMA_PREP_ZERO_P) {
2714 slot_cnt++;
2715 set_bit(PPC440SPE_ZERO_P, &op);
2717 if (flags & DMA_PREP_ZERO_Q) {
2718 slot_cnt++;
2719 set_bit(PPC440SPE_ZERO_Q, &op);
2721 } else {
2722 /* Need 1/2 descriptor for RXOR operation, and
2723 * need (src_cnt - (2 or 3)) for WXOR of sources
2724 * remained (if any)
2726 slot_cnt = dst_cnt;
2728 if (flags & DMA_PREP_ZERO_P)
2729 set_bit(PPC440SPE_ZERO_P, &op);
2730 if (flags & DMA_PREP_ZERO_Q)
2731 set_bit(PPC440SPE_ZERO_Q, &op);
2733 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2734 slot_cnt += src_cnt - 2;
2735 else
2736 slot_cnt += src_cnt - 3;
2738 /* Thus we have either RXOR only chain or
2739 * mixed RXOR/WXOR
2741 if (slot_cnt == dst_cnt)
2742 /* RXOR only chain */
2743 clear_bit(PPC440SPE_DESC_WXOR, &op);
2746 spin_lock_bh(&ppc440spe_chan->lock);
2747 /* for both RXOR/WXOR each descriptor occupies one slot */
2748 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2749 if (sw_desc) {
2750 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2751 flags, op);
2753 /* setup dst/src/mult */
2754 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2755 __func__, dst[0], dst[1]);
2756 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2757 while (src_cnt--) {
2758 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2759 src_cnt);
2761 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2762 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2763 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2764 * leads to zeroing source data after RXOR.
2765 * So, for P case set-up mult=1 explicitly.
2767 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2768 mult = scf[src_cnt];
2769 ppc440spe_adma_pq_set_src_mult(sw_desc,
2770 mult, src_cnt, dst_cnt - 1);
2773 /* Setup byte count foreach slot just allocated */
2774 sw_desc->async_tx.flags = flags;
2775 list_for_each_entry(iter, &sw_desc->group_list,
2776 chain_node) {
2777 ppc440spe_desc_set_byte_count(iter,
2778 ppc440spe_chan, len);
2779 iter->unmap_len = len;
2782 spin_unlock_bh(&ppc440spe_chan->lock);
2784 return sw_desc;
2787 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2788 struct ppc440spe_adma_chan *ppc440spe_chan,
2789 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2790 const unsigned char *scf, size_t len, unsigned long flags)
2792 int slot_cnt, descs_per_op;
2793 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2794 unsigned long op = 0;
2795 unsigned char mult = 1;
2797 BUG_ON(!dst_cnt);
2798 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2799 __func__, dst_cnt, src_cnt, len);*/
2801 spin_lock_bh(&ppc440spe_chan->lock);
2802 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2803 if (descs_per_op < 0) {
2804 spin_unlock_bh(&ppc440spe_chan->lock);
2805 return NULL;
2808 /* depending on number of sources we have 1 or 2 RXOR chains */
2809 slot_cnt = descs_per_op * dst_cnt;
2811 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2812 if (sw_desc) {
2813 op = slot_cnt;
2814 sw_desc->async_tx.flags = flags;
2815 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2816 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2817 --op ? 0 : flags);
2818 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2819 len);
2820 iter->unmap_len = len;
2822 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2823 iter->rxor_cursor.len = len;
2824 iter->descs_per_op = descs_per_op;
2826 op = 0;
2827 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2828 op++;
2829 if (op % descs_per_op == 0)
2830 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2831 src_cnt);
2832 if (likely(!list_is_last(&iter->chain_node,
2833 &sw_desc->group_list))) {
2834 /* set 'next' pointer */
2835 iter->hw_next =
2836 list_entry(iter->chain_node.next,
2837 struct ppc440spe_adma_desc_slot,
2838 chain_node);
2839 ppc440spe_xor_set_link(iter, iter->hw_next);
2840 } else {
2841 /* this is the last descriptor. */
2842 iter->hw_next = NULL;
2846 /* fixup head descriptor */
2847 sw_desc->dst_cnt = dst_cnt;
2848 if (flags & DMA_PREP_ZERO_P)
2849 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2850 if (flags & DMA_PREP_ZERO_Q)
2851 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2853 /* setup dst/src/mult */
2854 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2856 while (src_cnt--) {
2857 /* handle descriptors (if dst_cnt == 2) inside
2858 * the ppc440spe_adma_pq_set_srcxxx() functions
2860 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2861 src_cnt);
2862 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2863 mult = scf[src_cnt];
2864 ppc440spe_adma_pq_set_src_mult(sw_desc,
2865 mult, src_cnt, dst_cnt - 1);
2868 spin_unlock_bh(&ppc440spe_chan->lock);
2869 ppc440spe_desc_set_rxor_block_size(len);
2870 return sw_desc;
2874 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2876 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2877 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2878 unsigned int src_cnt, const unsigned char *scf,
2879 size_t len, unsigned long flags)
2881 struct ppc440spe_adma_chan *ppc440spe_chan;
2882 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2883 int dst_cnt = 0;
2885 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2887 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2888 dst, src, src_cnt));
2889 BUG_ON(!len);
2890 BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2891 BUG_ON(!src_cnt);
2893 if (src_cnt == 1 && dst[1] == src[0]) {
2894 dma_addr_t dest[2];
2896 /* dst[1] is real destination (Q) */
2897 dest[0] = dst[1];
2898 /* this is the page to multicast source data to */
2899 dest[1] = ppc440spe_chan->qdest;
2900 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2901 dest, 2, src, src_cnt, scf, len, flags);
2902 return sw_desc ? &sw_desc->async_tx : NULL;
2905 if (src_cnt == 2 && dst[1] == src[1]) {
2906 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2907 &dst[1], src, 2, scf, len, flags);
2908 return sw_desc ? &sw_desc->async_tx : NULL;
2911 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2912 BUG_ON(!dst[0]);
2913 dst_cnt++;
2914 flags |= DMA_PREP_ZERO_P;
2917 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2918 BUG_ON(!dst[1]);
2919 dst_cnt++;
2920 flags |= DMA_PREP_ZERO_Q;
2923 BUG_ON(!dst_cnt);
2925 dev_dbg(ppc440spe_chan->device->common.dev,
2926 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2927 ppc440spe_chan->device->id, __func__, src_cnt, len,
2928 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2930 switch (ppc440spe_chan->device->id) {
2931 case PPC440SPE_DMA0_ID:
2932 case PPC440SPE_DMA1_ID:
2933 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2934 dst, dst_cnt, src, src_cnt, scf,
2935 len, flags);
2936 break;
2938 case PPC440SPE_XOR_ID:
2939 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2940 dst, dst_cnt, src, src_cnt, scf,
2941 len, flags);
2942 break;
2945 return sw_desc ? &sw_desc->async_tx : NULL;
2949 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2950 * a PQ_ZERO_SUM operation
2952 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2953 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2954 unsigned int src_cnt, const unsigned char *scf, size_t len,
2955 enum sum_check_flags *pqres, unsigned long flags)
2957 struct ppc440spe_adma_chan *ppc440spe_chan;
2958 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2959 dma_addr_t pdest, qdest;
2960 int slot_cnt, slots_per_op, idst, dst_cnt;
2962 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2964 if (flags & DMA_PREP_PQ_DISABLE_P)
2965 pdest = 0;
2966 else
2967 pdest = pq[0];
2969 if (flags & DMA_PREP_PQ_DISABLE_Q)
2970 qdest = 0;
2971 else
2972 qdest = pq[1];
2974 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2975 src, src_cnt, scf));
2977 /* Always use WXOR for P/Q calculations (two destinations).
2978 * Need 1 or 2 extra slots to verify results are zero.
2980 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2982 /* One additional slot per destination to clone P/Q
2983 * before calculation (we have to preserve destinations).
