GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / char / ipmi / ipmi_msghandler.c
blob45b74e6070f618cec851894e50aa8aff2282b222
1 /*
2 * ipmi_msghandler.c
4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
49 #define PFX "IPMI message handler: "
51 #define IPMI_DRIVER_VERSION "39.2"
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
56 static int initialized;
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
65 #define MAX_EVENTS_IN_QUEUE 25
68 * Don't let a message sit in a queue forever, always time it with at lest
69 * the max message timer. This is in milliseconds.
71 #define MAX_MSG_TIMEOUT 60000
74 * The main "user" data structure.
76 struct ipmi_user {
77 struct list_head link;
79 /* Set to "0" when the user is destroyed. */
80 int valid;
82 struct kref refcount;
84 /* The upper layer that handles receive messages. */
85 struct ipmi_user_hndl *handler;
86 void *handler_data;
88 /* The interface this user is bound to. */
89 ipmi_smi_t intf;
91 /* Does this interface receive IPMI events? */
92 int gets_events;
95 struct cmd_rcvr {
96 struct list_head link;
98 ipmi_user_t user;
99 unsigned char netfn;
100 unsigned char cmd;
101 unsigned int chans;
104 * This is used to form a linked lised during mass deletion.
105 * Since this is in an RCU list, we cannot use the link above
106 * or change any data until the RCU period completes. So we
107 * use this next variable during mass deletion so we can have
108 * a list and don't have to wait and restart the search on
109 * every individual deletion of a command.
111 struct cmd_rcvr *next;
114 struct seq_table {
115 unsigned int inuse : 1;
116 unsigned int broadcast : 1;
118 unsigned long timeout;
119 unsigned long orig_timeout;
120 unsigned int retries_left;
123 * To verify on an incoming send message response that this is
124 * the message that the response is for, we keep a sequence id
125 * and increment it every time we send a message.
127 long seqid;
130 * This is held so we can properly respond to the message on a
131 * timeout, and it is used to hold the temporary data for
132 * retransmission, too.
134 struct ipmi_recv_msg *recv_msg;
138 * Store the information in a msgid (long) to allow us to find a
139 * sequence table entry from the msgid.
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144 do { \
145 seq = ((msgid >> 26) & 0x3f); \
146 seqid = (msgid & 0x3fffff); \
147 } while (0)
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
151 struct ipmi_channel {
152 unsigned char medium;
153 unsigned char protocol;
156 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
157 * but may be changed by the user.
159 unsigned char address;
162 * My LUN. This should generally stay the SMS LUN, but just in
163 * case...
165 unsigned char lun;
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry {
170 char *name;
171 struct ipmi_proc_entry *next;
173 #endif
175 struct bmc_device {
176 struct platform_device *dev;
177 struct ipmi_device_id id;
178 unsigned char guid[16];
179 int guid_set;
181 struct kref refcount;
183 /* bmc device attributes */
184 struct device_attribute device_id_attr;
185 struct device_attribute provides_dev_sdrs_attr;
186 struct device_attribute revision_attr;
187 struct device_attribute firmware_rev_attr;
188 struct device_attribute version_attr;
189 struct device_attribute add_dev_support_attr;
190 struct device_attribute manufacturer_id_attr;
191 struct device_attribute product_id_attr;
192 struct device_attribute guid_attr;
193 struct device_attribute aux_firmware_rev_attr;
197 * Various statistics for IPMI, these index stats[] in the ipmi_smi
198 * structure.
200 enum ipmi_stat_indexes {
201 /* Commands we got from the user that were invalid. */
202 IPMI_STAT_sent_invalid_commands = 0,
204 /* Commands we sent to the MC. */
205 IPMI_STAT_sent_local_commands,
207 /* Responses from the MC that were delivered to a user. */
208 IPMI_STAT_handled_local_responses,
210 /* Responses from the MC that were not delivered to a user. */
211 IPMI_STAT_unhandled_local_responses,
213 /* Commands we sent out to the IPMB bus. */
214 IPMI_STAT_sent_ipmb_commands,
216 /* Commands sent on the IPMB that had errors on the SEND CMD */
217 IPMI_STAT_sent_ipmb_command_errs,
219 /* Each retransmit increments this count. */
220 IPMI_STAT_retransmitted_ipmb_commands,
223 * When a message times out (runs out of retransmits) this is
224 * incremented.
226 IPMI_STAT_timed_out_ipmb_commands,
229 * This is like above, but for broadcasts. Broadcasts are
230 * *not* included in the above count (they are expected to
231 * time out).
233 IPMI_STAT_timed_out_ipmb_broadcasts,
235 /* Responses I have sent to the IPMB bus. */
236 IPMI_STAT_sent_ipmb_responses,
238 /* The response was delivered to the user. */
239 IPMI_STAT_handled_ipmb_responses,
241 /* The response had invalid data in it. */
242 IPMI_STAT_invalid_ipmb_responses,
244 /* The response didn't have anyone waiting for it. */
245 IPMI_STAT_unhandled_ipmb_responses,
247 /* Commands we sent out to the IPMB bus. */
248 IPMI_STAT_sent_lan_commands,
250 /* Commands sent on the IPMB that had errors on the SEND CMD */
251 IPMI_STAT_sent_lan_command_errs,
253 /* Each retransmit increments this count. */
254 IPMI_STAT_retransmitted_lan_commands,
257 * When a message times out (runs out of retransmits) this is
258 * incremented.
260 IPMI_STAT_timed_out_lan_commands,
262 /* Responses I have sent to the IPMB bus. */
263 IPMI_STAT_sent_lan_responses,
265 /* The response was delivered to the user. */
266 IPMI_STAT_handled_lan_responses,
268 /* The response had invalid data in it. */
269 IPMI_STAT_invalid_lan_responses,
271 /* The response didn't have anyone waiting for it. */
272 IPMI_STAT_unhandled_lan_responses,
274 /* The command was delivered to the user. */
275 IPMI_STAT_handled_commands,
277 /* The command had invalid data in it. */
278 IPMI_STAT_invalid_commands,
280 /* The command didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_commands,
283 /* Invalid data in an event. */
284 IPMI_STAT_invalid_events,
286 /* Events that were received with the proper format. */
287 IPMI_STAT_events,
289 /* Retransmissions on IPMB that failed. */
290 IPMI_STAT_dropped_rexmit_ipmb_commands,
292 /* Retransmissions on LAN that failed. */
293 IPMI_STAT_dropped_rexmit_lan_commands,
295 /* This *must* remain last, add new values above this. */
296 IPMI_NUM_STATS
300 #define IPMI_IPMB_NUM_SEQ 64
301 #define IPMI_MAX_CHANNELS 16
302 struct ipmi_smi {
303 /* What interface number are we? */
304 int intf_num;
306 struct kref refcount;
308 /* Used for a list of interfaces. */
309 struct list_head link;
312 * The list of upper layers that are using me. seq_lock
313 * protects this.
315 struct list_head users;
317 /* Information to supply to users. */
318 unsigned char ipmi_version_major;
319 unsigned char ipmi_version_minor;
321 /* Used for wake ups at startup. */
322 wait_queue_head_t waitq;
324 struct bmc_device *bmc;
325 char *my_dev_name;
326 char *sysfs_name;
329 * This is the lower-layer's sender routine. Note that you
330 * must either be holding the ipmi_interfaces_mutex or be in
331 * an umpreemptible region to use this. You must fetch the
332 * value into a local variable and make sure it is not NULL.
334 struct ipmi_smi_handlers *handlers;
335 void *send_info;
337 #ifdef CONFIG_PROC_FS
338 /* A list of proc entries for this interface. */
339 struct mutex proc_entry_lock;
340 struct ipmi_proc_entry *proc_entries;
341 #endif
343 /* Driver-model device for the system interface. */
344 struct device *si_dev;
347 * A table of sequence numbers for this interface. We use the
348 * sequence numbers for IPMB messages that go out of the
349 * interface to match them up with their responses. A routine
350 * is called periodically to time the items in this list.
352 spinlock_t seq_lock;
353 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354 int curr_seq;
357 * Messages that were delayed for some reason (out of memory,
358 * for instance), will go in here to be processed later in a
359 * periodic timer interrupt.
361 spinlock_t waiting_msgs_lock;
362 struct list_head waiting_msgs;
365 * The list of command receivers that are registered for commands
366 * on this interface.
368 struct mutex cmd_rcvrs_mutex;
369 struct list_head cmd_rcvrs;
372 * Events that were queues because no one was there to receive
373 * them.
375 spinlock_t events_lock; /* For dealing with event stuff. */
376 struct list_head waiting_events;
377 unsigned int waiting_events_count; /* How many events in queue? */
378 char delivering_events;
379 char event_msg_printed;
382 * The event receiver for my BMC, only really used at panic
383 * shutdown as a place to store this.
385 unsigned char event_receiver;
386 unsigned char event_receiver_lun;
387 unsigned char local_sel_device;
388 unsigned char local_event_generator;
390 /* For handling of maintenance mode. */
391 int maintenance_mode;
392 int maintenance_mode_enable;
393 int auto_maintenance_timeout;
394 spinlock_t maintenance_mode_lock; /* Used in a timer... */
397 * A cheap hack, if this is non-null and a message to an
398 * interface comes in with a NULL user, call this routine with
399 * it. Note that the message will still be freed by the
400 * caller. This only works on the system interface.
402 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
405 * When we are scanning the channels for an SMI, this will
406 * tell which channel we are scanning.
408 int curr_channel;
410 /* Channel information */
411 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
413 /* Proc FS stuff. */
414 struct proc_dir_entry *proc_dir;
415 char proc_dir_name[10];
417 atomic_t stats[IPMI_NUM_STATS];
420 * run_to_completion duplicate of smb_info, smi_info
421 * and ipmi_serial_info structures. Used to decrease numbers of
422 * parameters passed by "low" level IPMI code.
424 int run_to_completion;
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
429 * The driver model view of the IPMI messaging driver.
431 static struct platform_driver ipmidriver = {
432 .driver = {
433 .name = "ipmi",
434 .bus = &platform_bus_type
437 static DEFINE_MUTEX(ipmidriver_mutex);
439 static LIST_HEAD(ipmi_interfaces);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex);
443 * List of watchers that want to know when smi's are added and deleted.
445 static LIST_HEAD(smi_watchers);
446 static DEFINE_MUTEX(smi_watchers_mutex);
449 #define ipmi_inc_stat(intf, stat) \
450 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
454 static int is_lan_addr(struct ipmi_addr *addr)
456 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
459 static int is_ipmb_addr(struct ipmi_addr *addr)
461 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
466 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
469 static void free_recv_msg_list(struct list_head *q)
471 struct ipmi_recv_msg *msg, *msg2;
473 list_for_each_entry_safe(msg, msg2, q, link) {
474 list_del(&msg->link);
475 ipmi_free_recv_msg(msg);
479 static void free_smi_msg_list(struct list_head *q)
481 struct ipmi_smi_msg *msg, *msg2;
483 list_for_each_entry_safe(msg, msg2, q, link) {
484 list_del(&msg->link);
485 ipmi_free_smi_msg(msg);
489 static void clean_up_interface_data(ipmi_smi_t intf)
491 int i;
492 struct cmd_rcvr *rcvr, *rcvr2;
493 struct list_head list;
495 free_smi_msg_list(&intf->waiting_msgs);
496 free_recv_msg_list(&intf->waiting_events);
499 * Wholesale remove all the entries from the list in the
500 * interface and wait for RCU to know that none are in use.
502 mutex_lock(&intf->cmd_rcvrs_mutex);
503 INIT_LIST_HEAD(&list);
504 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505 mutex_unlock(&intf->cmd_rcvrs_mutex);
507 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508 kfree(rcvr);
510 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511 if ((intf->seq_table[i].inuse)
512 && (intf->seq_table[i].recv_msg))
513 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
517 static void intf_free(struct kref *ref)
519 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
521 clean_up_interface_data(intf);
522 kfree(intf);
525 struct watcher_entry {
526 int intf_num;
527 ipmi_smi_t intf;
528 struct list_head link;
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
533 ipmi_smi_t intf;
534 LIST_HEAD(to_deliver);
535 struct watcher_entry *e, *e2;
537 mutex_lock(&smi_watchers_mutex);
539 mutex_lock(&ipmi_interfaces_mutex);
541 /* Build a list of things to deliver. */
542 list_for_each_entry(intf, &ipmi_interfaces, link) {
543 if (intf->intf_num == -1)
544 continue;
545 e = kmalloc(sizeof(*e), GFP_KERNEL);
546 if (!e)
547 goto out_err;
548 kref_get(&intf->refcount);
549 e->intf = intf;
550 e->intf_num = intf->intf_num;
551 list_add_tail(&e->link, &to_deliver);
554 /* We will succeed, so add it to the list. */
555 list_add(&watcher->link, &smi_watchers);
557 mutex_unlock(&ipmi_interfaces_mutex);
559 list_for_each_entry_safe(e, e2, &to_deliver, link) {
560 list_del(&e->link);
561 watcher->new_smi(e->intf_num, e->intf->si_dev);
562 kref_put(&e->intf->refcount, intf_free);
563 kfree(e);
566 mutex_unlock(&smi_watchers_mutex);
568 return 0;
570 out_err:
571 mutex_unlock(&ipmi_interfaces_mutex);
572 mutex_unlock(&smi_watchers_mutex);
573 list_for_each_entry_safe(e, e2, &to_deliver, link) {
574 list_del(&e->link);
575 kref_put(&e->intf->refcount, intf_free);
576 kfree(e);
578 return -ENOMEM;
580 EXPORT_SYMBOL(ipmi_smi_watcher_register);
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
584 mutex_lock(&smi_watchers_mutex);
585 list_del(&(watcher->link));
586 mutex_unlock(&smi_watchers_mutex);
587 return 0;
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
592 * Must be called with smi_watchers_mutex held.