2985 slot_cnt = src_cnt + dst_cnt * 2;
2986 slots_per_op = 1;
2988 spin_lock_bh(&ppc440spe_chan->lock);
2989 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2990 slots_per_op);
2991 if (sw_desc) {
2992 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2994 /* Setup byte count for each slot just allocated */
2995 sw_desc->async_tx.flags = flags;
2996 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2997 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2998 len);
2999 iter->unmap_len = len;
3002 if (pdest) {
3003 struct dma_cdb *hw_desc;
3004 struct ppc440spe_adma_chan *chan;
3006 iter = sw_desc->group_head;
3007 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3008 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3009 iter->hw_next = list_entry(iter->chain_node.next,
3010 struct ppc440spe_adma_desc_slot,
3011 chain_node);
3012 hw_desc = iter->hw_desc;
3013 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3014 iter->src_cnt = 0;
3015 iter->dst_cnt = 0;
3016 ppc440spe_desc_set_dest_addr(iter, chan, 0,
3017 ppc440spe_chan->pdest, 0);
3018 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
3019 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3020 len);
3021 iter->unmap_len = 0;
3022 /* override pdest to preserve original P */
3023 pdest = ppc440spe_chan->pdest;
3025 if (qdest) {
3026 struct dma_cdb *hw_desc;
3027 struct ppc440spe_adma_chan *chan;
3029 iter = list_first_entry(&sw_desc->group_list,
3030 struct ppc440spe_adma_desc_slot,
3031 chain_node);
3032 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3034 if (pdest) {
3035 iter = list_entry(iter->chain_node.next,
3036 struct ppc440spe_adma_desc_slot,
3037 chain_node);
3040 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3041 iter->hw_next = list_entry(iter->chain_node.next,
3042 struct ppc440spe_adma_desc_slot,
3043 chain_node);
3044 hw_desc = iter->hw_desc;
3045 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3046 iter->src_cnt = 0;
3047 iter->dst_cnt = 0;
3048 ppc440spe_desc_set_dest_addr(iter, chan, 0,
3049 ppc440spe_chan->qdest, 0);
3050 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
3051 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3052 len);
3053 iter->unmap_len = 0;
3054 /* override qdest to preserve original Q */
3055 qdest = ppc440spe_chan->qdest;
3058 /* Setup destinations for P/Q ops */
3059 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3061 /* Setup zero QWORDs into DCHECK CDBs */
3062 idst = dst_cnt;
3063 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3064 chain_node) {
3066 * The last CDB corresponds to Q-parity check,
3067 * the one before last CDB corresponds
3068 * P-parity check
3070 if (idst == DMA_DEST_MAX_NUM) {
3071 if (idst == dst_cnt) {
3072 set_bit(PPC440SPE_DESC_QCHECK,
3073 &iter->flags);
3074 } else {
3075 set_bit(PPC440SPE_DESC_PCHECK,
3076 &iter->flags);
3078 } else {
3079 if (qdest) {
3080 set_bit(PPC440SPE_DESC_QCHECK,
3081 &iter->flags);
3082 } else {
3083 set_bit(PPC440SPE_DESC_PCHECK,
3084 &iter->flags);
3087 iter->xor_check_result = pqres;
3090 * set it to zero, if check fail then result will
3091 * be updated
3093 *iter->xor_check_result = 0;
3094 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3095 ppc440spe_qword);
3097 if (!(--dst_cnt))
3098 break;
3101 /* Setup sources and mults for P/Q ops */
3102 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3103 chain_node) {
3104 struct ppc440spe_adma_chan *chan;
3105 u32 mult_dst;
3107 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3108 ppc440spe_desc_set_src_addr(iter, chan, 0,
3109 DMA_CUED_XOR_HB,
3110 src[src_cnt - 1]);
3111 if (qdest) {
3112 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3113 DMA_CDB_SG_DST1;
3114 ppc440spe_desc_set_src_mult(iter, chan,
3115 DMA_CUED_MULT1_OFF,
3116 mult_dst,
3117 scf[src_cnt - 1]);
3119 if (!(--src_cnt))
3120 break;
3123 spin_unlock_bh(&ppc440spe_chan->lock);
3124 return sw_desc ? &sw_desc->async_tx : NULL;
3128 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3129 * XOR ZERO_SUM operation
3131 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3132 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3133 size_t len, enum sum_check_flags *result, unsigned long flags)
3135 struct dma_async_tx_descriptor *tx;
3136 dma_addr_t pq[2];
3138 /* validate P, disable Q */
3139 pq[0] = src[0];
3140 pq[1] = 0;
3141 flags |= DMA_PREP_PQ_DISABLE_Q;
3143 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3144 src_cnt - 1, 0, len,
3145 result, flags);
3146 return tx;
3150 * ppc440spe_adma_set_dest - set destination address into descriptor
3152 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3153 dma_addr_t addr, int index)
3155 struct ppc440spe_adma_chan *chan;
3157 BUG_ON(index >= sw_desc->dst_cnt);
3159 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3161 switch (chan->device->id) {
3162 case PPC440SPE_DMA0_ID:
3163 case PPC440SPE_DMA1_ID:
3164 /* to do: support transfers lengths >
3165 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3167 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3168 chan, 0, addr, index);
3169 break;
3170 case PPC440SPE_XOR_ID:
3171 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3172 ppc440spe_desc_set_dest_addr(sw_desc,
3173 chan, 0, addr, index);
3174 break;
3178 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3179 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3181 /* To clear destinations update the descriptor
3182 * (P or Q depending on index) as follows:
3183 * addr is destination (0 corresponds to SG2):
3185 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3187 /* ... and the addr is source: */
3188 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3190 /* addr is always SG2 then the mult is always DST1 */
3191 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3192 DMA_CDB_SG_DST1, 1);
3196 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3197 * for the PQXOR operation
3199 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3200 dma_addr_t *addrs, unsigned long flags)
3202 struct ppc440spe_adma_desc_slot *iter;
3203 struct ppc440spe_adma_chan *chan;
3204 dma_addr_t paddr, qaddr;
3205 dma_addr_t addr = 0, ppath, qpath;
3206 int index = 0, i;
3208 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3210 if (flags & DMA_PREP_PQ_DISABLE_P)
3211 paddr = 0;
3212 else
3213 paddr = addrs[0];
3215 if (flags & DMA_PREP_PQ_DISABLE_Q)
3216 qaddr = 0;
3217 else
3218 qaddr = addrs[1];
3220 if (!paddr || !qaddr)
3221 addr = paddr ? paddr : qaddr;
3223 switch (chan->device->id) {
3224 case PPC440SPE_DMA0_ID:
3225 case PPC440SPE_DMA1_ID:
3226 /* walk through the WXOR source list and set P/Q-destinations
3227 * for each slot:
3229 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3230 /* This is WXOR-only chain; may have 1/2 zero descs */
3231 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3232 index++;
3233 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3234 index++;
3236 iter = ppc440spe_get_group_entry(sw_desc, index);
3237 if (addr) {
3238 /* one destination */
3239 list_for_each_entry_from(iter,
3240 &sw_desc->group_list, chain_node)
3241 ppc440spe_desc_set_dest_addr(iter, chan,
3242 DMA_CUED_XOR_BASE, addr, 0);
3243 } else {
3244 /* two destinations */
3245 list_for_each_entry_from(iter,
3246 &sw_desc->group_list, chain_node) {
3247 ppc440spe_desc_set_dest_addr(iter, chan,
3248 DMA_CUED_XOR_BASE, paddr, 0);
3249 ppc440spe_desc_set_dest_addr(iter, chan,
3250 DMA_CUED_XOR_BASE, qaddr, 1);
3254 if (index) {
3255 /* To clear destinations update the descriptor
3256 * (1st,2nd, or both depending on flags)
3258 index = 0;
3259 if (test_bit(PPC440SPE_ZERO_P,
3260 &sw_desc->flags)) {
3261 iter = ppc440spe_get_group_entry(
3262 sw_desc, index++);
3263 ppc440spe_adma_pq_zero_op(iter, chan,
3264 paddr);
3267 if (test_bit(PPC440SPE_ZERO_Q,
3268 &sw_desc->flags)) {
3269 iter = ppc440spe_get_group_entry(
3270 sw_desc, index++);
3271 ppc440spe_adma_pq_zero_op(iter, chan,
3272 qaddr);
3275 return;
3277 } else {
3278 /* This is RXOR-only or RXOR/WXOR mixed chain */
3280 /* If we want to include destination into calculations,
3281 * then make dest addresses cued with mult=1 (XOR).
3283 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3284 DMA_CUED_XOR_HB :
3285 DMA_CUED_XOR_BASE |
3286 (1 << DMA_CUED_MULT1_OFF);
3287 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3288 DMA_CUED_XOR_HB :
3289 DMA_CUED_XOR_BASE |
3290 (1 << DMA_CUED_MULT1_OFF);
3292 /* Setup destination(s) in RXOR slot(s) */
3293 iter = ppc440spe_get_group_entry(sw_desc, index++);
3294 ppc440spe_desc_set_dest_addr(iter, chan,
3295 paddr ? ppath : qpath,
3296 paddr ? paddr : qaddr, 0);
3297 if (!addr) {
3298 /* two destinations */
3299 iter = ppc440spe_get_group_entry(sw_desc,
3300 index++);
3301 ppc440spe_desc_set_dest_addr(iter, chan,
3302 qpath, qaddr, 0);
3305 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3306 /* Setup destination(s) in remaining WXOR
3307 * slots
3309 iter = ppc440spe_get_group_entry(sw_desc,
3310 index);
3311 if (addr) {
3312 /* one destination */
3313 list_for_each_entry_from(iter,
3314 &sw_desc->group_list,
3315 chain_node)
3316 ppc440spe_desc_set_dest_addr(
3317 iter, chan,
3318 DMA_CUED_XOR_BASE,
3319 addr, 0);
3321 } else {
3322 /* two destinations */
3323 list_for_each_entry_from(iter,
3324 &sw_desc->group_list,
3325 chain_node) {
3326 ppc440spe_desc_set_dest_addr(
3327 iter, chan,
3328 DMA_CUED_XOR_BASE,
3329 paddr, 0);
3330 ppc440spe_desc_set_dest_addr(
3331 iter, chan,
3332 DMA_CUED_XOR_BASE,
3333 qaddr, 1);
3339 break;
3341 case PPC440SPE_XOR_ID:
3342 /* DMA2 descriptors have only 1 destination, so there are
3343 * two chains - one for each dest.
3344 * If we want to include destination into calculations,
3345 * then make dest addresses cued with mult=1 (XOR).
3347 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3348 DMA_CUED_XOR_HB :
3349 DMA_CUED_XOR_BASE |
3350 (1 << DMA_CUED_MULT1_OFF);
3352 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3353 DMA_CUED_XOR_HB :
3354 DMA_CUED_XOR_BASE |
3355 (1 << DMA_CUED_MULT1_OFF);
3357 iter = ppc440spe_get_group_entry(sw_desc, 0);
3358 for (i = 0; i < sw_desc->descs_per_op; i++) {
3359 ppc440spe_desc_set_dest_addr(iter, chan,
3360 paddr ? ppath : qpath,
3361 paddr ? paddr : qaddr, 0);
3362 iter = list_entry(iter->chain_node.next,
3363 struct ppc440spe_adma_desc_slot,
3364 chain_node);
3367 if (!addr) {
3368 /* Two destinations; setup Q here */
3369 iter = ppc440spe_get_group_entry(sw_desc,
3370 sw_desc->descs_per_op);
3371 for (i = 0; i < sw_desc->descs_per_op; i++) {
3372 ppc440spe_desc_set_dest_addr(iter,
3373 chan, qpath, qaddr, 0);
3374 iter = list_entry(iter->chain_node.next,
3375 struct ppc440spe_adma_desc_slot,
3376 chain_node);
3380 break;
3385 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3386 * for the PQ_ZERO_SUM operation
3388 static void ppc440spe_adma_pqzero_sum_set_dest(
3389 struct ppc440spe_adma_desc_slot *sw_desc,
3390 dma_addr_t paddr, dma_addr_t qaddr)
3392 struct ppc440spe_adma_desc_slot *iter, *end;
3393 struct ppc440spe_adma_chan *chan;
3394 dma_addr_t addr = 0;
3395 int idx;
3397 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3399 /* walk through the WXOR source list and set P/Q-destinations
3400 * for each slot
3402 idx = (paddr && qaddr) ? 2 : 1;
3403 /* set end */
3404 list_for_each_entry_reverse(end, &sw_desc->group_list,
3405 chain_node) {
3406 if (!(--idx))
3407 break;
3409 /* set start */
3410 idx = (paddr && qaddr) ? 2 : 1;
3411 iter = ppc440spe_get_group_entry(sw_desc, idx);
3413 if (paddr && qaddr) {
3414 /* two destinations */
3415 list_for_each_entry_from(iter, &sw_desc->group_list,
3416 chain_node) {
3417 if (unlikely(iter == end))
3418 break;
3419 ppc440spe_desc_set_dest_addr(iter, chan,
3420 DMA_CUED_XOR_BASE, paddr, 0);
3421 ppc440spe_desc_set_dest_addr(iter, chan,
3422 DMA_CUED_XOR_BASE, qaddr, 1);
3424 } else {
3425 /* one destination */
3426 addr = paddr ? paddr : qaddr;
3427 list_for_each_entry_from(iter, &sw_desc->group_list,
3428 chain_node) {
3429 if (unlikely(iter == end))
3430 break;
3431 ppc440spe_desc_set_dest_addr(iter, chan,
3432 DMA_CUED_XOR_BASE, addr, 0);
3436 /* The remaining descriptors are DATACHECK. These have no need in
3437 * destination. Actually, these destinations are used there
3438 * as sources for check operation. So, set addr as source.
3440 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3442 if (!addr) {
3443 end = list_entry(end->chain_node.next,
3444 struct ppc440spe_adma_desc_slot, chain_node);
3445 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3450 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3452 static inline void ppc440spe_desc_set_xor_src_cnt(
3453 struct ppc440spe_adma_desc_slot *desc,
3454 int src_cnt)
3456 struct xor_cb *hw_desc = desc->hw_desc;
3458 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3459 hw_desc->cbc |= src_cnt;
3463 * ppc440spe_adma_pq_set_src - set source address into descriptor
3465 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3466 dma_addr_t addr, int index)
3468 struct ppc440spe_adma_chan *chan;
3469 dma_addr_t haddr = 0;
3470 struct ppc440spe_adma_desc_slot *iter = NULL;
3472 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3474 switch (chan->device->id) {
3475 case PPC440SPE_DMA0_ID:
3476 case PPC440SPE_DMA1_ID:
3477 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3479 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3480 /* RXOR-only or RXOR/WXOR operation */
3481 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3482 &sw_desc->flags) ? 2 : 3;
3484 if (index == 0) {
3485 /* 1st slot (RXOR) */
3486 /* setup sources region (R1-2-3, R1-2-4,
3487 * or R1-2-5)
3489 if (test_bit(PPC440SPE_DESC_RXOR12,
3490 &sw_desc->flags))
3491 haddr = DMA_RXOR12 <<
3492 DMA_CUED_REGION_OFF;
3493 else if (test_bit(PPC440SPE_DESC_RXOR123,
3494 &sw_desc->flags))
3495 haddr = DMA_RXOR123 <<
3496 DMA_CUED_REGION_OFF;
3497 else if (test_bit(PPC440SPE_DESC_RXOR124,
3498 &sw_desc->flags))
3499 haddr = DMA_RXOR124 <<
3500 DMA_CUED_REGION_OFF;
3501 else if (test_bit(PPC440SPE_DESC_RXOR125,
3502 &sw_desc->flags))
3503 haddr = DMA_RXOR125 <<
3504 DMA_CUED_REGION_OFF;
3505 else
3506 BUG();
3507 haddr |= DMA_CUED_XOR_BASE;
3508 iter = ppc440spe_get_group_entry(sw_desc, 0);
3509 } else if (index < iskip) {
3510 /* 1st slot (RXOR)
3511 * shall actually set source address only once
3512 * instead of first <iskip>
3514 iter = NULL;
3515 } else {
3516 /* 2nd/3d and next slots (WXOR);
3517 * skip first slot with RXOR
3519 haddr = DMA_CUED_XOR_HB;
3520 iter = ppc440spe_get_group_entry(sw_desc,
3521 index - iskip + sw_desc->dst_cnt);
3523 } else {
3524 int znum = 0;
3526 /* WXOR-only operation; skip first slots with
3527 * zeroing destinations
3529 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3530 znum++;
3531 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3532 znum++;
3534 haddr = DMA_CUED_XOR_HB;
3535 iter = ppc440spe_get_group_entry(sw_desc,
3536 index + znum);
3539 if (likely(iter)) {
3540 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3542 if (!index &&
3543 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3544 sw_desc->dst_cnt == 2) {
3545 /* if we have two destinations for RXOR, then
3546 * setup source in the second descr too
3548 iter = ppc440spe_get_group_entry(sw_desc, 1);
3549 ppc440spe_desc_set_src_addr(iter, chan, 0,
3550 haddr, addr);
3553 break;
3555 case PPC440SPE_XOR_ID:
3556 /* DMA2 may do Biskup */
3557 iter = sw_desc->group_head;
3558 if (iter->dst_cnt == 2) {
3559 /* both P & Q calculations required; set P src here */
3560 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3562 /* this is for Q */
3563 iter = ppc440spe_get_group_entry(sw_desc,
3564 sw_desc->descs_per_op);
3566 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3567 break;
3572 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3574 static void ppc440spe_adma_memcpy_xor_set_src(
3575 struct ppc440spe_adma_desc_slot *sw_desc,
3576 dma_addr_t addr, int index)
3578 struct ppc440spe_adma_chan *chan;
3580 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3581 sw_desc = sw_desc->group_head;
3583 if (likely(sw_desc))