594 static void
595 call_smi_watchers(int i, struct device *dev)
597 struct ipmi_smi_watcher *w;
599 list_for_each_entry(w, &smi_watchers, link) {
600 if (try_module_get(w->owner)) {
601 w->new_smi(i, dev);
602 module_put(w->owner);
607 static int
608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
610 if (addr1->addr_type != addr2->addr_type)
611 return 0;
613 if (addr1->channel != addr2->channel)
614 return 0;
616 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617 struct ipmi_system_interface_addr *smi_addr1
618 = (struct ipmi_system_interface_addr *) addr1;
619 struct ipmi_system_interface_addr *smi_addr2
620 = (struct ipmi_system_interface_addr *) addr2;
621 return (smi_addr1->lun == smi_addr2->lun);
624 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625 struct ipmi_ipmb_addr *ipmb_addr1
626 = (struct ipmi_ipmb_addr *) addr1;
627 struct ipmi_ipmb_addr *ipmb_addr2
628 = (struct ipmi_ipmb_addr *) addr2;
630 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631 && (ipmb_addr1->lun == ipmb_addr2->lun));
634 if (is_lan_addr(addr1)) {
635 struct ipmi_lan_addr *lan_addr1
636 = (struct ipmi_lan_addr *) addr1;
637 struct ipmi_lan_addr *lan_addr2
638 = (struct ipmi_lan_addr *) addr2;
640 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
642 && (lan_addr1->session_handle
643 == lan_addr2->session_handle)
644 && (lan_addr1->lun == lan_addr2->lun));
647 return 1;
650 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
652 if (len < sizeof(struct ipmi_system_interface_addr))
653 return -EINVAL;
655 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656 if (addr->channel != IPMI_BMC_CHANNEL)
657 return -EINVAL;
658 return 0;
661 if ((addr->channel == IPMI_BMC_CHANNEL)
662 || (addr->channel >= IPMI_MAX_CHANNELS)
663 || (addr->channel < 0))
664 return -EINVAL;
666 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667 if (len < sizeof(struct ipmi_ipmb_addr))
668 return -EINVAL;
669 return 0;
672 if (is_lan_addr(addr)) {
673 if (len < sizeof(struct ipmi_lan_addr))
674 return -EINVAL;
675 return 0;
678 return -EINVAL;
680 EXPORT_SYMBOL(ipmi_validate_addr);
682 unsigned int ipmi_addr_length(int addr_type)
684 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685 return sizeof(struct ipmi_system_interface_addr);
687 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689 return sizeof(struct ipmi_ipmb_addr);
691 if (addr_type == IPMI_LAN_ADDR_TYPE)
692 return sizeof(struct ipmi_lan_addr);
694 return 0;
696 EXPORT_SYMBOL(ipmi_addr_length);
698 static void deliver_response(struct ipmi_recv_msg *msg)
700 if (!msg->user) {
701 ipmi_smi_t intf = msg->user_msg_data;
703 /* Special handling for NULL users. */
704 if (intf->null_user_handler) {
705 intf->null_user_handler(intf, msg);
706 ipmi_inc_stat(intf, handled_local_responses);
707 } else {
708 /* No handler, so give up. */
709 ipmi_inc_stat(intf, unhandled_local_responses);
711 ipmi_free_recv_msg(msg);
712 } else {
713 ipmi_user_t user = msg->user;
714 user->handler->ipmi_recv_hndl(msg, user->handler_data);
718 static void
719 deliver_err_response(struct ipmi_recv_msg *msg, int err)
721 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722 msg->msg_data[0] = err;
723 msg->msg.netfn |= 1; /* Convert to a response. */
724 msg->msg.data_len = 1;
725 msg->msg.data = msg->msg_data;
726 deliver_response(msg);
730 * Find the next sequence number not being used and add the given
731 * message with the given timeout to the sequence table. This must be
732 * called with the interface's seq_lock held.
734 static int intf_next_seq(ipmi_smi_t intf,
735 struct ipmi_recv_msg *recv_msg,
736 unsigned long timeout,
737 int retries,
738 int broadcast,
739 unsigned char *seq,
740 long *seqid)
742 int rv = 0;
743 unsigned int i;
745 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747 if (!intf->seq_table[i].inuse)
748 break;
751 if (!intf->seq_table[i].inuse) {
752 intf->seq_table[i].recv_msg = recv_msg;
755 * Start with the maximum timeout, when the send response
756 * comes in we will start the real timer.
758 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759 intf->seq_table[i].orig_timeout = timeout;
760 intf->seq_table[i].retries_left = retries;
761 intf->seq_table[i].broadcast = broadcast;
762 intf->seq_table[i].inuse = 1;
763 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764 *seq = i;
765 *seqid = intf->seq_table[i].seqid;
766 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767 } else {
768 rv = -EAGAIN;
771 return rv;
775 * Return the receive message for the given sequence number and
776 * release the sequence number so it can be reused. Some other data
777 * is passed in to be sure the message matches up correctly (to help
778 * guard against message coming in after their timeout and the
779 * sequence number being reused).
781 static int intf_find_seq(ipmi_smi_t intf,
782 unsigned char seq,
783 short channel,
784 unsigned char cmd,
785 unsigned char netfn,
786 struct ipmi_addr *addr,
787 struct ipmi_recv_msg **recv_msg)
789 int rv = -ENODEV;
790 unsigned long flags;
792 if (seq >= IPMI_IPMB_NUM_SEQ)
793 return -EINVAL;
795 spin_lock_irqsave(&(intf->seq_lock), flags);
796 if (intf->seq_table[seq].inuse) {
797 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
799 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800 && (msg->msg.netfn == netfn)
801 && (ipmi_addr_equal(addr, &(msg->addr)))) {
802 *recv_msg = msg;
803 intf->seq_table[seq].inuse = 0;
804 rv = 0;
807 spin_unlock_irqrestore(&(intf->seq_lock), flags);
809 return rv;
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf,
815 long msgid)
817 int rv = -ENODEV;
818 unsigned long flags;
819 unsigned char seq;
820 unsigned long seqid;
823 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
825 spin_lock_irqsave(&(intf->seq_lock), flags);
827 * We do this verification because the user can be deleted
828 * while a message is outstanding.
830 if ((intf->seq_table[seq].inuse)
831 && (intf->seq_table[seq].seqid == seqid)) {
832 struct seq_table *ent = &(intf->seq_table[seq]);
833 ent->timeout = ent->orig_timeout;
834 rv = 0;
836 spin_unlock_irqrestore(&(intf->seq_lock), flags);
838 return rv;
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t intf,
843 long msgid,
844 unsigned int err)
846 int rv = -ENODEV;
847 unsigned long flags;
848 unsigned char seq;
849 unsigned long seqid;
850 struct ipmi_recv_msg *msg = NULL;
853 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
855 spin_lock_irqsave(&(intf->seq_lock), flags);
857 * We do this verification because the user can be deleted
858 * while a message is outstanding.
860 if ((intf->seq_table[seq].inuse)
861 && (intf->seq_table[seq].seqid == seqid)) {
862 struct seq_table *ent = &(intf->seq_table[seq]);
864 ent->inuse = 0;
865 msg = ent->recv_msg;
866 rv = 0;
868 spin_unlock_irqrestore(&(intf->seq_lock), flags);
870 if (msg)
871 deliver_err_response(msg, err);
873 return rv;
877 int ipmi_create_user(unsigned int if_num,
878 struct ipmi_user_hndl *handler,
879 void *handler_data,
880 ipmi_user_t *user)
882 unsigned long flags;
883 ipmi_user_t new_user;
884 int rv = 0;
885 ipmi_smi_t intf;
888 * There is no module usecount here, because it's not
889 * required. Since this can only be used by and called from
890 * other modules, they will implicitly use this module, and
891 * thus this can't be removed unless the other modules are
892 * removed.
895 if (handler == NULL)
896 return -EINVAL;
899 * Make sure the driver is actually initialized, this handles
900 * problems with initialization order.
902 if (!initialized) {
903 rv = ipmi_init_msghandler();
904 if (rv)
905 return rv;
908 * The init code doesn't return an error if it was turned
909 * off, but it won't initialize. Check that.
911 if (!initialized)
912 return -ENODEV;
915 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916 if (!new_user)
917 return -ENOMEM;
919 mutex_lock(&ipmi_interfaces_mutex);
920 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921 if (intf->intf_num == if_num)
922 goto found;
924 /* Not found, return an error */
925 rv = -EINVAL;
926 goto out_kfree;
928 found:
929 /* Note that each existing user holds a refcount to the interface. */
930 kref_get(&intf->refcount);
932 kref_init(&new_user->refcount);
933 new_user->handler = handler;
934 new_user->handler_data = handler_data;
935 new_user->intf = intf;
936 new_user->gets_events = 0;
938 if (!try_module_get(intf->handlers->owner)) {
939 rv = -ENODEV;
940 goto out_kref;
943 if (intf->handlers->inc_usecount) {
944 rv = intf->handlers->inc_usecount(intf->send_info);
945 if (rv) {
946 module_put(intf->handlers->owner);
947 goto out_kref;
952 * Hold the lock so intf->handlers is guaranteed to be good
953 * until now
955 mutex_unlock(&ipmi_interfaces_mutex);
957 new_user->valid = 1;
958 spin_lock_irqsave(&intf->seq_lock, flags);
959 list_add_rcu(&new_user->link, &intf->users);
960 spin_unlock_irqrestore(&intf->seq_lock, flags);
961 *user = new_user;
962 return 0;
964 out_kref:
965 kref_put(&intf->refcount, intf_free);
966 out_kfree:
967 mutex_unlock(&ipmi_interfaces_mutex);
968 kfree(new_user);
969 return rv;
971 EXPORT_SYMBOL(ipmi_create_user);
973 static void free_user(struct kref *ref)
975 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
976 kfree(user);
979 int ipmi_destroy_user(ipmi_user_t user)
981 ipmi_smi_t intf = user->intf;
982 int i;
983 unsigned long flags;
984 struct cmd_rcvr *rcvr;
985 struct cmd_rcvr *rcvrs = NULL;
987 user->valid = 0;
989 /* Remove the user from the interface's sequence table. */
990 spin_lock_irqsave(&intf->seq_lock, flags);
991 list_del_rcu(&user->link);
993 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
994 if (intf->seq_table[i].inuse
995 && (intf->seq_table[i].recv_msg->user == user)) {
996 intf->seq_table[i].inuse = 0;
997 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1000 spin_unlock_irqrestore(&intf->seq_lock, flags);
1003 * Remove the user from the command receiver's table. First
1004 * we build a list of everything (not using the standard link,
1005 * since other things may be using it till we do
1006 * synchronize_rcu()) then free everything in that list.
1008 mutex_lock(&intf->cmd_rcvrs_mutex);
1009 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1010 if (rcvr->user == user) {
1011 list_del_rcu(&rcvr->link);
1012 rcvr->next = rcvrs;
1013 rcvrs = rcvr;
1016 mutex_unlock(&intf->cmd_rcvrs_mutex);
1017 synchronize_rcu();
1018 while (rcvrs) {
1019 rcvr = rcvrs;
1020 rcvrs = rcvr->next;
1021 kfree(rcvr);
1024 mutex_lock(&ipmi_interfaces_mutex);
1025 if (intf->handlers) {
1026 module_put(intf->handlers->owner);
1027 if (intf->handlers->dec_usecount)
1028 intf->handlers->dec_usecount(intf->send_info);
1030 mutex_unlock(&ipmi_interfaces_mutex);
1032 kref_put(&intf->refcount, intf_free);
1034 kref_put(&user->refcount, free_user);
1036 return 0;
1038 EXPORT_SYMBOL(ipmi_destroy_user);
1040 void ipmi_get_version(ipmi_user_t user,
1041 unsigned char *major,
1042 unsigned char *minor)
1044 *major = user->intf->ipmi_version_major;
1045 *minor = user->intf->ipmi_version_minor;
1047 EXPORT_SYMBOL(ipmi_get_version);
1049 int ipmi_set_my_address(ipmi_user_t user,
1050 unsigned int channel,
1051 unsigned char address)
1053 if (channel >= IPMI_MAX_CHANNELS)
1054 return -EINVAL;
1055 user->intf->channels[channel].address = address;
1056 return 0;
1058 EXPORT_SYMBOL(ipmi_set_my_address);
1060 int ipmi_get_my_address(ipmi_user_t user,
1061 unsigned int channel,
1062 unsigned char *address)
1064 if (channel >= IPMI_MAX_CHANNELS)
1065 return -EINVAL;
1066 *address = user->intf->channels[channel].address;
1067 return 0;
1069 EXPORT_SYMBOL(ipmi_get_my_address);
1071 int ipmi_set_my_LUN(ipmi_user_t user,
1072 unsigned int channel,
1073 unsigned char LUN)
1075 if (channel >= IPMI_MAX_CHANNELS)
1076 return -EINVAL;
1077 user->intf->channels[channel].lun = LUN & 0x3;
1078 return 0;
1080 EXPORT_SYMBOL(ipmi_set_my_LUN);
1082 int ipmi_get_my_LUN(ipmi_user_t user,
1083 unsigned int channel,
1084 unsigned char *address)
1086 if (channel >= IPMI_MAX_CHANNELS)
1087 return -EINVAL;
1088 *address = user->intf->channels[channel].lun;
1089 return 0;
1091 EXPORT_SYMBOL(ipmi_get_my_LUN);
1093 int ipmi_get_maintenance_mode(ipmi_user_t user)
1095 int mode;
1096 unsigned long flags;
1098 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1099 mode = user->intf->maintenance_mode;
1100 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1102 return mode;
1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1106 static void maintenance_mode_update(ipmi_smi_t intf)
1108 if (intf->handlers->set_maintenance_mode)
1109 intf->handlers->set_maintenance_mode(
1110 intf->send_info, intf->maintenance_mode_enable);
1113 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1115 int rv = 0;
1116 unsigned long flags;
1117 ipmi_smi_t intf = user->intf;
1119 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1120 if (intf->maintenance_mode != mode) {
1121 switch (mode) {
1122 case IPMI_MAINTENANCE_MODE_AUTO:
1123 intf->maintenance_mode = mode;
1124 intf->maintenance_mode_enable
1125 = (intf->auto_maintenance_timeout > 0);
1126 break;
1128 case IPMI_MAINTENANCE_MODE_OFF:
1129 intf->maintenance_mode = mode;
1130 intf->maintenance_mode_enable = 0;
1131 break;
1133 case IPMI_MAINTENANCE_MODE_ON:
1134 intf->maintenance_mode = mode;
1135 intf->maintenance_mode_enable = 1;
1136 break;
1138 default:
1139 rv = -EINVAL;
1140 goto out_unlock;
1143 maintenance_mode_update(intf);
1145 out_unlock:
1146 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1148 return rv;
1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1152 int ipmi_set_gets_events(ipmi_user_t user, int val)
1154 unsigned long flags;
1155 ipmi_smi_t intf = user->intf;
1156 struct ipmi_recv_msg *msg, *msg2;
1157 struct list_head msgs;
1159 INIT_LIST_HEAD(&msgs);
1161 spin_lock_irqsave(&intf->events_lock, flags);
1162 user->gets_events = val;
1164 if (intf->delivering_events)
1166 * Another thread is delivering events for this, so
1167 * let it handle any new events.