3584 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3588 * ppc440spe_adma_dma2rxor_inc_addr -
3590 static void ppc440spe_adma_dma2rxor_inc_addr(
3591 struct ppc440spe_adma_desc_slot *desc,
3592 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3594 cursor->addr_count++;
3595 if (index == src_cnt - 1) {
3596 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3597 } else if (cursor->addr_count == XOR_MAX_OPS) {
3598 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3599 cursor->addr_count = 0;
3600 cursor->desc_count++;
3605 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3607 static int ppc440spe_adma_dma2rxor_prep_src(
3608 struct ppc440spe_adma_desc_slot *hdesc,
3609 struct ppc440spe_rxor *cursor, int index,
3610 int src_cnt, u32 addr)
3612 int rval = 0;
3613 u32 sign;
3614 struct ppc440spe_adma_desc_slot *desc = hdesc;
3615 int i;
3617 for (i = 0; i < cursor->desc_count; i++) {
3618 desc = list_entry(hdesc->chain_node.next,
3619 struct ppc440spe_adma_desc_slot,
3620 chain_node);
3623 switch (cursor->state) {
3624 case 0:
3625 if (addr == cursor->addrl + cursor->len) {
3626 /* direct RXOR */
3627 cursor->state = 1;
3628 cursor->xor_count++;
3629 if (index == src_cnt-1) {
3630 ppc440spe_rxor_set_region(desc,
3631 cursor->addr_count,
3632 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3633 ppc440spe_adma_dma2rxor_inc_addr(
3634 desc, cursor, index, src_cnt);
3636 } else if (cursor->addrl == addr + cursor->len) {
3637 /* reverse RXOR */
3638 cursor->state = 1;
3639 cursor->xor_count++;
3640 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3641 if (index == src_cnt-1) {
3642 ppc440spe_rxor_set_region(desc,
3643 cursor->addr_count,
3644 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3645 ppc440spe_adma_dma2rxor_inc_addr(
3646 desc, cursor, index, src_cnt);
3648 } else {
3649 printk(KERN_ERR "Cannot build "
3650 "DMA2 RXOR command block.\n");
3651 BUG();
3653 break;
3654 case 1:
3655 sign = test_bit(cursor->addr_count,
3656 desc->reverse_flags)
3657 ? -1 : 1;
3658 if (index == src_cnt-2 || (sign == -1
3659 && addr != cursor->addrl - 2*cursor->len)) {
3660 cursor->state = 0;
3661 cursor->xor_count = 1;
3662 cursor->addrl = addr;
3663 ppc440spe_rxor_set_region(desc,
3664 cursor->addr_count,
3665 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3666 ppc440spe_adma_dma2rxor_inc_addr(
3667 desc, cursor, index, src_cnt);
3668 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3669 cursor->state = 2;
3670 cursor->xor_count = 0;
3671 ppc440spe_rxor_set_region(desc,
3672 cursor->addr_count,
3673 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3674 if (index == src_cnt-1) {
3675 ppc440spe_adma_dma2rxor_inc_addr(
3676 desc, cursor, index, src_cnt);
3678 } else if (addr == cursor->addrl + 3*cursor->len) {
3679 cursor->state = 2;
3680 cursor->xor_count = 0;
3681 ppc440spe_rxor_set_region(desc,
3682 cursor->addr_count,
3683 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3684 if (index == src_cnt-1) {
3685 ppc440spe_adma_dma2rxor_inc_addr(
3686 desc, cursor, index, src_cnt);
3688 } else if (addr == cursor->addrl + 4*cursor->len) {
3689 cursor->state = 2;
3690 cursor->xor_count = 0;
3691 ppc440spe_rxor_set_region(desc,
3692 cursor->addr_count,
3693 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3694 if (index == src_cnt-1) {
3695 ppc440spe_adma_dma2rxor_inc_addr(
3696 desc, cursor, index, src_cnt);
3698 } else {
3699 cursor->state = 0;
3700 cursor->xor_count = 1;
3701 cursor->addrl = addr;
3702 ppc440spe_rxor_set_region(desc,
3703 cursor->addr_count,
3704 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3705 ppc440spe_adma_dma2rxor_inc_addr(
3706 desc, cursor, index, src_cnt);
3708 break;
3709 case 2:
3710 cursor->state = 0;
3711 cursor->addrl = addr;
3712 cursor->xor_count++;
3713 if (index) {
3714 ppc440spe_adma_dma2rxor_inc_addr(
3715 desc, cursor, index, src_cnt);
3717 break;
3720 return rval;
3724 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3725 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3727 static void ppc440spe_adma_dma2rxor_set_src(
3728 struct ppc440spe_adma_desc_slot *desc,
3729 int index, dma_addr_t addr)
3731 struct xor_cb *xcb = desc->hw_desc;
3732 int k = 0, op = 0, lop = 0;
3734 /* get the RXOR operand which corresponds to index addr */
3735 while (op <= index) {
3736 lop = op;
3737 if (k == XOR_MAX_OPS) {
3738 k = 0;
3739 desc = list_entry(desc->chain_node.next,
3740 struct ppc440spe_adma_desc_slot, chain_node);
3741 xcb = desc->hw_desc;
3744 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3745 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3746 op += 2;
3747 else
3748 op += 3;
3751 BUG_ON(k < 1);
3753 if (test_bit(k-1, desc->reverse_flags)) {
3754 /* reverse operand order; put last op in RXOR group */
3755 if (index == op - 1)
3756 ppc440spe_rxor_set_src(desc, k - 1, addr);
3757 } else {
3758 /* direct operand order; put first op in RXOR group */
3759 if (index == lop)
3760 ppc440spe_rxor_set_src(desc, k - 1, addr);
3765 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3766 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3768 static void ppc440spe_adma_dma2rxor_set_mult(
3769 struct ppc440spe_adma_desc_slot *desc,
3770 int index, u8 mult)
3772 struct xor_cb *xcb = desc->hw_desc;
3773 int k = 0, op = 0, lop = 0;
3775 /* get the RXOR operand which corresponds to index mult */
3776 while (op <= index) {
3777 lop = op;
3778 if (k == XOR_MAX_OPS) {
3779 k = 0;
3780 desc = list_entry(desc->chain_node.next,
3781 struct ppc440spe_adma_desc_slot,
3782 chain_node);
3783 xcb = desc->hw_desc;
3786 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3787 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3788 op += 2;
3789 else
3790 op += 3;
3793 BUG_ON(k < 1);
3794 if (test_bit(k-1, desc->reverse_flags)) {
3795 /* reverse order */
3796 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3797 } else {
3798 /* direct order */
3799 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3804 * ppc440spe_init_rxor_cursor -
3806 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3808 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3809 cursor->state = 2;
3813 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3814 * descriptor for the PQXOR operation
3816 static void ppc440spe_adma_pq_set_src_mult(
3817 struct ppc440spe_adma_desc_slot *sw_desc,
3818 unsigned char mult, int index, int dst_pos)
3820 struct ppc440spe_adma_chan *chan;
3821 u32 mult_idx, mult_dst;
3822 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3824 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3826 switch (chan->device->id) {
3827 case PPC440SPE_DMA0_ID:
3828 case PPC440SPE_DMA1_ID:
3829 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3830 int region = test_bit(PPC440SPE_DESC_RXOR12,
3831 &sw_desc->flags) ? 2 : 3;
3833 if (index < region) {
3834 /* RXOR multipliers */
3835 iter = ppc440spe_get_group_entry(sw_desc,
3836 sw_desc->dst_cnt - 1);
3837 if (sw_desc->dst_cnt == 2)
3838 iter1 = ppc440spe_get_group_entry(
3839 sw_desc, 0);
3841 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3842 mult_dst = DMA_CDB_SG_SRC;
3843 } else {
3844 /* WXOR multiplier */
3845 iter = ppc440spe_get_group_entry(sw_desc,
3846 index - region +
3847 sw_desc->dst_cnt);
3848 mult_idx = DMA_CUED_MULT1_OFF;
3849 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3850 DMA_CDB_SG_DST1;
3852 } else {
3853 int znum = 0;
3855 /* WXOR-only;
3856 * skip first slots with destinations (if ZERO_DST has
3857 * place)
3859 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3860 znum++;
3861 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3862 znum++;
3864 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3865 mult_idx = DMA_CUED_MULT1_OFF;
3866 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3869 if (likely(iter)) {
3870 ppc440spe_desc_set_src_mult(iter, chan,
3871 mult_idx, mult_dst, mult);
3873 if (unlikely(iter1)) {
3874 /* if we have two destinations for RXOR, then
3875 * we've just set Q mult. Set-up P now.