1169 goto out;
1171 /* Deliver any queued events. */
1172 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1173 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1174 list_move_tail(&msg->link, &msgs);
1175 intf->waiting_events_count = 0;
1176 if (intf->event_msg_printed) {
1177 printk(KERN_WARNING PFX "Event queue no longer"
1178 " full\n");
1179 intf->event_msg_printed = 0;
1182 intf->delivering_events = 1;
1183 spin_unlock_irqrestore(&intf->events_lock, flags);
1185 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186 msg->user = user;
1187 kref_get(&user->refcount);
1188 deliver_response(msg);
1191 spin_lock_irqsave(&intf->events_lock, flags);
1192 intf->delivering_events = 0;
1195 out:
1196 spin_unlock_irqrestore(&intf->events_lock, flags);
1198 return 0;
1200 EXPORT_SYMBOL(ipmi_set_gets_events);
1202 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1203 unsigned char netfn,
1204 unsigned char cmd,
1205 unsigned char chan)
1207 struct cmd_rcvr *rcvr;
1209 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1210 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1211 && (rcvr->chans & (1 << chan)))
1212 return rcvr;
1214 return NULL;
1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1218 unsigned char netfn,
1219 unsigned char cmd,
1220 unsigned int chans)
1222 struct cmd_rcvr *rcvr;
1224 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1225 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1226 && (rcvr->chans & chans))
1227 return 0;
1229 return 1;
1232 int ipmi_register_for_cmd(ipmi_user_t user,
1233 unsigned char netfn,
1234 unsigned char cmd,
1235 unsigned int chans)
1237 ipmi_smi_t intf = user->intf;
1238 struct cmd_rcvr *rcvr;
1239 int rv = 0;
1242 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1243 if (!rcvr)
1244 return -ENOMEM;
1245 rcvr->cmd = cmd;
1246 rcvr->netfn = netfn;
1247 rcvr->chans = chans;
1248 rcvr->user = user;
1250 mutex_lock(&intf->cmd_rcvrs_mutex);
1251 /* Make sure the command/netfn is not already registered. */
1252 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1253 rv = -EBUSY;
1254 goto out_unlock;
1257 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1259 out_unlock:
1260 mutex_unlock(&intf->cmd_rcvrs_mutex);
1261 if (rv)
1262 kfree(rcvr);
1264 return rv;
1266 EXPORT_SYMBOL(ipmi_register_for_cmd);
1268 int ipmi_unregister_for_cmd(ipmi_user_t user,
1269 unsigned char netfn,
1270 unsigned char cmd,
1271 unsigned int chans)
1273 ipmi_smi_t intf = user->intf;
1274 struct cmd_rcvr *rcvr;
1275 struct cmd_rcvr *rcvrs = NULL;
1276 int i, rv = -ENOENT;
1278 mutex_lock(&intf->cmd_rcvrs_mutex);
1279 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1280 if (((1 << i) & chans) == 0)
1281 continue;
1282 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1283 if (rcvr == NULL)
1284 continue;
1285 if (rcvr->user == user) {
1286 rv = 0;
1287 rcvr->chans &= ~chans;
1288 if (rcvr->chans == 0) {
1289 list_del_rcu(&rcvr->link);
1290 rcvr->next = rcvrs;
1291 rcvrs = rcvr;
1295 mutex_unlock(&intf->cmd_rcvrs_mutex);
1296 synchronize_rcu();
1297 while (rcvrs) {
1298 rcvr = rcvrs;
1299 rcvrs = rcvr->next;
1300 kfree(rcvr);
1302 return rv;
1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1306 static unsigned char
1307 ipmb_checksum(unsigned char *data, int size)
1309 unsigned char csum = 0;
1311 for (; size > 0; size--, data++)
1312 csum += *data;
1314 return -csum;
1317 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1318 struct kernel_ipmi_msg *msg,
1319 struct ipmi_ipmb_addr *ipmb_addr,
1320 long msgid,
1321 unsigned char ipmb_seq,
1322 int broadcast,
1323 unsigned char source_address,
1324 unsigned char source_lun)
1326 int i = broadcast;
1328 /* Format the IPMB header data. */
1329 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1330 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1331 smi_msg->data[2] = ipmb_addr->channel;
1332 if (broadcast)
1333 smi_msg->data[3] = 0;
1334 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1335 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1336 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1337 smi_msg->data[i+6] = source_address;
1338 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1339 smi_msg->data[i+8] = msg->cmd;
1341 /* Now tack on the data to the message. */
1342 if (msg->data_len > 0)
1343 memcpy(&(smi_msg->data[i+9]), msg->data,
1344 msg->data_len);
1345 smi_msg->data_size = msg->data_len + 9;
1347 /* Now calculate the checksum and tack it on. */
1348 smi_msg->data[i+smi_msg->data_size]
1349 = ipmb_checksum(&(smi_msg->data[i+6]),
1350 smi_msg->data_size-6);
1353 * Add on the checksum size and the offset from the
1354 * broadcast.
1356 smi_msg->data_size += 1 + i;
1358 smi_msg->msgid = msgid;
1361 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1362 struct kernel_ipmi_msg *msg,
1363 struct ipmi_lan_addr *lan_addr,
1364 long msgid,
1365 unsigned char ipmb_seq,
1366 unsigned char source_lun)
1368 /* Format the IPMB header data. */
1369 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1370 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1371 smi_msg->data[2] = lan_addr->channel;
1372 smi_msg->data[3] = lan_addr->session_handle;
1373 smi_msg->data[4] = lan_addr->remote_SWID;
1374 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1375 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1376 smi_msg->data[7] = lan_addr->local_SWID;
1377 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1378 smi_msg->data[9] = msg->cmd;
1380 /* Now tack on the data to the message. */
1381 if (msg->data_len > 0)
1382 memcpy(&(smi_msg->data[10]), msg->data,
1383 msg->data_len);
1384 smi_msg->data_size = msg->data_len + 10;
1386 /* Now calculate the checksum and tack it on. */
1387 smi_msg->data[smi_msg->data_size]
1388 = ipmb_checksum(&(smi_msg->data[7]),
1389 smi_msg->data_size-7);
1392 * Add on the checksum size and the offset from the
1393 * broadcast.
1395 smi_msg->data_size += 1;
1397 smi_msg->msgid = msgid;
1401 * Separate from ipmi_request so that the user does not have to be
1402 * supplied in certain circumstances (mainly at panic time). If
1403 * messages are supplied, they will be freed, even if an error
1404 * occurs.
1406 static int i_ipmi_request(ipmi_user_t user,
1407 ipmi_smi_t intf,
1408 struct ipmi_addr *addr,
1409 long msgid,
1410 struct kernel_ipmi_msg *msg,
1411 void *user_msg_data,
1412 void *supplied_smi,
1413 struct ipmi_recv_msg *supplied_recv,
1414 int priority,
1415 unsigned char source_address,
1416 unsigned char source_lun,
1417 int retries,
1418 unsigned int retry_time_ms)
1420 int rv = 0;
1421 struct ipmi_smi_msg *smi_msg;
1422 struct ipmi_recv_msg *recv_msg;
1423 unsigned long flags;
1424 struct ipmi_smi_handlers *handlers;
1427 if (supplied_recv)
1428 recv_msg = supplied_recv;
1429 else {
1430 recv_msg = ipmi_alloc_recv_msg();
1431 if (recv_msg == NULL)
1432 return -ENOMEM;
1434 recv_msg->user_msg_data = user_msg_data;
1436 if (supplied_smi)
1437 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438 else {
1439 smi_msg = ipmi_alloc_smi_msg();
1440 if (smi_msg == NULL) {
1441 ipmi_free_recv_msg(recv_msg);
1442 return -ENOMEM;
1446 rcu_read_lock();
1447 handlers = intf->handlers;
1448 if (!handlers) {
1449 rv = -ENODEV;
1450 goto out_err;
1453 recv_msg->user = user;
1454 if (user)
1455 kref_get(&user->refcount);
1456 recv_msg->msgid = msgid;
1458 * Store the message to send in the receive message so timeout
1459 * responses can get the proper response data.
1461 recv_msg->msg = *msg;
1463 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1464 struct ipmi_system_interface_addr *smi_addr;
1466 if (msg->netfn & 1) {
1467 /* Responses are not allowed to the SMI. */
1468 rv = -EINVAL;
1469 goto out_err;
1472 smi_addr = (struct ipmi_system_interface_addr *) addr;
1473 if (smi_addr->lun > 3) {
1474 ipmi_inc_stat(intf, sent_invalid_commands);
1475 rv = -EINVAL;
1476 goto out_err;
1479 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1481 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1482 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1483 || (msg->cmd == IPMI_GET_MSG_CMD)
1484 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1486 * We don't let the user do these, since we manage
1487 * the sequence numbers.
1489 ipmi_inc_stat(intf, sent_invalid_commands);
1490 rv = -EINVAL;
1491 goto out_err;
1494 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1495 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1496 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1497 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1498 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1499 intf->auto_maintenance_timeout
1500 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1501 if (!intf->maintenance_mode
1502 && !intf->maintenance_mode_enable) {
1503 intf->maintenance_mode_enable = 1;
1504 maintenance_mode_update(intf);
1506 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1507 flags);
1510 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1511 ipmi_inc_stat(intf, sent_invalid_commands);
1512 rv = -EMSGSIZE;
1513 goto out_err;
1516 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1517 smi_msg->data[1] = msg->cmd;
1518 smi_msg->msgid = msgid;
1519 smi_msg->user_data = recv_msg;
1520 if (msg->data_len > 0)
1521 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1522 smi_msg->data_size = msg->data_len + 2;
1523 ipmi_inc_stat(intf, sent_local_commands);
1524 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1525 struct ipmi_ipmb_addr *ipmb_addr;
1526 unsigned char ipmb_seq;
1527 long seqid;
1528 int broadcast = 0;
1530 if (addr->channel >= IPMI_MAX_CHANNELS) {
1531 ipmi_inc_stat(intf, sent_invalid_commands);
1532 rv = -EINVAL;
1533 goto out_err;
1536 if (intf->channels[addr->channel].medium
1537 != IPMI_CHANNEL_MEDIUM_IPMB) {
1538 ipmi_inc_stat(intf, sent_invalid_commands);
1539 rv = -EINVAL;
1540 goto out_err;
1543 if (retries < 0) {
1544 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1545 retries = 0; /* Don't retry broadcasts. */
1546 else
1547 retries = 4;
1549 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1551 * Broadcasts add a zero at the beginning of the
1552 * message, but otherwise is the same as an IPMB
1553 * address.
1555 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1556 broadcast = 1;
1560 /* Default to 1 second retries. */
1561 if (retry_time_ms == 0)
1562 retry_time_ms = 1000;
1565 * 9 for the header and 1 for the checksum, plus
1566 * possibly one for the broadcast.
1568 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1569 ipmi_inc_stat(intf, sent_invalid_commands);
1570 rv = -EMSGSIZE;
1571 goto out_err;
1574 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1575 if (ipmb_addr->lun > 3) {
1576 ipmi_inc_stat(intf, sent_invalid_commands);
1577 rv = -EINVAL;
1578 goto out_err;
1581 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1583 if (recv_msg->msg.netfn & 0x1) {
1585 * It's a response, so use the user's sequence
1586 * from msgid.
1588 ipmi_inc_stat(intf, sent_ipmb_responses);
1589 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590 msgid, broadcast,
1591 source_address, source_lun);
1594 * Save the receive message so we can use it
1595 * to deliver the response.
1597 smi_msg->user_data = recv_msg;
1598 } else {
1599 /* It's a command, so get a sequence for it. */
1601 spin_lock_irqsave(&(intf->seq_lock), flags);
1604 * Create a sequence number with a 1 second
1605 * timeout and 4 retries.
1607 rv = intf_next_seq(intf,
1608 recv_msg,
1609 retry_time_ms,
1610 retries,
1611 broadcast,
1612 &ipmb_seq,
1613 &seqid);
1614 if (rv) {
1616 * We have used up all the sequence numbers,
1617 * probably, so abort.
1619 spin_unlock_irqrestore(&(intf->seq_lock),
1620 flags);
1621 goto out_err;
1624 ipmi_inc_stat(intf, sent_ipmb_commands);
1627 * Store the sequence number in the message,
1628 * so that when the send message response
1629 * comes back we can start the timer.
1631 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1632 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1633 ipmb_seq, broadcast,
1634 source_address, source_lun);
1637 * Copy the message into the recv message data, so we
1638 * can retransmit it later if necessary.
1640 memcpy(recv_msg->msg_data, smi_msg->data,
1641 smi_msg->data_size);
1642 recv_msg->msg.data = recv_msg->msg_data;
1643 recv_msg->msg.data_len = smi_msg->data_size;
1646 * We don't unlock until here, because we need
1647 * to copy the completed message into the
1648 * recv_msg before we release the lock.
1649 * Otherwise, race conditions may bite us. I
1650 * know that's pretty paranoid, but I prefer
1651 * to be correct.
1653 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1655 } else if (is_lan_addr(addr)) {
1656 struct ipmi_lan_addr *lan_addr;
1657 unsigned char ipmb_seq;
1658 long seqid;
1660 if (addr->channel >= IPMI_MAX_CHANNELS) {
1661 ipmi_inc_stat(intf, sent_invalid_commands);
1662 rv = -EINVAL;
1663 goto out_err;
1666 if ((intf->channels[addr->channel].medium
1667 != IPMI_CHANNEL_MEDIUM_8023LAN)
1668 && (intf->channels[addr->channel].medium
1669 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1670 ipmi_inc_stat(intf, sent_invalid_commands);
1671 rv = -EINVAL;
1672 goto out_err;
1675 retries = 4;
1677 /* Default to 1 second retries. */
1678 if (retry_time_ms == 0)
1679 retry_time_ms = 1000;
1681 /* 11 for the header and 1 for the checksum. */
1682 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1683 ipmi_inc_stat(intf, sent_invalid_commands);
1684 rv = -EMSGSIZE;
1685 goto out_err;
1688 lan_addr = (struct ipmi_lan_addr *) addr;
1689 if (lan_addr->lun > 3) {
1690 ipmi_inc_stat(intf, sent_invalid_commands);
1691 rv = -EINVAL;
1692 goto out_err;
1695 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1697 if (recv_msg->msg.netfn & 0x1) {
1699 * It's a response, so use the user's sequence
1700 * from msgid.
1702 ipmi_inc_stat(intf, sent_lan_responses);
1703 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1704 msgid, source_lun);
1707 * Save the receive message so we can use it
1708 * to deliver the response.
1710 smi_msg->user_data = recv_msg;
1711 } else {
1712 /* It's a command, so get a sequence for it. */
1714 spin_lock_irqsave(&(intf->seq_lock), flags);
1717 * Create a sequence number with a 1 second
1718 * timeout and 4 retries.
1720 rv = intf_next_seq(intf,
1721 recv_msg,
1722 retry_time_ms,
1723 retries,
1725 &ipmb_seq,
1726 &seqid);
1727 if (rv) {
1729 * We have used up all the sequence numbers,
1730 * probably, so abort.
1732 spin_unlock_irqrestore(&(intf->seq_lock),
1733 flags);
1734 goto out_err;
1737 ipmi_inc_stat(intf, sent_lan_commands);
1740 * Store the sequence number in the message,
1741 * so that when the send message response
1742 * comes back we can start the timer.
1744 format_lan_msg(smi_msg, msg, lan_addr,
1745 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1746 ipmb_seq, source_lun);
1749 * Copy the message into the recv message data, so we
1750 * can retransmit it later if necessary.
1752 memcpy(recv_msg->msg_data, smi_msg->data,
1753 smi_msg->data_size);
1754 recv_msg->msg.data = recv_msg->msg_data;
1755 recv_msg->msg.data_len = smi_msg->data_size;
1758 * We don't unlock until here, because we need
1759 * to copy the completed message into the
1760 * recv_msg before we release the lock.
1761 * Otherwise, race conditions may bite us. I
1762 * know that's pretty paranoid, but I prefer
1763 * to be correct.
1765 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1767 } else {
1768 /* Unknown address type. */
1769 ipmi_inc_stat(intf, sent_invalid_commands);
1770 rv = -EINVAL;
1771 goto out_err;
1774 #ifdef DEBUG_MSGING
1776 int m;
1777 for (m = 0; m < smi_msg->data_size; m++)
1778 printk(" %2.2x", smi_msg->data[m]);
1779 printk("\n");
1781 #endif
1783 handlers->sender(intf->send_info, smi_msg, priority);
1784 rcu_read_unlock();
1786 return 0;
1788 out_err:
1789 rcu_read_unlock();
1790 ipmi_free_smi_msg(smi_msg);
1791 ipmi_free_recv_msg(recv_msg);
1792 return rv;
1795 static int check_addr(ipmi_smi_t intf,
1796 struct ipmi_addr *addr,
1797 unsigned char *saddr,
1798 unsigned char *lun)
1800 if (addr->channel >= IPMI_MAX_CHANNELS)
1801 return -EINVAL;
1802 *lun = intf->channels[addr->channel].lun;
1803 *saddr = intf->channels[addr->channel].address;
1804 return 0;
1807 int ipmi_request_settime(ipmi_user_t user,
1808 struct ipmi_addr *addr,
1809 long msgid,
1810 struct kernel_ipmi_msg *msg,
1811 void *user_msg_data,
1812 int priority,
1813 int retries,
1814 unsigned int retry_time_ms)
1816 unsigned char saddr, lun;
1817 int rv;
1819 if (!user)
1820 return -EINVAL;
1821 rv = check_addr(user->intf, addr, &saddr, &lun);
1822 if (rv)
1823 return rv;
1824 return i_ipmi_request(user,
1825 user->intf,
1826 addr,
1827 msgid,
1828 msg,
1829 user_msg_data,
1830 NULL, NULL,
1831 priority,
1832 saddr,
1833 lun,
1834 retries,
1835 retry_time_ms);
1837 EXPORT_SYMBOL(ipmi_request_settime);
1839 int ipmi_request_supply_msgs(ipmi_user_t user,
1840 struct ipmi_addr *addr,
1841 long msgid,
1842 struct kernel_ipmi_msg *msg,
1843 void *user_msg_data,
1844 void *supplied_smi,
1845 struct ipmi_recv_msg *supplied_recv,
1846 int priority)
1848 unsigned char saddr, lun;
1849 int rv;
1851 if (!user)
1852 return -EINVAL;
1853 rv = check_addr(user->intf, addr, &saddr, &lun);
1854 if (rv)
1855 return rv;
1856 return i_ipmi_request(user,
1857 user->intf,
1858 addr,
1859 msgid,
1860 msg,
1861 user_msg_data,
1862 supplied_smi,
1863 supplied_recv,
1864 priority,
1865 saddr,
1866 lun,
1867 -1, 0);
1869 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1871 #ifdef CONFIG_PROC_FS
1872 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1873 int count, int *eof, void *data)
1875 char *out = (char *) page;
1876 ipmi_smi_t intf = data;
1877 int i;
1878 int rv = 0;
1880 for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1881 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1882 out[rv-1] = '\n'; /* Replace the final space with a newline */
1883 out[rv] = '\0';
1884 rv++;
1885 return rv;
1888 static int version_file_read_proc(char *page, char **start, off_t off,
1889 int count, int *eof, void *data)
1891 char *out = (char *) page;
1892 ipmi_smi_t intf = data;
1894 return sprintf(out, "%u.%u\n",
1895 ipmi_version_major(&intf->bmc->id),
1896 ipmi_version_minor(&intf->bmc->id));
1899 static int stat_file_read_proc(char *page, char **start, off_t off,
1900 int count, int *eof, void *data)
1902 char *out = (char *) page;
1903 ipmi_smi_t intf = data;
1905 out += sprintf(out, "sent_invalid_commands: %u\n",
1906 ipmi_get_stat(intf, sent_invalid_commands));
1907 out += sprintf(out, "sent_local_commands: %u\n",
1908 ipmi_get_stat(intf, sent_local_commands));
1909 out += sprintf(out, "handled_local_responses: %u\n",
1910 ipmi_get_stat(intf, handled_local_responses));
1911 out += sprintf(out, "unhandled_local_responses: %u\n",
1912 ipmi_get_stat(intf, unhandled_local_responses));
1913 out += sprintf(out, "sent_ipmb_commands: %u\n",
1914 ipmi_get_stat(intf, sent_ipmb_commands));
1915 out += sprintf(out, "sent_ipmb_command_errs: %u\n",
1916 ipmi_get_stat(intf, sent_ipmb_command_errs));
1917 out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1918 ipmi_get_stat(intf, retransmitted_ipmb_commands));
1919 out += sprintf(out, "timed_out_ipmb_commands: %u\n",
1920 ipmi_get_stat(intf, timed_out_ipmb_commands));
1921 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n",
1922 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1923 out += sprintf(out, "sent_ipmb_responses: %u\n",
1924 ipmi_get_stat(intf, sent_ipmb_responses));
1925 out += sprintf(out, "handled_ipmb_responses: %u\n",
1926 ipmi_get_stat(intf, handled_ipmb_responses));
1927 out += sprintf(out, "invalid_ipmb_responses: %u\n",
1928 ipmi_get_stat(intf, invalid_ipmb_responses));
1929 out += sprintf(out, "unhandled_ipmb_responses: %u\n",
1930 ipmi_get_stat(intf, unhandled_ipmb_responses));
1931 out += sprintf(out, "sent_lan_commands: %u\n",
1932 ipmi_get_stat(intf, sent_lan_commands));
1933 out += sprintf(out, "sent_lan_command_errs: %u\n",
1934 ipmi_get_stat(intf, sent_lan_command_errs));
1935 out += sprintf(out, "retransmitted_lan_commands: %u\n",
1936 ipmi_get_stat(intf, retransmitted_lan_commands));
1937 out += sprintf(out, "timed_out_lan_commands: %u\n",
1938 ipmi_get_stat(intf, timed_out_lan_commands));
1939 out += sprintf(out, "sent_lan_responses: %u\n",
1940 ipmi_get_stat(intf, sent_lan_responses));
1941 out += sprintf(out, "handled_lan_responses: %u\n",
1942 ipmi_get_stat(intf, handled_lan_responses));
1943 out += sprintf(out, "invalid_lan_responses: %u\n",
1944 ipmi_get_stat(intf, invalid_lan_responses));
1945 out += sprintf(out, "unhandled_lan_responses: %u\n",
1946 ipmi_get_stat(intf, unhandled_lan_responses));
1947 out += sprintf(out, "handled_commands: %u\n",
1948 ipmi_get_stat(intf, handled_commands));
1949 out += sprintf(out, "invalid_commands: %u\n",
1950 ipmi_get_stat(intf, invalid_commands));
1951 out += sprintf(out, "unhandled_commands: %u\n",
1952 ipmi_get_stat(intf, unhandled_commands));
1953 out += sprintf(out, "invalid_events: %u\n",
1954 ipmi_get_stat(intf, invalid_events));
1955 out += sprintf(out, "events: %u\n",
1956 ipmi_get_stat(intf, events));
1957 out += sprintf(out, "failed rexmit LAN msgs: %u\n",
1958 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1959 out += sprintf(out, "failed rexmit IPMB msgs: %u\n",
1960 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1962 return (out - ((char *) page));
1964 #endif /* CONFIG_PROC_FS */
1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1967 read_proc_t *read_proc,
1968 void *data)
1970 int rv = 0;
1971 #ifdef CONFIG_PROC_FS
1972 struct proc_dir_entry *file;
1973 struct ipmi_proc_entry *entry;
1975 /* Create a list element. */
1976 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1977 if (!entry)
1978 return -ENOMEM;
1979 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1980 if (!entry->name) {
1981 kfree(entry);
1982 return -ENOMEM;
1984 strcpy(entry->name, name);
1986 file = create_proc_entry(name, 0, smi->proc_dir);
1987 if (!file) {
1988 kfree(entry->name);
1989 kfree(entry);
1990 rv = -ENOMEM;
1991 } else {
1992 file->data = data;
1993 file->read_proc = read_proc;
1995 mutex_lock(&smi->proc_entry_lock);
1996 /* Stick it on the list. */
1997 entry->next = smi->proc_entries;
1998 smi->proc_entries = entry;
1999 mutex_unlock(&smi->proc_entry_lock);
2001 #endif /* CONFIG_PROC_FS */
2003 return rv;
2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2007 static int add_proc_entries(ipmi_smi_t smi, int num)
2009 int rv = 0;
2011 #ifdef CONFIG_PROC_FS
2012 sprintf(smi->proc_dir_name, "%d", num);
2013 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2014 if (!smi->proc_dir)
2015 rv = -ENOMEM;
2017 if (rv == 0)
2018 rv = ipmi_smi_add_proc_entry(smi, "stats",
2019 stat_file_read_proc,
2020 smi);
2022 if (rv == 0)
2023 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2024 ipmb_file_read_proc,
2025 smi);
2027 if (rv == 0)
2028 rv = ipmi_smi_add_proc_entry(smi, "version",
2029 version_file_read_proc,
2030 smi);
2031 #endif /* CONFIG_PROC_FS */
2033 return rv;
2036 static void remove_proc_entries(ipmi_smi_t smi)
2038 #ifdef CONFIG_PROC_FS
2039 struct ipmi_proc_entry *entry;
2041 mutex_lock(&smi->proc_entry_lock);
2042 while (smi->proc_entries) {
2043 entry = smi->proc_entries;
2044 smi->proc_entries = entry->next;
2046 remove_proc_entry(entry->name, smi->proc_dir);
2047 kfree(entry->name);
2048 kfree(entry);
2050 mutex_unlock(&smi->proc_entry_lock);
2051 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2052 #endif /* CONFIG_PROC_FS */
2055 static int __find_bmc_guid(struct device *dev, void *data)
2057 unsigned char *id = data;
2058 struct bmc_device *bmc = dev_get_drvdata(dev);
2059 return memcmp(bmc->guid, id, 16) == 0;
2062 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2063 unsigned char *guid)
2065 struct device *dev;
2067 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068 if (dev)
2069 return dev_get_drvdata(dev);
2070 else
2071 return NULL;
2074 struct prod_dev_id {
2075 unsigned int product_id;
2076 unsigned char device_id;
2079 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2081 struct prod_dev_id *id = data;
2082 struct bmc_device *bmc = dev_get_drvdata(dev);
2084 return (bmc->id.product_id == id->product_id
2085 && bmc->id.device_id == id->device_id);
2088 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2089 struct device_driver *drv,
2090 unsigned int product_id, unsigned char device_id)
2092 struct prod_dev_id id = {
2093 .product_id = product_id,
2094 .device_id = device_id,
2096 struct device *dev;
2098 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099 if (dev)
2100 return dev_get_drvdata(dev);
2101 else
2102 return NULL;
2105 static ssize_t device_id_show(struct device *dev,
2106 struct device_attribute *attr,
2107 char *buf)
2109 struct bmc_device *bmc = dev_get_drvdata(dev);
2111 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2114 static ssize_t provides_dev_sdrs_show(struct device *dev,
2115 struct device_attribute *attr,
2116 char *buf)
2118 struct bmc_device *bmc = dev_get_drvdata(dev);
2120 return snprintf(buf, 10, "%u\n",
2121 (bmc->id.device_revision & 0x80) >> 7);
2124 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2125 char *buf)
2127 struct bmc_device *bmc = dev_get_drvdata(dev);
2129 return snprintf(buf, 20, "%u\n",
2130 bmc->id.device_revision & 0x0F);
2133 static ssize_t firmware_rev_show(struct device *dev,
2134 struct device_attribute *attr,
2135 char *buf)
2137 struct bmc_device *bmc = dev_get_drvdata(dev);
2139 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2140 bmc->id.firmware_revision_2);
2143 static ssize_t ipmi_version_show(struct device *dev,
2144 struct device_attribute *attr,
2145 char *buf)
2147 struct bmc_device *bmc = dev_get_drvdata(dev);
2149 return snprintf(buf, 20, "%u.%u\n",
2150 ipmi_version_major(&bmc->id),
2151 ipmi_version_minor(&bmc->id));
2154 static ssize_t add_dev_support_show(struct device *dev,
2155 struct device_attribute *attr,
2156 char *buf)
2158 struct bmc_device *bmc = dev_get_drvdata(dev);
2160 return snprintf(buf, 10, "0x%02x\n",
2161 bmc->id.additional_device_support);
2164 static ssize_t manufacturer_id_show(struct device *dev,
2165 struct device_attribute *attr,
2166 char *buf)
2168 struct bmc_device *bmc = dev_get_drvdata(dev);
2170 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2173 static ssize_t product_id_show(struct device *dev,
2174 struct device_attribute *attr,
2175 char *buf)
2177 struct bmc_device *bmc = dev_get_drvdata(dev);
2179 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2182 static ssize_t aux_firmware_rev_show(struct device *dev,
2183 struct device_attribute *attr,
2184 char *buf)
2186 struct bmc_device *bmc = dev_get_drvdata(dev);
2188 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189 bmc->id.aux_firmware_revision[3],
2190 bmc->id.aux_firmware_revision[2],
2191 bmc->id.aux_firmware_revision[1],
2192 bmc->id.aux_firmware_revision[0]);
2195 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2196 char *buf)
2198 struct bmc_device *bmc = dev_get_drvdata(dev);
2200 return snprintf(buf, 100, "%Lx%Lx\n",
2201 (long long) bmc->guid[0],
2202 (long long) bmc->guid[8]);
2205 static void remove_files(struct bmc_device *bmc)
2207 if (!bmc->dev)
2208 return;
2210 device_remove_file(&bmc->dev->dev,
2211 &bmc->device_id_attr);
2212 device_remove_file(&bmc->dev->dev,
2213 &bmc->provides_dev_sdrs_attr);
2214 device_remove_file(&bmc->dev->dev,
2215 &bmc->revision_attr);
2216 device_remove_file(&bmc->dev->dev,
2217 &bmc->firmware_rev_attr);
2218 device_remove_file(&bmc->dev->dev,
2219 &bmc->version_attr);
2220 device_remove_file(&bmc->dev->dev,
2221 &bmc->add_dev_support_attr);
2222 device_remove_file(&bmc->dev->dev,
2223 &bmc->manufacturer_id_attr);
2224 device_remove_file(&bmc->dev->dev,
2225 &bmc->product_id_attr);
2227 if (bmc->id.aux_firmware_revision_set)
2228 device_remove_file(&bmc->dev->dev,
2229 &bmc->aux_firmware_rev_attr);
2230 if (bmc->guid_set)
2231 device_remove_file(&bmc->dev->dev,
2232 &bmc->guid_attr);
2235 static void
2236 cleanup_bmc_device(struct kref *ref)
2238 struct bmc_device *bmc;
2240 bmc = container_of(ref, struct bmc_device, refcount);
2242 remove_files(bmc);
2243 platform_device_unregister(bmc->dev);
2244 kfree(bmc);
2247 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2249 struct bmc_device *bmc = intf->bmc;
2251 if (intf->sysfs_name) {
2252 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2253 kfree(intf->sysfs_name);
2254 intf->sysfs_name = NULL;
2256 if (intf->my_dev_name) {
2257 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2258 kfree(intf->my_dev_name);
2259 intf->my_dev_name = NULL;
2262 mutex_lock(&ipmidriver_mutex);
2263 kref_put(&bmc->refcount, cleanup_bmc_device);