3877 ppc440spe_desc_set_src_mult(iter1, chan,
3878 mult_idx, mult_dst, 1);
3882 break;
3884 case PPC440SPE_XOR_ID:
3885 iter = sw_desc->group_head;
3886 if (sw_desc->dst_cnt == 2) {
3887 /* both P & Q calculations required; set P mult here */
3888 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3890 /* and then set Q mult */
3891 iter = ppc440spe_get_group_entry(sw_desc,
3892 sw_desc->descs_per_op);
3894 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3895 break;
3900 * ppc440spe_adma_free_chan_resources - free the resources allocated
3902 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3904 struct ppc440spe_adma_chan *ppc440spe_chan;
3905 struct ppc440spe_adma_desc_slot *iter, *_iter;
3906 int in_use_descs = 0;
3908 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3909 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3911 spin_lock_bh(&ppc440spe_chan->lock);
3912 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3913 chain_node) {
3914 in_use_descs++;
3915 list_del(&iter->chain_node);
3917 list_for_each_entry_safe_reverse(iter, _iter,
3918 &ppc440spe_chan->all_slots, slot_node) {
3919 list_del(&iter->slot_node);
3920 kfree(iter);
3921 ppc440spe_chan->slots_allocated--;
3923 ppc440spe_chan->last_used = NULL;
3925 dev_dbg(ppc440spe_chan->device->common.dev,
3926 "ppc440spe adma%d %s slots_allocated %d\n",
3927 ppc440spe_chan->device->id,
3928 __func__, ppc440spe_chan->slots_allocated);
3929 spin_unlock_bh(&ppc440spe_chan->lock);
3931 /* one is ok since we left it on there on purpose */
3932 if (in_use_descs > 1)
3933 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3934 in_use_descs - 1);
3938 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3939 * @chan: ADMA channel handle
3940 * @cookie: ADMA transaction identifier
3941 * @txstate: a holder for the current state of the channel
3943 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3944 dma_cookie_t cookie, struct dma_tx_state *txstate)
3946 struct ppc440spe_adma_chan *ppc440spe_chan;
3947 dma_cookie_t last_used;
3948 dma_cookie_t last_complete;
3949 enum dma_status ret;
3951 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3952 last_used = chan->cookie;
3953 last_complete = ppc440spe_chan->completed_cookie;
3955 dma_set_tx_state(txstate, last_complete, last_used, 0);
3957 ret = dma_async_is_complete(cookie, last_complete, last_used);
3958 if (ret == DMA_SUCCESS)
3959 return ret;
3961 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3963 last_used = chan->cookie;
3964 last_complete = ppc440spe_chan->completed_cookie;
3966 dma_set_tx_state(txstate, last_complete, last_used, 0);
3968 return dma_async_is_complete(cookie, last_complete, last_used);
3972 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3974 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3976 struct ppc440spe_adma_chan *chan = data;
3978 dev_dbg(chan->device->common.dev,
3979 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3981 tasklet_schedule(&chan->irq_tasklet);
3982 ppc440spe_adma_device_clear_eot_status(chan);
3984 return IRQ_HANDLED;
3988 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3989 * do the same things as a eot handler
3991 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3993 struct ppc440spe_adma_chan *chan = data;
3995 dev_dbg(chan->device->common.dev,
3996 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3998 tasklet_schedule(&chan->irq_tasklet);
3999 ppc440spe_adma_device_clear_eot_status(chan);
4001 return IRQ_HANDLED;
4005 * ppc440spe_test_callback - called when test operation has been done
4007 static void ppc440spe_test_callback(void *unused)
4009 complete(&ppc440spe_r6_test_comp);
4013 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
4015 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
4017 struct ppc440spe_adma_chan *ppc440spe_chan;
4019 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4020 dev_dbg(ppc440spe_chan->device->common.dev,
4021 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
4022 __func__, ppc440spe_chan->pending);
4024 if (ppc440spe_chan->pending) {
4025 ppc440spe_chan->pending = 0;
4026 ppc440spe_chan_append(ppc440spe_chan);
4031 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4032 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
4033 * specific operation)
4035 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
4037 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
4038 dma_cookie_t cookie;
4039 int slot_cnt, slots_per_op;
4041 dev_dbg(chan->device->common.dev,
4042 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
4044 spin_lock_bh(&chan->lock);
4045 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
4046 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
4047 if (sw_desc) {
4048 group_start = sw_desc->group_head;
4049 list_splice_init(&sw_desc->group_list, &chan->chain);
4050 async_tx_ack(&sw_desc->async_tx);
4051 ppc440spe_desc_init_null_xor(group_start);
4053 cookie = chan->common.cookie;
4054 cookie++;
4055 if (cookie <= 1)
4056 cookie = 2;
4058 /* initialize the completed cookie to be less than
4059 * the most recently used cookie
4061 chan->completed_cookie = cookie - 1;
4062 chan->common.cookie = sw_desc->async_tx.cookie = cookie;
4064 /* channel should not be busy */
4065 BUG_ON(ppc440spe_chan_is_busy(chan));
4067 /* set the descriptor address */
4068 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
4070 /* run the descriptor */
4071 ppc440spe_chan_run(chan);
4072 } else
4073 printk(KERN_ERR "ppc440spe adma%d"
4074 " failed to allocate null descriptor\n",
4075 chan->device->id);
4076 spin_unlock_bh(&chan->lock);
4080 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4081 * For this we just perform one WXOR operation with the same source
4082 * and destination addresses, the GF-multiplier is 1; so if RAID-6
4083 * capabilities are enabled then we'll get src/dst filled with zero.