2264 intf->bmc = NULL;
2265 mutex_unlock(&ipmidriver_mutex);
2268 static int create_files(struct bmc_device *bmc)
2270 int err;
2272 bmc->device_id_attr.attr.name = "device_id";
2273 bmc->device_id_attr.attr.mode = S_IRUGO;
2274 bmc->device_id_attr.show = device_id_show;
2275 sysfs_attr_init(&bmc->device_id_attr.attr);
2277 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2278 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2279 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2280 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2282 bmc->revision_attr.attr.name = "revision";
2283 bmc->revision_attr.attr.mode = S_IRUGO;
2284 bmc->revision_attr.show = revision_show;
2285 sysfs_attr_init(&bmc->revision_attr.attr);
2287 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2288 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2289 bmc->firmware_rev_attr.show = firmware_rev_show;
2290 sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2292 bmc->version_attr.attr.name = "ipmi_version";
2293 bmc->version_attr.attr.mode = S_IRUGO;
2294 bmc->version_attr.show = ipmi_version_show;
2295 sysfs_attr_init(&bmc->version_attr.attr);
2297 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2298 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2299 bmc->add_dev_support_attr.show = add_dev_support_show;
2300 sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2302 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2303 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2304 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2305 sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2307 bmc->product_id_attr.attr.name = "product_id";
2308 bmc->product_id_attr.attr.mode = S_IRUGO;
2309 bmc->product_id_attr.show = product_id_show;
2310 sysfs_attr_init(&bmc->product_id_attr.attr);
2312 bmc->guid_attr.attr.name = "guid";
2313 bmc->guid_attr.attr.mode = S_IRUGO;
2314 bmc->guid_attr.show = guid_show;
2315 sysfs_attr_init(&bmc->guid_attr.attr);
2317 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2318 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2319 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2320 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2322 err = device_create_file(&bmc->dev->dev,
2323 &bmc->device_id_attr);
2324 if (err)
2325 goto out;
2326 err = device_create_file(&bmc->dev->dev,
2327 &bmc->provides_dev_sdrs_attr);
2328 if (err)
2329 goto out_devid;
2330 err = device_create_file(&bmc->dev->dev,
2331 &bmc->revision_attr);
2332 if (err)
2333 goto out_sdrs;
2334 err = device_create_file(&bmc->dev->dev,
2335 &bmc->firmware_rev_attr);
2336 if (err)
2337 goto out_rev;
2338 err = device_create_file(&bmc->dev->dev,
2339 &bmc->version_attr);
2340 if (err)
2341 goto out_firm;
2342 err = device_create_file(&bmc->dev->dev,
2343 &bmc->add_dev_support_attr);
2344 if (err)
2345 goto out_version;
2346 err = device_create_file(&bmc->dev->dev,
2347 &bmc->manufacturer_id_attr);
2348 if (err)
2349 goto out_add_dev;
2350 err = device_create_file(&bmc->dev->dev,
2351 &bmc->product_id_attr);
2352 if (err)
2353 goto out_manu;
2354 if (bmc->id.aux_firmware_revision_set) {
2355 err = device_create_file(&bmc->dev->dev,
2356 &bmc->aux_firmware_rev_attr);
2357 if (err)
2358 goto out_prod_id;
2360 if (bmc->guid_set) {
2361 err = device_create_file(&bmc->dev->dev,
2362 &bmc->guid_attr);
2363 if (err)
2364 goto out_aux_firm;
2367 return 0;
2369 out_aux_firm:
2370 if (bmc->id.aux_firmware_revision_set)
2371 device_remove_file(&bmc->dev->dev,
2372 &bmc->aux_firmware_rev_attr);
2373 out_prod_id:
2374 device_remove_file(&bmc->dev->dev,
2375 &bmc->product_id_attr);
2376 out_manu:
2377 device_remove_file(&bmc->dev->dev,
2378 &bmc->manufacturer_id_attr);
2379 out_add_dev:
2380 device_remove_file(&bmc->dev->dev,
2381 &bmc->add_dev_support_attr);
2382 out_version:
2383 device_remove_file(&bmc->dev->dev,
2384 &bmc->version_attr);
2385 out_firm:
2386 device_remove_file(&bmc->dev->dev,
2387 &bmc->firmware_rev_attr);
2388 out_rev:
2389 device_remove_file(&bmc->dev->dev,
2390 &bmc->revision_attr);
2391 out_sdrs:
2392 device_remove_file(&bmc->dev->dev,
2393 &bmc->provides_dev_sdrs_attr);
2394 out_devid:
2395 device_remove_file(&bmc->dev->dev,
2396 &bmc->device_id_attr);
2397 out:
2398 return err;
2401 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2402 const char *sysfs_name)
2404 int rv;
2405 struct bmc_device *bmc = intf->bmc;
2406 struct bmc_device *old_bmc;
2407 int size;
2408 char dummy[1];
2410 mutex_lock(&ipmidriver_mutex);
2413 * Try to find if there is an bmc_device struct
2414 * representing the interfaced BMC already
2416 if (bmc->guid_set)
2417 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2418 else
2419 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2420 bmc->id.product_id,
2421 bmc->id.device_id);
2424 * If there is already an bmc_device, free the new one,
2425 * otherwise register the new BMC device
2427 if (old_bmc) {
2428 kfree(bmc);
2429 intf->bmc = old_bmc;
2430 bmc = old_bmc;
2432 kref_get(&bmc->refcount);
2433 mutex_unlock(&ipmidriver_mutex);
2435 printk(KERN_INFO
2436 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2437 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2438 bmc->id.manufacturer_id,
2439 bmc->id.product_id,
2440 bmc->id.device_id);
2441 } else {
2442 char name[14];
2443 unsigned char orig_dev_id = bmc->id.device_id;
2444 int warn_printed = 0;
2446 snprintf(name, sizeof(name),
2447 "ipmi_bmc.%4.4x", bmc->id.product_id);
2449 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2450 bmc->id.product_id,
2451 bmc->id.device_id)) {
2452 if (!warn_printed) {
2453 printk(KERN_WARNING PFX
2454 "This machine has two different BMCs"
2455 " with the same product id and device"
2456 " id. This is an error in the"
2457 " firmware, but incrementing the"
2458 " device id to work around the problem."
2459 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2460 bmc->id.product_id, bmc->id.device_id);
2461 warn_printed = 1;
2463 bmc->id.device_id++; /* Wraps at 255 */
2464 if (bmc->id.device_id == orig_dev_id) {
2465 printk(KERN_ERR PFX
2466 "Out of device ids!\n");
2467 break;
2471 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2472 if (!bmc->dev) {
2473 mutex_unlock(&ipmidriver_mutex);
2474 printk(KERN_ERR
2475 "ipmi_msghandler:"
2476 " Unable to allocate platform device\n");
2477 return -ENOMEM;
2479 bmc->dev->dev.driver = &ipmidriver.driver;
2480 dev_set_drvdata(&bmc->dev->dev, bmc);
2481 kref_init(&bmc->refcount);
2483 rv = platform_device_add(bmc->dev);
2484 mutex_unlock(&ipmidriver_mutex);
2485 if (rv) {
2486 platform_device_put(bmc->dev);
2487 bmc->dev = NULL;
2488 printk(KERN_ERR
2489 "ipmi_msghandler:"
2490 " Unable to register bmc device: %d\n",
2491 rv);
2493 * Don't go to out_err, you can only do that if
2494 * the device is registered already.
2496 return rv;
2499 rv = create_files(bmc);
2500 if (rv) {
2501 mutex_lock(&ipmidriver_mutex);
2502 platform_device_unregister(bmc->dev);
2503 mutex_unlock(&ipmidriver_mutex);
2505 return rv;
2508 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2509 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2510 bmc->id.manufacturer_id,
2511 bmc->id.product_id,
2512 bmc->id.device_id);
2516 * create symlink from system interface device to bmc device
2517 * and back.
2519 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2520 if (!intf->sysfs_name) {
2521 rv = -ENOMEM;
2522 printk(KERN_ERR
2523 "ipmi_msghandler: allocate link to BMC: %d\n",
2524 rv);
2525 goto out_err;
2528 rv = sysfs_create_link(&intf->si_dev->kobj,
2529 &bmc->dev->dev.kobj, intf->sysfs_name);
2530 if (rv) {
2531 kfree(intf->sysfs_name);
2532 intf->sysfs_name = NULL;
2533 printk(KERN_ERR
2534 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2535 rv);
2536 goto out_err;
2539 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2540 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2541 if (!intf->my_dev_name) {
2542 kfree(intf->sysfs_name);
2543 intf->sysfs_name = NULL;
2544 rv = -ENOMEM;
2545 printk(KERN_ERR
2546 "ipmi_msghandler: allocate link from BMC: %d\n",
2547 rv);
2548 goto out_err;
2550 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2552 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2553 intf->my_dev_name);
2554 if (rv) {
2555 kfree(intf->sysfs_name);
2556 intf->sysfs_name = NULL;
2557 kfree(intf->my_dev_name);
2558 intf->my_dev_name = NULL;
2559 printk(KERN_ERR
2560 "ipmi_msghandler:"
2561 " Unable to create symlink to bmc: %d\n",
2562 rv);
2563 goto out_err;
2566 return 0;
2568 out_err:
2569 ipmi_bmc_unregister(intf);
2570 return rv;
2573 static int
2574 send_guid_cmd(ipmi_smi_t intf, int chan)
2576 struct kernel_ipmi_msg msg;
2577 struct ipmi_system_interface_addr si;
2579 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2580 si.channel = IPMI_BMC_CHANNEL;
2581 si.lun = 0;
2583 msg.netfn = IPMI_NETFN_APP_REQUEST;
2584 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2585 msg.data = NULL;
2586 msg.data_len = 0;
2587 return i_ipmi_request(NULL,
2588 intf,
2589 (struct ipmi_addr *) &si,
2591 &msg,
2592 intf,
2593 NULL,
2594 NULL,
2596 intf->channels[0].address,
2597 intf->channels[0].lun,
2598 -1, 0);
2601 static void
2602 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2604 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2605 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2606 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2607 /* Not for me */
2608 return;
2610 if (msg->msg.data[0] != 0) {
2611 /* Error from getting the GUID, the BMC doesn't have one. */
2612 intf->bmc->guid_set = 0;
2613 goto out;
2616 if (msg->msg.data_len < 17) {
2617 intf->bmc->guid_set = 0;
2618 printk(KERN_WARNING PFX
2619 "guid_handler: The GUID response from the BMC was too"
2620 " short, it was %d but should have been 17. Assuming"
2621 " GUID is not available.\n",
2622 msg->msg.data_len);
2623 goto out;
2626 memcpy(intf->bmc->guid, msg->msg.data, 16);
2627 intf->bmc->guid_set = 1;
2628 out:
2629 wake_up(&intf->waitq);
2632 static void
2633 get_guid(ipmi_smi_t intf)
2635 int rv;
2637 intf->bmc->guid_set = 0x2;
2638 intf->null_user_handler = guid_handler;
2639 rv = send_guid_cmd(intf, 0);
2640 if (rv)
2641 /* Send failed, no GUID available. */
2642 intf->bmc->guid_set = 0;
2643 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2644 intf->null_user_handler = NULL;
2647 static int
2648 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2650 struct kernel_ipmi_msg msg;
2651 unsigned char data[1];
2652 struct ipmi_system_interface_addr si;
2654 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2655 si.channel = IPMI_BMC_CHANNEL;
2656 si.lun = 0;
2658 msg.netfn = IPMI_NETFN_APP_REQUEST;
2659 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2660 msg.data = data;
2661 msg.data_len = 1;
2662 data[0] = chan;
2663 return i_ipmi_request(NULL,
2664 intf,
2665 (struct ipmi_addr *) &si,
2667 &msg,
2668 intf,
2669 NULL,
2670 NULL,
2672 intf->channels[0].address,
2673 intf->channels[0].lun,
2674 -1, 0);
2677 static void
2678 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2680 int rv = 0;
2681 int chan;
2683 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2684 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2685 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2686 /* It's the one we want */
2687 if (msg->msg.data[0] != 0) {
2688 /* Got an error from the channel, just go on. */
2690 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2692 * If the MC does not support this
2693 * command, that is legal. We just
2694 * assume it has one IPMB at channel
2695 * zero.
2697 intf->channels[0].medium
2698 = IPMI_CHANNEL_MEDIUM_IPMB;
2699 intf->channels[0].protocol
2700 = IPMI_CHANNEL_PROTOCOL_IPMB;
2701 rv = -ENOSYS;
2703 intf->curr_channel = IPMI_MAX_CHANNELS;
2704 wake_up(&intf->waitq);
2705 goto out;
2707 goto next_channel;
2709 if (msg->msg.data_len < 4) {
2710 /* Message not big enough, just go on. */
2711 goto next_channel;
2713 chan = intf->curr_channel;
2714 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2715 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2717 next_channel:
2718 intf->curr_channel++;
2719 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2720 wake_up(&intf->waitq);
2721 else
2722 rv = send_channel_info_cmd(intf, intf->curr_channel);
2724 if (rv) {
2725 /* Got an error somehow, just give up. */
2726 intf->curr_channel = IPMI_MAX_CHANNELS;
2727 wake_up(&intf->waitq);
2729 printk(KERN_WARNING PFX
2730 "Error sending channel information: %d\n",
2731 rv);
2734 out:
2735 return;
2738 void ipmi_poll_interface(ipmi_user_t user)
2740 ipmi_smi_t intf = user->intf;
2742 if (intf->handlers->poll)
2743 intf->handlers->poll(intf->send_info);
2745 EXPORT_SYMBOL(ipmi_poll_interface);
2747 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2748 void *send_info,
2749 struct ipmi_device_id *device_id,
2750 struct device *si_dev,
2751 const char *sysfs_name,
2752 unsigned char slave_addr)
2754 int i, j;
2755 int rv;
2756 ipmi_smi_t intf;
2757 ipmi_smi_t tintf;
2758 struct list_head *link;
2761 * Make sure the driver is actually initialized, this handles
2762 * problems with initialization order.
2764 if (!initialized) {
2765 rv = ipmi_init_msghandler();
2766 if (rv)
2767 return rv;
2769 * The init code doesn't return an error if it was turned
2770 * off, but it won't initialize. Check that.
2772 if (!initialized)
2773 return -ENODEV;
2776 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2777 if (!intf)
2778 return -ENOMEM;
2780 intf->ipmi_version_major = ipmi_version_major(device_id);
2781 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2783 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2784 if (!intf->bmc) {
2785 kfree(intf);
2786 return -ENOMEM;
2788 intf->intf_num = -1; /* Mark it invalid for now. */
2789 kref_init(&intf->refcount);
2790 intf->bmc->id = *device_id;
2791 intf->si_dev = si_dev;
2792 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2793 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2794 intf->channels[j].lun = 2;
2796 if (slave_addr != 0)
2797 intf->channels[0].address = slave_addr;
2798 INIT_LIST_HEAD(&intf->users);
2799 intf->handlers = handlers;
2800 intf->send_info = send_info;
2801 spin_lock_init(&intf->seq_lock);
2802 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2803 intf->seq_table[j].inuse = 0;
2804 intf->seq_table[j].seqid = 0;
2806 intf->curr_seq = 0;
2807 #ifdef CONFIG_PROC_FS
2808 mutex_init(&intf->proc_entry_lock);
2809 #endif
2810 spin_lock_init(&intf->waiting_msgs_lock);
2811 INIT_LIST_HEAD(&intf->waiting_msgs);
2812 spin_lock_init(&intf->events_lock);
2813 INIT_LIST_HEAD(&intf->waiting_events);
2814 intf->waiting_events_count = 0;
2815 mutex_init(&intf->cmd_rcvrs_mutex);
2816 spin_lock_init(&intf->maintenance_mode_lock);
2817 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2818 init_waitqueue_head(&intf->waitq);
2819 for (i = 0; i < IPMI_NUM_STATS; i++)
2820 atomic_set(&intf->stats[i], 0);
2822 intf->proc_dir = NULL;
2824 mutex_lock(&smi_watchers_mutex);
2825 mutex_lock(&ipmi_interfaces_mutex);
2826 /* Look for a hole in the numbers. */
2827 i = 0;
2828 link = &ipmi_interfaces;
2829 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2830 if (tintf->intf_num != i) {
2831 link = &tintf->link;
2832 break;
2834 i++;
2836 /* Add the new interface in numeric order. */
2837 if (i == 0)
2838 list_add_rcu(&intf->link, &ipmi_interfaces);
2839 else
2840 list_add_tail_rcu(&intf->link, link);
2842 rv = handlers->start_processing(send_info, intf);
2843 if (rv)
2844 goto out;
2846 get_guid(intf);
2848 if ((intf->ipmi_version_major > 1)
2849 || ((intf->ipmi_version_major == 1)
2850 && (intf->ipmi_version_minor >= 5))) {
2852 * Start scanning the channels to see what is
2853 * available.
2855 intf->null_user_handler = channel_handler;
2856 intf->curr_channel = 0;
2857 rv = send_channel_info_cmd(intf, 0);
2858 if (rv)
2859 goto out;
2861 /* Wait for the channel info to be read. */
2862 wait_event(intf->waitq,
2863 intf->curr_channel >= IPMI_MAX_CHANNELS);
2864 intf->null_user_handler = NULL;
2865 } else {
2866 /* Assume a single IPMB channel at zero. */
2867 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2868 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2869 intf->curr_channel = IPMI_MAX_CHANNELS;
2872 if (rv == 0)
2873 rv = add_proc_entries(intf, i);
2875 rv = ipmi_bmc_register(intf, i, sysfs_name);
2877 out:
2878 if (rv) {
2879 if (intf->proc_dir)
2880 remove_proc_entries(intf);
2881 intf->handlers = NULL;
2882 list_del_rcu(&intf->link);
2883 mutex_unlock(&ipmi_interfaces_mutex);
2884 mutex_unlock(&smi_watchers_mutex);
2885 synchronize_rcu();
2886 kref_put(&intf->refcount, intf_free);
2887 } else {
2889 * Keep memory order straight for RCU readers. Make
2890 * sure everything else is committed to memory before
2891 * setting intf_num to mark the interface valid.
2893 smp_wmb();
2894 intf->intf_num = i;
2895 mutex_unlock(&ipmi_interfaces_mutex);
2896 /* After this point the interface is legal to use. */
2897 call_smi_watchers(i, intf->si_dev);
2898 mutex_unlock(&smi_watchers_mutex);
2901 return rv;
2903 EXPORT_SYMBOL(ipmi_register_smi);
2905 static void cleanup_smi_msgs(ipmi_smi_t intf)
2907 int i;
2908 struct seq_table *ent;
2910 /* No need for locks, the interface is down. */
2911 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2912 ent = &(intf->seq_table[i]);
2913 if (!ent->inuse)
2914 continue;
2915 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2919 int ipmi_unregister_smi(ipmi_smi_t intf)
2921 struct ipmi_smi_watcher *w;
2922 int intf_num = intf->intf_num;
2924 ipmi_bmc_unregister(intf);
2926 mutex_lock(&smi_watchers_mutex);
2927 mutex_lock(&ipmi_interfaces_mutex);
2928 intf->intf_num = -1;
2929 intf->handlers = NULL;
2930 list_del_rcu(&intf->link);
2931 mutex_unlock(&ipmi_interfaces_mutex);
2932 synchronize_rcu();
2934 cleanup_smi_msgs(intf);
2936 remove_proc_entries(intf);
2939 * Call all the watcher interfaces to tell them that
2940 * an interface is gone.
2942 list_for_each_entry(w, &smi_watchers, link)
2943 w->smi_gone(intf_num);
2944 mutex_unlock(&smi_watchers_mutex);
2946 kref_put(&intf->refcount, intf_free);
2947 return 0;
2949 EXPORT_SYMBOL(ipmi_unregister_smi);
2951 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
2952 struct ipmi_smi_msg *msg)
2954 struct ipmi_ipmb_addr ipmb_addr;
2955 struct ipmi_recv_msg *recv_msg;
2958 * This is 11, not 10, because the response must contain a
2959 * completion code.
2961 if (msg->rsp_size < 11) {
2962 /* Message not big enough, just ignore it. */
2963 ipmi_inc_stat(intf, invalid_ipmb_responses);
2964 return 0;
2967 if (msg->rsp[2] != 0) {
2968 /* An error getting the response, just ignore it. */
2969 return 0;
2972 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2973 ipmb_addr.slave_addr = msg->rsp[6];
2974 ipmb_addr.channel = msg->rsp[3] & 0x0f;
2975 ipmb_addr.lun = msg->rsp[7] & 3;
2978 * It's a response from a remote entity. Look up the sequence
2979 * number and handle the response.
2981 if (intf_find_seq(intf,
2982 msg->rsp[7] >> 2,
2983 msg->rsp[3] & 0x0f,
2984 msg->rsp[8],
2985 (msg->rsp[4] >> 2) & (~1),
2986 (struct ipmi_addr *) &(ipmb_addr),
2987 &recv_msg)) {
2989 * We were unable to find the sequence number,
2990 * so just nuke the message.
2992 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2993 return 0;
2996 memcpy(recv_msg->msg_data,
2997 &(msg->rsp[9]),
2998 msg->rsp_size - 9);
3000 * The other fields matched, so no need to set them, except
3001 * for netfn, which needs to be the response that was
3002 * returned, not the request value.
3004 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3005 recv_msg->msg.data = recv_msg->msg_data;
3006 recv_msg->msg.data_len = msg->rsp_size - 10;
3007 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3008 ipmi_inc_stat(intf, handled_ipmb_responses);
3009 deliver_response(recv_msg);
3011 return 0;
3014 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3015 struct ipmi_smi_msg *msg)
3017 struct cmd_rcvr *rcvr;
3018 int rv = 0;
3019 unsigned char netfn;
3020 unsigned char cmd;
3021 unsigned char chan;
3022 ipmi_user_t user = NULL;
3023 struct ipmi_ipmb_addr *ipmb_addr;
3024 struct ipmi_recv_msg *recv_msg;
3025 struct ipmi_smi_handlers *handlers;
3027 if (msg->rsp_size < 10) {
3028 /* Message not big enough, just ignore it. */
3029 ipmi_inc_stat(intf, invalid_commands);
3030 return 0;
3033 if (msg->rsp[2] != 0) {
3034 /* An error getting the response, just ignore it. */
3035 return 0;
3038 netfn = msg->rsp[4] >> 2;
3039 cmd = msg->rsp[8];
3040 chan = msg->rsp[3] & 0xf;
3042 rcu_read_lock();
3043 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3044 if (rcvr) {
3045 user = rcvr->user;
3046 kref_get(&user->refcount);
3047 } else
3048 user = NULL;
3049 rcu_read_unlock();
3051 if (user == NULL) {
3052 /* We didn't find a user, deliver an error response. */
3053 ipmi_inc_stat(intf, unhandled_commands);
3055 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3056 msg->data[1] = IPMI_SEND_MSG_CMD;
3057 msg->data[2] = msg->rsp[3];
3058 msg->data[3] = msg->rsp[6];
3059 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3060 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3061 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3062 /* rqseq/lun */
3063 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3064 msg->data[8] = msg->rsp[8]; /* cmd */
3065 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3066 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3067 msg->data_size = 11;
3069 #ifdef DEBUG_MSGING
3071 int m;
3072 printk("Invalid command:");
3073 for (m = 0; m < msg->data_size; m++)
3074 printk(" %2.2x", msg->data[m]);
3075 printk("\n");
3077 #endif
3078 rcu_read_lock();
3079 handlers = intf->handlers;
3080 if (handlers) {
3081 handlers->sender(intf->send_info, msg, 0);
3083 * We used the message, so return the value
3084 * that causes it to not be freed or
3085 * queued.
3087 rv = -1;
3089 rcu_read_unlock();
3090 } else {
3091 /* Deliver the message to the user. */
3092 ipmi_inc_stat(intf, handled_commands);
3094 recv_msg = ipmi_alloc_recv_msg();
3095 if (!recv_msg) {
3097 * We couldn't allocate memory for the
3098 * message, so requeue it for handling
3099 * later.
3101 rv = 1;
3102 kref_put(&user->refcount, free_user);
3103 } else {
3104 /* Extract the source address from the data. */
3105 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3106 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3107 ipmb_addr->slave_addr = msg->rsp[6];
3108 ipmb_addr->lun = msg->rsp[7] & 3;
3109 ipmb_addr->channel = msg->rsp[3] & 0xf;
3112 * Extract the rest of the message information
3113 * from the IPMB header.
3115 recv_msg->user = user;
3116 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3117 recv_msg->msgid = msg->rsp[7] >> 2;
3118 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3119 recv_msg->msg.cmd = msg->rsp[8];
3120 recv_msg->msg.data = recv_msg->msg_data;
3123 * We chop off 10, not 9 bytes because the checksum
3124 * at the end also needs to be removed.
3126 recv_msg->msg.data_len = msg->rsp_size - 10;
3127 memcpy(recv_msg->msg_data,
3128 &(msg->rsp[9]),
3129 msg->rsp_size - 10);
3130 deliver_response(recv_msg);
3134 return rv;
3137 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3138 struct ipmi_smi_msg *msg)
3140 struct ipmi_lan_addr lan_addr;
3141 struct ipmi_recv_msg *recv_msg;
3145 * This is 13, not 12, because the response must contain a
3146 * completion code.
3148 if (msg->rsp_size < 13) {
3149 /* Message not big enough, just ignore it. */
3150 ipmi_inc_stat(intf, invalid_lan_responses);
3151 return 0;
3154 if (msg->rsp[2] != 0) {
3155 /* An error getting the response, just ignore it. */
3156 return 0;
3159 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3160 lan_addr.session_handle = msg->rsp[4];
3161 lan_addr.remote_SWID = msg->rsp[8];
3162 lan_addr.local_SWID = msg->rsp[5];
3163 lan_addr.channel = msg->rsp[3] & 0x0f;
3164 lan_addr.privilege = msg->rsp[3] >> 4;
3165 lan_addr.lun = msg->rsp[9] & 3;
3168 * It's a response from a remote entity. Look up the sequence
3169 * number and handle the response.
3171 if (intf_find_seq(intf,
3172 msg->rsp[9] >> 2,
3173 msg->rsp[3] & 0x0f,
3174 msg->rsp[10],
3175 (msg->rsp[6] >> 2) & (~1),
3176 (struct ipmi_addr *) &(lan_addr),
3177 &recv_msg)) {
3179 * We were unable to find the sequence number,
3180 * so just nuke the message.
3182 ipmi_inc_stat(intf, unhandled_lan_responses);
3183 return 0;
3186 memcpy(recv_msg->msg_data,
3187 &(msg->rsp[11]),
3188 msg->rsp_size - 11);
3190 * The other fields matched, so no need to set them, except
3191 * for netfn, which needs to be the response that was
3192 * returned, not the request value.
3194 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3195 recv_msg->msg.data = recv_msg->msg_data;
3196 recv_msg->msg.data_len = msg->rsp_size - 12;
3197 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3198 ipmi_inc_stat(intf, handled_lan_responses);
3199 deliver_response(recv_msg);
3201 return 0;
3204 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3205 struct ipmi_smi_msg *msg)
3207 struct cmd_rcvr *rcvr;
3208 int rv = 0;
3209 unsigned char netfn;
3210 unsigned char cmd;
3211 unsigned char chan;
3212 ipmi_user_t user = NULL;
3213 struct ipmi_lan_addr *lan_addr;
3214 struct ipmi_recv_msg *recv_msg;
3216 if (msg->rsp_size < 12) {
3217 /* Message not big enough, just ignore it. */
3218 ipmi_inc_stat(intf, invalid_commands);
3219 return 0;
3222 if (msg->rsp[2] != 0) {
3223 /* An error getting the response, just ignore it. */
3224 return 0;
3227 netfn = msg->rsp[6] >> 2;
3228 cmd = msg->rsp[10];
3229 chan = msg->rsp[3] & 0xf;
3231 rcu_read_lock();
3232 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3233 if (rcvr) {
3234 user = rcvr->user;
3235 kref_get(&user->refcount);
3236 } else
3237 user = NULL;
3238 rcu_read_unlock();
3240 if (user == NULL) {
3241 /* We didn't find a user, just give up. */
3242 ipmi_inc_stat(intf, unhandled_commands);
3245 * Don't do anything with these messages, just allow
3246 * them to be freed.
3248 rv = 0;
3249 } else {
3250 /* Deliver the message to the user. */
3251 ipmi_inc_stat(intf, handled_commands);
3253 recv_msg = ipmi_alloc_recv_msg();
3254 if (!recv_msg) {
3256 * We couldn't allocate memory for the
3257 * message, so requeue it for handling later.
3259 rv = 1;
3260 kref_put(&user->refcount, free_user);
3261 } else {
3262 /* Extract the source address from the data. */
3263 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3264 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3265 lan_addr->session_handle = msg->rsp[4];
3266 lan_addr->remote_SWID = msg->rsp[8];
3267 lan_addr->local_SWID = msg->rsp[5];
3268 lan_addr->lun = msg->rsp[9] & 3;
3269 lan_addr->channel = msg->rsp[3] & 0xf;
3270 lan_addr->privilege = msg->rsp[3] >> 4;
3273 * Extract the rest of the message information
3274 * from the IPMB header.
3276 recv_msg->user = user;
3277 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3278 recv_msg->msgid = msg->rsp[9] >> 2;
3279 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3280 recv_msg->msg.cmd = msg->rsp[10];
3281 recv_msg->msg.data = recv_msg->msg_data;
3284 * We chop off 12, not 11 bytes because the checksum
3285 * at the end also needs to be removed.