4085 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4087 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4088 struct page *pg;
4089 char *a;
4090 dma_addr_t dma_addr, addrs[2];
4091 unsigned long op = 0;
4092 int rval = 0;
4094 set_bit(PPC440SPE_DESC_WXOR, &op);
4096 pg = alloc_page(GFP_KERNEL);
4097 if (!pg)
4098 return -ENOMEM;
4100 spin_lock_bh(&chan->lock);
4101 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4102 if (sw_desc) {
4103 /* 1 src, 1 dsr, int_ena, WXOR */
4104 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4105 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4106 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4107 iter->unmap_len = PAGE_SIZE;
4109 } else {
4110 rval = -EFAULT;
4111 spin_unlock_bh(&chan->lock);
4112 goto exit;
4114 spin_unlock_bh(&chan->lock);
4116 /* Fill the test page with ones */
4117 memset(page_address(pg), 0xFF, PAGE_SIZE);
4118 dma_addr = dma_map_page(chan->device->dev, pg, 0,
4119 PAGE_SIZE, DMA_BIDIRECTIONAL);
4121 /* Setup addresses */
4122 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4123 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4124 addrs[0] = dma_addr;
4125 addrs[1] = 0;
4126 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4128 async_tx_ack(&sw_desc->async_tx);
4129 sw_desc->async_tx.callback = ppc440spe_test_callback;
4130 sw_desc->async_tx.callback_param = NULL;
4132 init_completion(&ppc440spe_r6_test_comp);
4134 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4135 ppc440spe_adma_issue_pending(&chan->common);
4137 wait_for_completion(&ppc440spe_r6_test_comp);
4139 /* Now check if the test page is zeroed */
4140 a = page_address(pg);
4141 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4142 /* page is zero - RAID-6 enabled */
4143 rval = 0;
4144 } else {
4145 /* RAID-6 was not enabled */
4146 rval = -EINVAL;
4148 exit:
4149 __free_page(pg);
4150 return rval;
4153 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4155 switch (adev->id) {
4156 case PPC440SPE_DMA0_ID:
4157 case PPC440SPE_DMA1_ID:
4158 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4159 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4160 dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
4161 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4162 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4163 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4164 break;
4165 case PPC440SPE_XOR_ID:
4166 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4167 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4168 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4169 adev->common.cap_mask = adev->common.cap_mask;
4170 break;
4173 /* Set base routines */
4174 adev->common.device_alloc_chan_resources =
4175 ppc440spe_adma_alloc_chan_resources;
4176 adev->common.device_free_chan_resources =
4177 ppc440spe_adma_free_chan_resources;
4178 adev->common.device_tx_status = ppc440spe_adma_tx_status;
4179 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4181 /* Set prep routines based on capability */
4182 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4183 adev->common.device_prep_dma_memcpy =
4184 ppc440spe_adma_prep_dma_memcpy;
4186 if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
4187 adev->common.device_prep_dma_memset =
4188 ppc440spe_adma_prep_dma_memset;
4190 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4191 adev->common.max_xor = XOR_MAX_OPS;
4192 adev->common.device_prep_dma_xor =
4193 ppc440spe_adma_prep_dma_xor;
4195 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4196 switch (adev->id) {
4197 case PPC440SPE_DMA0_ID:
4198 dma_set_maxpq(&adev->common,
4199 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4200 break;
4201 case PPC440SPE_DMA1_ID:
4202 dma_set_maxpq(&adev->common,
4203 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4204 break;
4205 case PPC440SPE_XOR_ID:
4206 adev->common.max_pq = XOR_MAX_OPS * 3;
4207 break;
4209 adev->common.device_prep_dma_pq =
4210 ppc440spe_adma_prep_dma_pq;
4212 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4213 switch (adev->id) {
4214 case PPC440SPE_DMA0_ID:
4215 adev->common.max_pq = DMA0_FIFO_SIZE /
4216 sizeof(struct dma_cdb);
4217 break;
4218 case PPC440SPE_DMA1_ID:
4219 adev->common.max_pq = DMA1_FIFO_SIZE /
4220 sizeof(struct dma_cdb);
4221 break;
4223 adev->common.device_prep_dma_pq_val =
4224 ppc440spe_adma_prep_dma_pqzero_sum;
4226 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4227 switch (adev->id) {
4228 case PPC440SPE_DMA0_ID:
4229 adev->common.max_xor = DMA0_FIFO_SIZE /
4230 sizeof(struct dma_cdb);
4231 break;
4232 case PPC440SPE_DMA1_ID:
4233 adev->common.max_xor = DMA1_FIFO_SIZE /
4234 sizeof(struct dma_cdb);
4235 break;
4237 adev->common.device_prep_dma_xor_val =
4238 ppc440spe_adma_prep_dma_xor_zero_sum;
4240 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4241 adev->common.device_prep_dma_interrupt =
4242 ppc440spe_adma_prep_dma_interrupt;
4244 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4245 "( %s%s%s%s%s%s%s)\n",
4246 dev_name(adev->dev),
4247 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4248 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4249 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4250 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4251 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4252 dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "",
4253 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4256 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4257 struct ppc440spe_adma_chan *chan,
4258 int *initcode)
4260 struct platform_device *ofdev;
4261 struct device_node *np;
4262 int ret;
4264 ofdev = container_of(adev->dev, struct platform_device, dev);
4265 np = ofdev->dev.of_node;
4266 if (adev->id != PPC440SPE_XOR_ID) {
4267 adev->err_irq = irq_of_parse_and_map(np, 1);
4268 if (adev->err_irq == NO_IRQ) {
4269 dev_warn(adev->dev, "no err irq resource?\n");
4270 *initcode = PPC_ADMA_INIT_IRQ2;
4271 adev->err_irq = -ENXIO;
4272 } else
4273 atomic_inc(&ppc440spe_adma_err_irq_ref);
4274 } else {
4275 adev->err_irq = -ENXIO;
4278 adev->irq = irq_of_parse_and_map(np, 0);
4279 if (adev->irq == NO_IRQ) {
4280 dev_err(adev->dev, "no irq resource\n");
4281 *initcode = PPC_ADMA_INIT_IRQ1;
4282 ret = -ENXIO;
4283 goto err_irq_map;
4285 dev_dbg(adev->dev, "irq %d, err irq %d\n",
4286 adev->irq, adev->err_irq);
4288 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4289 0, dev_driver_string(adev->dev), chan);
4290 if (ret) {
4291 dev_err(adev->dev, "can't request irq %d\n",
4292 adev->irq);
4293 *initcode = PPC_ADMA_INIT_IRQ1;
4294 ret = -EIO;
4295 goto err_req1;
4298 /* only DMA engines have a separate error IRQ
4299 * so it's Ok if err_irq < 0 in XOR engine case.
4301 if (adev->err_irq > 0) {
4302 /* both DMA engines share common error IRQ */
4303 ret = request_irq(adev->err_irq,
4304 ppc440spe_adma_err_handler,
4305 IRQF_SHARED,
4306 dev_driver_string(adev->dev),
4307 chan);
4308 if (ret) {
4309 dev_err(adev->dev, "can't request irq %d\n",
4310 adev->err_irq);
4311 *initcode = PPC_ADMA_INIT_IRQ2;
4312 ret = -EIO;
4313 goto err_req2;
4317 if (adev->id == PPC440SPE_XOR_ID) {
4318 /* enable XOR engine interrupts */
4319 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4320 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4321 &adev->xor_reg->ier);
4322 } else {
4323 u32 mask, enable;
4325 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4326 if (!np) {
4327 pr_err("%s: can't find I2O device tree node\n",
4328 __func__);
4329 ret = -ENODEV;
4330 goto err_req2;
4332 adev->i2o_reg = of_iomap(np, 0);
4333 if (!adev->i2o_reg) {
4334 pr_err("%s: failed to map I2O registers\n", __func__);
4335 of_node_put(np);
4336 ret = -EINVAL;
4337 goto err_req2;
4339 of_node_put(np);
4340 /* Unmask 'CS FIFO Attention' interrupts and
4341 * enable generating interrupts on errors
4343 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4344 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4345 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4346 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4347 iowrite32(mask, &adev->i2o_reg->iopim);
4349 return 0;
4351 err_req2:
4352 free_irq(adev->irq, chan);
4353 err_req1:
4354 irq_dispose_mapping(adev->irq);
4355 err_irq_map:
4356 if (adev->err_irq > 0) {
4357 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4358 irq_dispose_mapping(adev->err_irq);
4360 return ret;
4363 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4364 struct ppc440spe_adma_chan *chan)
4366 u32 mask, disable;
4368 if (adev->id == PPC440SPE_XOR_ID) {
4369 /* disable XOR engine interrupts */
4370 mask = ioread32be(&adev->xor_reg->ier);
4371 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4372 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4373 iowrite32be(mask, &adev->xor_reg->ier);
4374 } else {
4375 /* disable DMAx engine interrupts */
4376 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4377 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4378 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4379 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4380 iowrite32(mask, &adev->i2o_reg->iopim);
4382 free_irq(adev->irq, chan);
4383 irq_dispose_mapping(adev->irq);
4384 if (adev->err_irq > 0) {
4385 free_irq(adev->err_irq, chan);
4386 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4387 irq_dispose_mapping(adev->err_irq);
4388 iounmap(adev->i2o_reg);
4394 * ppc440spe_adma_probe - probe the asynch device
4396 static int __devinit ppc440spe_adma_probe(struct platform_device *ofdev,
4397 const struct of_device_id *match)
4399 struct device_node *np = ofdev->dev.of_node;
4400 struct resource res;
4401 struct ppc440spe_adma_device *adev;
4402 struct ppc440spe_adma_chan *chan;
4403 struct ppc_dma_chan_ref *ref, *_ref;
4404 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4405 const u32 *idx;
4406 int len;
4407 void *regs;
4408 u32 id, pool_size;
4410 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4411 id = PPC440SPE_XOR_ID;
4412 /* As far as the XOR engine is concerned, it does not
4413 * use FIFOs but uses linked list. So there is no dependency
4414 * between pool size to allocate and the engine configuration.
4416 pool_size = PAGE_SIZE << 1;
4417 } else {
4418 /* it is DMA0 or DMA1 */
4419 idx = of_get_property(np, "cell-index", &len);
4420 if (!idx || (len != sizeof(u32))) {
4421 dev_err(&ofdev->dev, "Device node %s has missing "
4422 "or invalid cell-index property\n",
4423 np->full_name);
4424 return -EINVAL;
4426 id = *idx;
4427 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4428 * should allocate the pool accordingly to size of this
4429 * FIFO. Thus, the pool size depends on the FIFO depth:
4430 * how much CDBs pointers the FIFO may contain then so
4431 * much CDBs we should provide in the pool.
4432 * That is
4433 * CDB size = 32B;
4434 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4435 * Pool size = CDBs number * CDB size =
4436 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4438 pool_size = (id == PPC440SPE_DMA0_ID) ?