3287 recv_msg->msg.data_len = msg->rsp_size - 12;
3288 memcpy(recv_msg->msg_data,
3289 &(msg->rsp[11]),
3290 msg->rsp_size - 12);
3291 deliver_response(recv_msg);
3295 return rv;
3299 * This routine will handle "Get Message" command responses with
3300 * channels that use an OEM Medium. The message format belongs to
3301 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3302 * Chapter 22, sections 22.6 and 22.24 for more details.
3304 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3305 struct ipmi_smi_msg *msg)
3307 struct cmd_rcvr *rcvr;
3308 int rv = 0;
3309 unsigned char netfn;
3310 unsigned char cmd;
3311 unsigned char chan;
3312 ipmi_user_t user = NULL;
3313 struct ipmi_system_interface_addr *smi_addr;
3314 struct ipmi_recv_msg *recv_msg;
3317 * We expect the OEM SW to perform error checking
3318 * so we just do some basic sanity checks
3320 if (msg->rsp_size < 4) {
3321 /* Message not big enough, just ignore it. */
3322 ipmi_inc_stat(intf, invalid_commands);
3323 return 0;
3326 if (msg->rsp[2] != 0) {
3327 /* An error getting the response, just ignore it. */
3328 return 0;
3332 * This is an OEM Message so the OEM needs to know how
3333 * handle the message. We do no interpretation.
3335 netfn = msg->rsp[0] >> 2;
3336 cmd = msg->rsp[1];
3337 chan = msg->rsp[3] & 0xf;
3339 rcu_read_lock();
3340 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3341 if (rcvr) {
3342 user = rcvr->user;
3343 kref_get(&user->refcount);
3344 } else
3345 user = NULL;
3346 rcu_read_unlock();
3348 if (user == NULL) {
3349 /* We didn't find a user, just give up. */
3350 ipmi_inc_stat(intf, unhandled_commands);
3353 * Don't do anything with these messages, just allow
3354 * them to be freed.
3357 rv = 0;
3358 } else {
3359 /* Deliver the message to the user. */
3360 ipmi_inc_stat(intf, handled_commands);
3362 recv_msg = ipmi_alloc_recv_msg();
3363 if (!recv_msg) {
3365 * We couldn't allocate memory for the
3366 * message, so requeue it for handling
3367 * later.
3369 rv = 1;
3370 kref_put(&user->refcount, free_user);
3371 } else {
3373 * OEM Messages are expected to be delivered via
3374 * the system interface to SMS software. We might
3375 * need to visit this again depending on OEM
3376 * requirements
3378 smi_addr = ((struct ipmi_system_interface_addr *)
3379 &(recv_msg->addr));
3380 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3381 smi_addr->channel = IPMI_BMC_CHANNEL;
3382 smi_addr->lun = msg->rsp[0] & 3;
3384 recv_msg->user = user;
3385 recv_msg->user_msg_data = NULL;
3386 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3387 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3388 recv_msg->msg.cmd = msg->rsp[1];
3389 recv_msg->msg.data = recv_msg->msg_data;
3392 * The message starts at byte 4 which follows the
3393 * the Channel Byte in the "GET MESSAGE" command
3395 recv_msg->msg.data_len = msg->rsp_size - 4;
3396 memcpy(recv_msg->msg_data,
3397 &(msg->rsp[4]),
3398 msg->rsp_size - 4);
3399 deliver_response(recv_msg);
3403 return rv;
3406 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3407 struct ipmi_smi_msg *msg)
3409 struct ipmi_system_interface_addr *smi_addr;
3411 recv_msg->msgid = 0;
3412 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3413 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3414 smi_addr->channel = IPMI_BMC_CHANNEL;
3415 smi_addr->lun = msg->rsp[0] & 3;
3416 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3417 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3418 recv_msg->msg.cmd = msg->rsp[1];
3419 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3420 recv_msg->msg.data = recv_msg->msg_data;
3421 recv_msg->msg.data_len = msg->rsp_size - 3;
3424 static int handle_read_event_rsp(ipmi_smi_t intf,
3425 struct ipmi_smi_msg *msg)
3427 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3428 struct list_head msgs;
3429 ipmi_user_t user;
3430 int rv = 0;
3431 int deliver_count = 0;
3432 unsigned long flags;
3434 if (msg->rsp_size < 19) {
3435 /* Message is too small to be an IPMB event. */
3436 ipmi_inc_stat(intf, invalid_events);
3437 return 0;
3440 if (msg->rsp[2] != 0) {
3441 /* An error getting the event, just ignore it. */
3442 return 0;
3445 INIT_LIST_HEAD(&msgs);
3447 spin_lock_irqsave(&intf->events_lock, flags);
3449 ipmi_inc_stat(intf, events);
3452 * Allocate and fill in one message for every user that is
3453 * getting events.
3455 rcu_read_lock();
3456 list_for_each_entry_rcu(user, &intf->users, link) {
3457 if (!user->gets_events)
3458 continue;
3460 recv_msg = ipmi_alloc_recv_msg();
3461 if (!recv_msg) {
3462 rcu_read_unlock();
3463 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3464 link) {
3465 list_del(&recv_msg->link);
3466 ipmi_free_recv_msg(recv_msg);
3469 * We couldn't allocate memory for the
3470 * message, so requeue it for handling
3471 * later.
3473 rv = 1;
3474 goto out;
3477 deliver_count++;
3479 copy_event_into_recv_msg(recv_msg, msg);
3480 recv_msg->user = user;
3481 kref_get(&user->refcount);
3482 list_add_tail(&(recv_msg->link), &msgs);
3484 rcu_read_unlock();
3486 if (deliver_count) {
3487 /* Now deliver all the messages. */
3488 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3489 list_del(&recv_msg->link);
3490 deliver_response(recv_msg);
3492 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3494 * No one to receive the message, put it in queue if there's
3495 * not already too many things in the queue.
3497 recv_msg = ipmi_alloc_recv_msg();
3498 if (!recv_msg) {
3500 * We couldn't allocate memory for the
3501 * message, so requeue it for handling
3502 * later.
3504 rv = 1;
3505 goto out;
3508 copy_event_into_recv_msg(recv_msg, msg);
3509 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3510 intf->waiting_events_count++;
3511 } else if (!intf->event_msg_printed) {
3513 * There's too many things in the queue, discard this
3514 * message.
3516 printk(KERN_WARNING PFX "Event queue full, discarding"
3517 " incoming events\n");
3518 intf->event_msg_printed = 1;
3521 out:
3522 spin_unlock_irqrestore(&(intf->events_lock), flags);
3524 return rv;
3527 static int handle_bmc_rsp(ipmi_smi_t intf,
3528 struct ipmi_smi_msg *msg)
3530 struct ipmi_recv_msg *recv_msg;
3531 struct ipmi_user *user;
3533 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3534 if (recv_msg == NULL) {
3535 printk(KERN_WARNING
3536 "IPMI message received with no owner. This\n"
3537 "could be because of a malformed message, or\n"
3538 "because of a hardware error. Contact your\n"
3539 "hardware vender for assistance\n");
3540 return 0;
3543 user = recv_msg->user;
3544 /* Make sure the user still exists. */
3545 if (user && !user->valid) {
3546 /* The user for the message went away, so give up. */
3547 ipmi_inc_stat(intf, unhandled_local_responses);
3548 ipmi_free_recv_msg(recv_msg);
3549 } else {
3550 struct ipmi_system_interface_addr *smi_addr;
3552 ipmi_inc_stat(intf, handled_local_responses);
3553 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3554 recv_msg->msgid = msg->msgid;
3555 smi_addr = ((struct ipmi_system_interface_addr *)
3556 &(recv_msg->addr));
3557 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3558 smi_addr->channel = IPMI_BMC_CHANNEL;
3559 smi_addr->lun = msg->rsp[0] & 3;
3560 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3561 recv_msg->msg.cmd = msg->rsp[1];
3562 memcpy(recv_msg->msg_data,
3563 &(msg->rsp[2]),
3564 msg->rsp_size - 2);
3565 recv_msg->msg.data = recv_msg->msg_data;
3566 recv_msg->msg.data_len = msg->rsp_size - 2;
3567 deliver_response(recv_msg);
3570 return 0;
3574 * Handle a new message. Return 1 if the message should be requeued,
3575 * 0 if the message should be freed, or -1 if the message should not
3576 * be freed or requeued.
3578 static int handle_new_recv_msg(ipmi_smi_t intf,
3579 struct ipmi_smi_msg *msg)
3581 int requeue;
3582 int chan;
3584 #ifdef DEBUG_MSGING
3585 int m;
3586 printk("Recv:");
3587 for (m = 0; m < msg->rsp_size; m++)
3588 printk(" %2.2x", msg->rsp[m]);
3589 printk("\n");
3590 #endif
3591 if (msg->rsp_size < 2) {
3592 /* Message is too small to be correct. */
3593 printk(KERN_WARNING PFX "BMC returned to small a message"
3594 " for netfn %x cmd %x, got %d bytes\n",
3595 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3597 /* Generate an error response for the message. */
3598 msg->rsp[0] = msg->data[0] | (1 << 2);
3599 msg->rsp[1] = msg->data[1];
3600 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3601 msg->rsp_size = 3;
3602 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3603 || (msg->rsp[1] != msg->data[1])) {
3605 * The NetFN and Command in the response is not even
3606 * marginally correct.
3608 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3609 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3610 (msg->data[0] >> 2) | 1, msg->data[1],
3611 msg->rsp[0] >> 2, msg->rsp[1]);
3613 /* Generate an error response for the message. */
3614 msg->rsp[0] = msg->data[0] | (1 << 2);
3615 msg->rsp[1] = msg->data[1];
3616 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3617 msg->rsp_size = 3;
3620 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3621 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3622 && (msg->user_data != NULL)) {
3624 * It's a response to a response we sent. For this we
3625 * deliver a send message response to the user.
3627 struct ipmi_recv_msg *recv_msg = msg->user_data;
3629 requeue = 0;
3630 if (msg->rsp_size < 2)
3631 /* Message is too small to be correct. */
3632 goto out;
3634 chan = msg->data[2] & 0x0f;
3635 if (chan >= IPMI_MAX_CHANNELS)
3636 /* Invalid channel number */
3637 goto out;
3639 if (!recv_msg)
3640 goto out;
3642 /* Make sure the user still exists. */
3643 if (!recv_msg->user || !recv_msg->user->valid)
3644 goto out;
3646 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3647 recv_msg->msg.data = recv_msg->msg_data;
3648 recv_msg->msg.data_len = 1;
3649 recv_msg->msg_data[0] = msg->rsp[2];
3650 deliver_response(recv_msg);
3651 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3652 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3653 /* It's from the receive queue. */
3654 chan = msg->rsp[3] & 0xf;
3655 if (chan >= IPMI_MAX_CHANNELS) {
3656 /* Invalid channel number */
3657 requeue = 0;
3658 goto out;
3662 * We need to make sure the channels have been initialized.
3663 * The channel_handler routine will set the "curr_channel"
3664 * equal to or greater than IPMI_MAX_CHANNELS when all the
3665 * channels for this interface have been initialized.
3667 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3668 requeue = 0; /* Throw the message away */
3669 goto out;
3672 switch (intf->channels[chan].medium) {
3673 case IPMI_CHANNEL_MEDIUM_IPMB:
3674 if (msg->rsp[4] & 0x04) {
3676 * It's a response, so find the
3677 * requesting message and send it up.
3679 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3680 } else {
3682 * It's a command to the SMS from some other
3683 * entity. Handle that.
3685 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3687 break;
3689 case IPMI_CHANNEL_MEDIUM_8023LAN:
3690 case IPMI_CHANNEL_MEDIUM_ASYNC:
3691 if (msg->rsp[6] & 0x04) {
3693 * It's a response, so find the
3694 * requesting message and send it up.
3696 requeue = handle_lan_get_msg_rsp(intf, msg);
3697 } else {
3699 * It's a command to the SMS from some other
3700 * entity. Handle that.
3702 requeue = handle_lan_get_msg_cmd(intf, msg);
3704 break;
3706 default:
3707 /* Check for OEM Channels. Clients had better
3708 register for these commands. */
3709 if ((intf->channels[chan].medium
3710 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3711 && (intf->channels[chan].medium
3712 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3713 requeue = handle_oem_get_msg_cmd(intf, msg);
3714 } else {
3716 * We don't handle the channel type, so just
3717 * free the message.
3719 requeue = 0;
3723 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3724 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3725 /* It's an asyncronous event. */
3726 requeue = handle_read_event_rsp(intf, msg);
3727 } else {
3728 /* It's a response from the local BMC. */
3729 requeue = handle_bmc_rsp(intf, msg);
3732 out:
3733 return requeue;
3736 /* Handle a new message from the lower layer. */
3737 void ipmi_smi_msg_received(ipmi_smi_t intf,
3738 struct ipmi_smi_msg *msg)
3740 unsigned long flags = 0; /* keep us warning-free. */
3741 int rv;
3742 int run_to_completion;
3745 if ((msg->data_size >= 2)
3746 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3747 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3748 && (msg->user_data == NULL)) {
3750 * This is the local response to a command send, start
3751 * the timer for these. The user_data will not be
3752 * NULL if this is a response send, and we will let
3753 * response sends just go through.
3757 * Check for errors, if we get certain errors (ones
3758 * that mean basically we can try again later), we
3759 * ignore them and start the timer. Otherwise we
3760 * report the error immediately.
3762 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3763 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3764 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3765 && (msg->rsp[2] != IPMI_BUS_ERR)
3766 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3767 int chan = msg->rsp[3] & 0xf;
3769 /* Got an error sending the message, handle it. */
3770 if (chan >= IPMI_MAX_CHANNELS)
3771 ; /* This shouldn't happen */
3772 else if ((intf->channels[chan].medium
3773 == IPMI_CHANNEL_MEDIUM_8023LAN)
3774 || (intf->channels[chan].medium
3775 == IPMI_CHANNEL_MEDIUM_ASYNC))
3776 ipmi_inc_stat(intf, sent_lan_command_errs);
3777 else
3778 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3779 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3780 } else
3781 /* The message was sent, start the timer. */
3782 intf_start_seq_timer(intf, msg->msgid);
3784 ipmi_free_smi_msg(msg);
3785 goto out;
3789 * To preserve message order, if the list is not empty, we
3790 * tack this message onto the end of the list.
3792 run_to_completion = intf->run_to_completion;
3793 if (!run_to_completion)
3794 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3795 if (!list_empty(&intf->waiting_msgs)) {
3796 list_add_tail(&msg->link, &intf->waiting_msgs);
3797 if (!run_to_completion)
3798 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3799 goto out;
3801 if (!run_to_completion)
3802 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3804 rv = handle_new_recv_msg(intf, msg);
3805 if (rv > 0) {
3807 * Could not handle the message now, just add it to a
3808 * list to handle later.