4439 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4440 pool_size <<= 2;
4443 if (of_address_to_resource(np, 0, &res)) {
4444 dev_err(&ofdev->dev, "failed to get memory resource\n");
4445 initcode = PPC_ADMA_INIT_MEMRES;
4446 ret = -ENODEV;
4447 goto out;
4450 if (!request_mem_region(res.start, resource_size(&res),
4451 dev_driver_string(&ofdev->dev))) {
4452 dev_err(&ofdev->dev, "failed to request memory region "
4453 "(0x%016llx-0x%016llx)\n",
4454 (u64)res.start, (u64)res.end);
4455 initcode = PPC_ADMA_INIT_MEMREG;
4456 ret = -EBUSY;
4457 goto out;
4460 /* create a device */
4461 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4462 if (!adev) {
4463 dev_err(&ofdev->dev, "failed to allocate device\n");
4464 initcode = PPC_ADMA_INIT_ALLOC;
4465 ret = -ENOMEM;
4466 goto err_adev_alloc;
4469 adev->id = id;
4470 adev->pool_size = pool_size;
4471 /* allocate coherent memory for hardware descriptors */
4472 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4473 adev->pool_size, &adev->dma_desc_pool,
4474 GFP_KERNEL);
4475 if (adev->dma_desc_pool_virt == NULL) {
4476 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4477 "memory for hardware descriptors\n",
4478 adev->pool_size);
4479 initcode = PPC_ADMA_INIT_COHERENT;
4480 ret = -ENOMEM;
4481 goto err_dma_alloc;
4483 dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
4484 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4486 regs = ioremap(res.start, resource_size(&res));
4487 if (!regs) {
4488 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4489 goto err_regs_alloc;
4492 if (adev->id == PPC440SPE_XOR_ID) {
4493 adev->xor_reg = regs;
4494 /* Reset XOR */
4495 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4496 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4497 } else {
4498 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4499 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4500 adev->dma_reg = regs;
4501 /* DMAx_FIFO_SIZE is defined in bytes,
4502 * <fsiz> - is defined in number of CDB pointers (8byte).
4503 * DMA FIFO Length = CSlength + CPlength, where
4504 * CSlength = CPlength = (fsiz + 1) * 8.
4506 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4507 &adev->dma_reg->fsiz);
4508 /* Configure DMA engine */
4509 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4510 &adev->dma_reg->cfg);
4511 /* Clear Status */
4512 iowrite32(~0, &adev->dma_reg->dsts);
4515 adev->dev = &ofdev->dev;
4516 adev->common.dev = &ofdev->dev;
4517 INIT_LIST_HEAD(&adev->common.channels);
4518 dev_set_drvdata(&ofdev->dev, adev);
4520 /* create a channel */
4521 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4522 if (!chan) {
4523 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4524 initcode = PPC_ADMA_INIT_CHANNEL;
4525 ret = -ENOMEM;
4526 goto err_chan_alloc;
4529 spin_lock_init(&chan->lock);
4530 INIT_LIST_HEAD(&chan->chain);
4531 INIT_LIST_HEAD(&chan->all_slots);
4532 chan->device = adev;
4533 chan->common.device = &adev->common;
4534 list_add_tail(&chan->common.device_node, &adev->common.channels);
4535 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4536 (unsigned long)chan);
4538 /* allocate and map helper pages for async validation or
4539 * async_mult/async_sum_product operations on DMA0/1.
4541 if (adev->id != PPC440SPE_XOR_ID) {
4542 chan->pdest_page = alloc_page(GFP_KERNEL);
4543 chan->qdest_page = alloc_page(GFP_KERNEL);
4544 if (!chan->pdest_page ||
4545 !chan->qdest_page) {
4546 if (chan->pdest_page)
4547 __free_page(chan->pdest_page);
4548 if (chan->qdest_page)
4549 __free_page(chan->qdest_page);
4550 ret = -ENOMEM;
4551 goto err_page_alloc;
4553 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4554 PAGE_SIZE, DMA_BIDIRECTIONAL);
4555 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4556 PAGE_SIZE, DMA_BIDIRECTIONAL);
4559 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4560 if (ref) {
4561 ref->chan = &chan->common;
4562 INIT_LIST_HEAD(&ref->node);
4563 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4564 } else {
4565 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4566 ret = -ENOMEM;
4567 goto err_ref_alloc;
4570 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4571 if (ret)
4572 goto err_irq;
4574 ppc440spe_adma_init_capabilities(adev);
4576 ret = dma_async_device_register(&adev->common);
4577 if (ret) {
4578 initcode = PPC_ADMA_INIT_REGISTER;
4579 dev_err(&ofdev->dev, "failed to register dma device\n");
4580 goto err_dev_reg;
4583 goto out;
4585 err_dev_reg:
4586 ppc440spe_adma_release_irqs(adev, chan);
4587 err_irq:
4588 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4589 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4590 list_del(&ref->node);
4591 kfree(ref);
4594 err_ref_alloc:
4595 if (adev->id != PPC440SPE_XOR_ID) {
4596 dma_unmap_page(&ofdev->dev, chan->pdest,
4597 PAGE_SIZE, DMA_BIDIRECTIONAL);
4598 dma_unmap_page(&ofdev->dev, chan->qdest,
4599 PAGE_SIZE, DMA_BIDIRECTIONAL);
4600 __free_page(chan->pdest_page);
4601 __free_page(chan->qdest_page);
4603 err_page_alloc:
4604 kfree(chan);
4605 err_chan_alloc:
4606 if (adev->id == PPC440SPE_XOR_ID)
4607 iounmap(adev->xor_reg);
4608 else
4609 iounmap(adev->dma_reg);
4610 err_regs_alloc:
4611 dma_free_coherent(adev->dev, adev->pool_size,
4612 adev->dma_desc_pool_virt,
4613 adev->dma_desc_pool);
4614 err_dma_alloc:
4615 kfree(adev);
4616 err_adev_alloc:
4617 release_mem_region(res.start, resource_size(&res));
4618 out:
4619 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4620 ppc440spe_adma_devices[id] = initcode;
4622 return ret;
4626 * ppc440spe_adma_remove - remove the asynch device
4628 static int __devexit ppc440spe_adma_remove(struct platform_device *ofdev)
4630 struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
4631 struct device_node *np = ofdev->dev.of_node;
4632 struct resource res;
4633 struct dma_chan *chan, *_chan;
4634 struct ppc_dma_chan_ref *ref, *_ref;
4635 struct ppc440spe_adma_chan *ppc440spe_chan;
4637 dev_set_drvdata(&ofdev->dev, NULL);
4638 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4639 ppc440spe_adma_devices[adev->id] = -1;
4641 dma_async_device_unregister(&adev->common);
4643 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4644 device_node) {
4645 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4646 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4647 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4648 if (adev->id != PPC440SPE_XOR_ID) {
4649 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4650 PAGE_SIZE, DMA_BIDIRECTIONAL);
4651 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4652 PAGE_SIZE, DMA_BIDIRECTIONAL);
4653 __free_page(ppc440spe_chan->pdest_page);
4654 __free_page(ppc440spe_chan->qdest_page);
4656 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4657 node) {
4658 if (ppc440spe_chan ==
4659 to_ppc440spe_adma_chan(ref->chan)) {
4660 list_del(&ref->node);
4661 kfree(ref);
4664 list_del(&chan->device_node);
4665 kfree(ppc440spe_chan);
4668 dma_free_coherent(adev->dev, adev->pool_size,
4669 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4670 if (adev->id == PPC440SPE_XOR_ID)
4671 iounmap(adev->xor_reg);
4672 else
4673 iounmap(adev->dma_reg);
4674 of_address_to_resource(np, 0, &res);
4675 release_mem_region(res.start, resource_size(&res));
4676 kfree(adev);
4677 return 0;
4681 * /sys driver interface to enable h/w RAID-6 capabilities
4682 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4683 * directory are "devices", "enable" and "poly".
4684 * "devices" shows available engines.
4685 * "enable" is used to enable RAID-6 capabilities or to check
4686 * whether these has been activated.
4687 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4690 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4692 ssize_t size = 0;
4693 int i;
4695 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4696 if (ppc440spe_adma_devices[i] == -1)
4697 continue;
4698 size += snprintf(buf + size, PAGE_SIZE - size,
4699 "PPC440SP(E)-ADMA.%d: %s\n", i,
4700 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4702 return size;
4705 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4707 return snprintf(buf, PAGE_SIZE,
4708 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4709 ppc440spe_r6_enabled ? "EN" : "DIS");
4712 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4713 const char *buf, size_t count)
4715 unsigned long val;
4717 if (!count || count > 11)
4718 return -EINVAL;
4720 if (!ppc440spe_r6_tchan)
4721 return -EFAULT;
4723 /* Write a key */
4724 sscanf(buf, "%lx", &val);
4725 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4726 isync();
4728 /* Verify whether it really works now */
4729 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4730 pr_info("PPC440SP(e) RAID-6 has been activated "
4731 "successfully\n");
4732 ppc440spe_r6_enabled = 1;
4733 } else {
4734 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4735 " Error key ?\n");
4736 ppc440spe_r6_enabled = 0;
4738 return count;
4741 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4743 ssize_t size = 0;
4744 u32 reg;
4746 #ifdef CONFIG_440SP
4747 /* 440SP has fixed polynomial */
4748 reg = 0x4d;
4749 #else
4750 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4751 reg >>= MQ0_CFBHL_POLY;
4752 reg &= 0xFF;
4753 #endif
4755 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4756 "uses 0x1%02x polynomial.\n", reg);
4757 return size;
4760 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4761 const char *buf, size_t count)
4763 unsigned long reg, val;
4765 #ifdef CONFIG_440SP
4766 /* 440SP uses default 0x14D polynomial only */
4767 return -EINVAL;
4768 #endif
4770 if (!count || count > 6)
4771 return -EINVAL;
4773 /* e.g., 0x14D or 0x11D */
4774 sscanf(buf, "%lx", &val);
4776 if (val & ~0x1FF)
4777 return -EINVAL;
4779 val &= 0xFF;
4780 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4781 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4782 reg |= val << MQ0_CFBHL_POLY;
4783 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4785 return count;
4788 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4789 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4790 store_ppc440spe_r6enable);
4791 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4792 store_ppc440spe_r6poly);
4795 * Common initialisation for RAID engines; allocate memory for
4796 * DMAx FIFOs, perform configuration common for all DMA engines.
4797 * Further DMA engine specific configuration is done at probe time.
4799 static int ppc440spe_configure_raid_devices(void)
4801 struct device_node *np;
4802 struct resource i2o_res;
4803 struct i2o_regs __iomem *i2o_reg;
4804 dcr_host_t i2o_dcr_host;
4805 unsigned int dcr_base, dcr_len;
4806 int i, ret;
4808 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4809 if (!np) {
4810 pr_err("%s: can't find I2O device tree node\n",
4811 __func__);
4812 return -ENODEV;
4815 if (of_address_to_resource(np, 0, &i2o_res)) {
4816 of_node_put(np);
4817 return -EINVAL;
4820 i2o_reg = of_iomap(np, 0);
4821 if (!i2o_reg) {
4822 pr_err("%s: failed to map I2O registers\n", __func__);
4823 of_node_put(np);
4824 return -EINVAL;
4827 /* Get I2O DCRs base */
4828 dcr_base = dcr_resource_start(np, 0);
4829 dcr_len = dcr_resource_len(np, 0);
4830 if (!dcr_base && !dcr_len) {
4831 pr_err("%s: can't get DCR registers base/len!\n",
4832 np->full_name);
4833 of_node_put(np);
4834 iounmap(i2o_reg);
4835 return -ENODEV;
4838 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4839 if (!DCR_MAP_OK(i2o_dcr_host)) {
4840 pr_err("%s: failed to map DCRs!\n", np->full_name);
4841 of_node_put(np);
4842 iounmap(i2o_reg);
4843 return -ENODEV;
4845 of_node_put(np);
4847 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4848 * the base address of FIFO memory space.
4849 * Actually we need twice more physical memory than programmed in the
4850 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4852 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4853 GFP_KERNEL);
4854 if (!ppc440spe_dma_fifo_buf) {
4855 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4856 iounmap(i2o_reg);
4857 dcr_unmap(i2o_dcr_host, dcr_len);
4858 return -ENOMEM;
4862 * Configure h/w
4864 /* Reset I2O/DMA */
4865 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4866 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4868 /* Setup the base address of mmaped registers */
4869 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4870 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4871 I2O_REG_ENABLE);
4872 dcr_unmap(i2o_dcr_host, dcr_len);
4874 /* Setup FIFO memory space base address */
4875 iowrite32(0, &i2o_reg->ifbah);
4876 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4878 /* set zero FIFO size for I2O, so the whole
4879 * ppc440spe_dma_fifo_buf is used by DMAs.
4880 * DMAx_FIFOs will be configured while probe.
4882 iowrite32(0, &i2o_reg->ifsiz);
4883 iounmap(i2o_reg);
4885 /* To prepare WXOR/RXOR functionality we need access to
4886 * Memory Queue Module DCRs (finally it will be enabled
4887 * via /sys interface of the ppc440spe ADMA driver).
4889 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4890 if (!np) {
4891 pr_err("%s: can't find MQ device tree node\n",
4892 __func__);
4893 ret = -ENODEV;
4894 goto out_free;
4897 /* Get MQ DCRs base */
4898 dcr_base = dcr_resource_start(np, 0);
4899 dcr_len = dcr_resource_len(np, 0);
4900 if (!dcr_base && !dcr_len) {
4901 pr_err("%s: can't get DCR registers base/len!\n",
4902 np->full_name);
4903 ret = -ENODEV;
4904 goto out_mq;
4907 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4908 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4909 pr_err("%s: failed to map DCRs!\n", np->full_name);
4910 ret = -ENODEV;
4911 goto out_mq;
4913 of_node_put(np);
4914 ppc440spe_mq_dcr_len = dcr_len;
4916 /* Set HB alias */
4917 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4919 /* Set:
4920 * - LL transaction passing limit to 1;
4921 * - Memory controller cycle limit to 1;
4922 * - Galois Polynomial to 0x14d (default)
4924 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4925 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4926 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4928 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4929 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4930 ppc440spe_adma_devices[i] = -1;
4932 return 0;
4934 out_mq:
4935 of_node_put(np);
4936 out_free:
4937 kfree(ppc440spe_dma_fifo_buf);
4938 return ret;
4941 static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = {
4942 { .compatible = "ibm,dma-440spe", },
4943 { .compatible = "amcc,xor-accelerator", },
4946 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4948 static struct of_platform_driver ppc440spe_adma_driver = {
4949 .probe = ppc440spe_adma_probe,
4950 .remove = __devexit_p(ppc440spe_adma_remove),
4951 .driver = {
4952 .name = "PPC440SP(E)-ADMA",
4953 .owner = THIS_MODULE,
4954 .of_match_table = ppc440spe_adma_of_match,
4958 static __init int ppc440spe_adma_init(void)
4960 int ret;
4962 ret = ppc440spe_configure_raid_devices();
4963 if (ret)
4964 return ret;
4966 ret = of_register_platform_driver(&ppc440spe_adma_driver);
4967 if (ret) {
4968 pr_err("%s: failed to register platform driver\n",
4969 __func__);
4970 goto out_reg;
4973 /* Initialization status */
4974 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4975 &driver_attr_devices);
4976 if (ret)
4977 goto out_dev;
4979 /* RAID-6 h/w enable entry */
4980 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4981 &driver_attr_enable);
4982 if (ret)
4983 goto out_en;
4985 /* GF polynomial to use */
4986 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4987 &driver_attr_poly);
4988 if (!ret)
4989 return ret;
4991 driver_remove_file(&ppc440spe_adma_driver.driver,
4992 &driver_attr_enable);
4993 out_en:
4994 driver_remove_file(&ppc440spe_adma_driver.driver,
4995 &driver_attr_devices);
4996 out_dev:
4997 /* User will not be able to enable h/w RAID-6 */
4998 pr_err("%s: failed to create RAID-6 driver interface\n",
4999 __func__);
5000 of_unregister_platform_driver(&ppc440spe_adma_driver);
5001 out_reg:
5002 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5003 kfree(ppc440spe_dma_fifo_buf);
5004 return ret;
5007 static void __exit ppc440spe_adma_exit(void)
5009 driver_remove_file(&ppc440spe_adma_driver.driver,
5010 &driver_attr_poly);
5011 driver_remove_file(&ppc440spe_adma_driver.driver,
5012 &driver_attr_enable);
5013 driver_remove_file(&ppc440spe_adma_driver.driver,
5014 &driver_attr_devices);
5015 of_unregister_platform_driver(&ppc440spe_adma_driver);
5016 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5017 kfree(ppc440spe_dma_fifo_buf);
5020 arch_initcall(ppc440spe_adma_init);
5021 module_exit(ppc440spe_adma_exit);
5023 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
5024 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
5025 MODULE_LICENSE("GPL");