3810 run_to_completion = intf->run_to_completion;
3811 if (!run_to_completion)
3812 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3813 list_add_tail(&msg->link, &intf->waiting_msgs);
3814 if (!run_to_completion)
3815 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3816 } else if (rv == 0) {
3817 ipmi_free_smi_msg(msg);
3820 out:
3821 return;
3823 EXPORT_SYMBOL(ipmi_smi_msg_received);
3825 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3827 ipmi_user_t user;
3829 rcu_read_lock();
3830 list_for_each_entry_rcu(user, &intf->users, link) {
3831 if (!user->handler->ipmi_watchdog_pretimeout)
3832 continue;
3834 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3836 rcu_read_unlock();
3838 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3840 static struct ipmi_smi_msg *
3841 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3842 unsigned char seq, long seqid)
3844 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3845 if (!smi_msg)
3847 * If we can't allocate the message, then just return, we
3848 * get 4 retries, so this should be ok.
3850 return NULL;
3852 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3853 smi_msg->data_size = recv_msg->msg.data_len;
3854 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3856 #ifdef DEBUG_MSGING
3858 int m;
3859 printk("Resend: ");
3860 for (m = 0; m < smi_msg->data_size; m++)
3861 printk(" %2.2x", smi_msg->data[m]);
3862 printk("\n");
3864 #endif
3865 return smi_msg;
3868 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3869 struct list_head *timeouts, long timeout_period,
3870 int slot, unsigned long *flags)
3872 struct ipmi_recv_msg *msg;
3873 struct ipmi_smi_handlers *handlers;
3875 if (intf->intf_num == -1)
3876 return;
3878 if (!ent->inuse)
3879 return;
3881 ent->timeout -= timeout_period;
3882 if (ent->timeout > 0)
3883 return;
3885 if (ent->retries_left == 0) {
3886 /* The message has used all its retries. */
3887 ent->inuse = 0;
3888 msg = ent->recv_msg;
3889 list_add_tail(&msg->link, timeouts);
3890 if (ent->broadcast)
3891 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3892 else if (is_lan_addr(&ent->recv_msg->addr))
3893 ipmi_inc_stat(intf, timed_out_lan_commands);
3894 else
3895 ipmi_inc_stat(intf, timed_out_ipmb_commands);
3896 } else {
3897 struct ipmi_smi_msg *smi_msg;
3898 /* More retries, send again. */
3901 * Start with the max timer, set to normal timer after
3902 * the message is sent.
3904 ent->timeout = MAX_MSG_TIMEOUT;
3905 ent->retries_left--;
3906 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3907 ent->seqid);
3908 if (!smi_msg) {
3909 if (is_lan_addr(&ent->recv_msg->addr))
3910 ipmi_inc_stat(intf,
3911 dropped_rexmit_lan_commands);
3912 else
3913 ipmi_inc_stat(intf,
3914 dropped_rexmit_ipmb_commands);
3915 return;
3918 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3921 * Send the new message. We send with a zero
3922 * priority. It timed out, I doubt time is that
3923 * critical now, and high priority messages are really
3924 * only for messages to the local MC, which don't get
3925 * resent.
3927 handlers = intf->handlers;
3928 if (handlers) {
3929 if (is_lan_addr(&ent->recv_msg->addr))
3930 ipmi_inc_stat(intf,
3931 retransmitted_lan_commands);
3932 else
3933 ipmi_inc_stat(intf,
3934 retransmitted_ipmb_commands);
3936 intf->handlers->sender(intf->send_info,
3937 smi_msg, 0);
3938 } else
3939 ipmi_free_smi_msg(smi_msg);
3941 spin_lock_irqsave(&intf->seq_lock, *flags);
3945 static void ipmi_timeout_handler(long timeout_period)
3947 ipmi_smi_t intf;
3948 struct list_head timeouts;
3949 struct ipmi_recv_msg *msg, *msg2;
3950 struct ipmi_smi_msg *smi_msg, *smi_msg2;
3951 unsigned long flags;
3952 int i;
3954 rcu_read_lock();
3955 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3956 /* See if any waiting messages need to be processed. */
3957 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3958 list_for_each_entry_safe(smi_msg, smi_msg2,
3959 &intf->waiting_msgs, link) {
3960 if (!handle_new_recv_msg(intf, smi_msg)) {
3961 list_del(&smi_msg->link);
3962 ipmi_free_smi_msg(smi_msg);
3963 } else {
3965 * To preserve message order, quit if we
3966 * can't handle a message.
3968 break;
3971 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3974 * Go through the seq table and find any messages that
3975 * have timed out, putting them in the timeouts
3976 * list.
3978 INIT_LIST_HEAD(&timeouts);
3979 spin_lock_irqsave(&intf->seq_lock, flags);
3980 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3981 check_msg_timeout(intf, &(intf->seq_table[i]),
3982 &timeouts, timeout_period, i,
3983 &flags);
3984 spin_unlock_irqrestore(&intf->seq_lock, flags);
3986 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3987 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3990 * Maintenance mode handling. Check the timeout
3991 * optimistically before we claim the lock. It may
3992 * mean a timeout gets missed occasionally, but that
3993 * only means the timeout gets extended by one period
3994 * in that case. No big deal, and it avoids the lock
3995 * most of the time.
3997 if (intf->auto_maintenance_timeout > 0) {
3998 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3999 if (intf->auto_maintenance_timeout > 0) {
4000 intf->auto_maintenance_timeout
4001 -= timeout_period;
4002 if (!intf->maintenance_mode
4003 && (intf->auto_maintenance_timeout <= 0)) {
4004 intf->maintenance_mode_enable = 0;
4005 maintenance_mode_update(intf);
4008 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4009 flags);
4012 rcu_read_unlock();
4015 static void ipmi_request_event(void)
4017 ipmi_smi_t intf;
4018 struct ipmi_smi_handlers *handlers;
4020 rcu_read_lock();
4022 * Called from the timer, no need to check if handlers is
4023 * valid.
4025 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4026 /* No event requests when in maintenance mode. */
4027 if (intf->maintenance_mode_enable)
4028 continue;
4030 handlers = intf->handlers;
4031 if (handlers)
4032 handlers->request_events(intf->send_info);
4034 rcu_read_unlock();
4037 static struct timer_list ipmi_timer;
4039 /* Call every ~1000 ms. */
4040 #define IPMI_TIMEOUT_TIME 1000
4042 /* How many jiffies does it take to get to the timeout time. */
4043 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4046 * Request events from the queue every second (this is the number of
4047 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4048 * future, IPMI will add a way to know immediately if an event is in
4049 * the queue and this silliness can go away.
4051 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4053 static atomic_t stop_operation;
4054 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4056 static void ipmi_timeout(unsigned long data)
4058 if (atomic_read(&stop_operation))
4059 return;
4061 ticks_to_req_ev--;
4062 if (ticks_to_req_ev == 0) {
4063 ipmi_request_event();
4064 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4067 ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4069 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4073 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4074 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4076 static void free_smi_msg(struct ipmi_smi_msg *msg)
4078 atomic_dec(&smi_msg_inuse_count);
4079 kfree(msg);
4082 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4084 struct ipmi_smi_msg *rv;
4085 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4086 if (rv) {
4087 rv->done = free_smi_msg;
4088 rv->user_data = NULL;
4089 atomic_inc(&smi_msg_inuse_count);
4091 return rv;
4093 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4095 static void free_recv_msg(struct ipmi_recv_msg *msg)
4097 atomic_dec(&recv_msg_inuse_count);
4098 kfree(msg);
4101 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4103 struct ipmi_recv_msg *rv;
4105 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4106 if (rv) {
4107 rv->user = NULL;
4108 rv->done = free_recv_msg;
4109 atomic_inc(&recv_msg_inuse_count);
4111 return rv;
4114 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4116 if (msg->user)
4117 kref_put(&msg->user->refcount, free_user);
4118 msg->done(msg);
4120 EXPORT_SYMBOL(ipmi_free_recv_msg);
4122 #ifdef CONFIG_IPMI_PANIC_EVENT
4124 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4128 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4132 #ifdef CONFIG_IPMI_PANIC_STRING
4133 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4135 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4136 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4137 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4138 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4139 /* A get event receiver command, save it. */
4140 intf->event_receiver = msg->msg.data[1];
4141 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4145 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4147 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4148 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4149 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4150 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4152 * A get device id command, save if we are an event
4153 * receiver or generator.
4155 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4156 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4159 #endif
4161 static void send_panic_events(char *str)
4163 struct kernel_ipmi_msg msg;
4164 ipmi_smi_t intf;
4165 unsigned char data[16];
4166 struct ipmi_system_interface_addr *si;
4167 struct ipmi_addr addr;
4168 struct ipmi_smi_msg smi_msg;
4169 struct ipmi_recv_msg recv_msg;
4171 si = (struct ipmi_system_interface_addr *) &addr;
4172 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4173 si->channel = IPMI_BMC_CHANNEL;
4174 si->lun = 0;
4176 /* Fill in an event telling that we have failed. */
4177 msg.netfn = 0x04; /* Sensor or Event. */
4178 msg.cmd = 2; /* Platform event command. */
4179 msg.data = data;
4180 msg.data_len = 8;
4181 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4182 data[1] = 0x03; /* This is for IPMI 1.0. */
4183 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4184 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4185 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4188 * Put a few breadcrumbs in. Hopefully later we can add more things
4189 * to make the panic events more useful.
4191 if (str) {
4192 data[3] = str[0];
4193 data[6] = str[1];
4194 data[7] = str[2];
4197 smi_msg.done = dummy_smi_done_handler;
4198 recv_msg.done = dummy_recv_done_handler;
4200 /* For every registered interface, send the event. */
4201 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4202 if (!intf->handlers)
4203 /* Interface is not ready. */
4204 continue;
4206 intf->run_to_completion = 1;
4207 /* Send the event announcing the panic. */
4208 intf->handlers->set_run_to_completion(intf->send_info, 1);
4209 i_ipmi_request(NULL,
4210 intf,
4211 &addr,
4213 &msg,
4214 intf,
4215 &smi_msg,
4216 &recv_msg,
4218 intf->channels[0].address,
4219 intf->channels[0].lun,
4220 0, 1); /* Don't retry, and don't wait. */
4223 #ifdef CONFIG_IPMI_PANIC_STRING
4225 * On every interface, dump a bunch of OEM event holding the
4226 * string.
4228 if (!str)
4229 return;
4231 /* For every registered interface, send the event. */
4232 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4233 char *p = str;
4234 struct ipmi_ipmb_addr *ipmb;
4235 int j;
4237 if (intf->intf_num == -1)
4238 /* Interface was not ready yet. */
4239 continue;
4242 * intf_num is used as an marker to tell if the
4243 * interface is valid. Thus we need a read barrier to
4244 * make sure data fetched before checking intf_num
4245 * won't be used.
4247 smp_rmb();
4250 * First job here is to figure out where to send the
4251 * OEM events. There's no way in IPMI to send OEM
4252 * events using an event send command, so we have to
4253 * find the SEL to put them in and stick them in
4254 * there.
4257 /* Get capabilities from the get device id. */
4258 intf->local_sel_device = 0;
4259 intf->local_event_generator = 0;
4260 intf->event_receiver = 0;
4262 /* Request the device info from the local MC. */
4263 msg.netfn = IPMI_NETFN_APP_REQUEST;
4264 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4265 msg.data = NULL;
4266 msg.data_len = 0;
4267 intf->null_user_handler = device_id_fetcher;
4268 i_ipmi_request(NULL,
4269 intf,
4270 &addr,
4272 &msg,
4273 intf,
4274 &smi_msg,
4275 &recv_msg,
4277 intf->channels[0].address,
4278 intf->channels[0].lun,
4279 0, 1); /* Don't retry, and don't wait. */
4281 if (intf->local_event_generator) {
4282 /* Request the event receiver from the local MC. */
4283 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4284 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4285 msg.data = NULL;
4286 msg.data_len = 0;
4287 intf->null_user_handler = event_receiver_fetcher;
4288 i_ipmi_request(NULL,
4289 intf,
4290 &addr,
4292 &msg,
4293 intf,
4294 &smi_msg,
4295 &recv_msg,
4297 intf->channels[0].address,
4298 intf->channels[0].lun,
4299 0, 1); /* no retry, and no wait. */
4301 intf->null_user_handler = NULL;
4304 * Validate the event receiver. The low bit must not
4305 * be 1 (it must be a valid IPMB address), it cannot
4306 * be zero, and it must not be my address.
4308 if (((intf->event_receiver & 1) == 0)
4309 && (intf->event_receiver != 0)
4310 && (intf->event_receiver != intf->channels[0].address)) {
4312 * The event receiver is valid, send an IPMB
4313 * message.
4315 ipmb = (struct ipmi_ipmb_addr *) &addr;
4316 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4317 ipmb->channel = 0;
4318 ipmb->lun = intf->event_receiver_lun;
4319 ipmb->slave_addr = intf->event_receiver;
4320 } else if (intf->local_sel_device) {
4322 * The event receiver was not valid (or was
4323 * me), but I am an SEL device, just dump it
4324 * in my SEL.
4326 si = (struct ipmi_system_interface_addr *) &addr;
4327 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4328 si->channel = IPMI_BMC_CHANNEL;
4329 si->lun = 0;
4330 } else
4331 continue; /* No where to send the event. */
4333 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4334 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4335 msg.data = data;
4336 msg.data_len = 16;
4338 j = 0;
4339 while (*p) {
4340 int size = strlen(p);
4342 if (size > 11)
4343 size = 11;
4344 data[0] = 0;
4345 data[1] = 0;
4346 data[2] = 0xf0; /* OEM event without timestamp. */
4347 data[3] = intf->channels[0].address;
4348 data[4] = j++; /* sequence # */
4350 * Always give 11 bytes, so strncpy will fill
4351 * it with zeroes for me.
4353 strncpy(data+5, p, 11);
4354 p += size;
4356 i_ipmi_request(NULL,
4357 intf,
4358 &addr,
4360 &msg,
4361 intf,
4362 &smi_msg,
4363 &recv_msg,
4365 intf->channels[0].address,
4366 intf->channels[0].lun,
4367 0, 1); /* no retry, and no wait. */
4370 #endif /* CONFIG_IPMI_PANIC_STRING */
4372 #endif /* CONFIG_IPMI_PANIC_EVENT */
4374 static int has_panicked;
4376 static int panic_event(struct notifier_block *this,
4377 unsigned long event,
4378 void *ptr)
4380 ipmi_smi_t intf;
4382 if (has_panicked)
4383 return NOTIFY_DONE;
4384 has_panicked = 1;
4386 /* For every registered interface, set it to run to completion. */
4387 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4388 if (!intf->handlers)
4389 /* Interface is not ready. */
4390 continue;
4392 intf->run_to_completion = 1;
4393 intf->handlers->set_run_to_completion(intf->send_info, 1);
4396 #ifdef CONFIG_IPMI_PANIC_EVENT
4397 send_panic_events(ptr);
4398 #endif
4400 return NOTIFY_DONE;
4403 static struct notifier_block panic_block = {
4404 .notifier_call = panic_event,
4405 .next = NULL,
4406 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4409 static int ipmi_init_msghandler(void)
4411 int rv;
4413 if (initialized)
4414 return 0;
4416 rv = driver_register(&ipmidriver.driver);
4417 if (rv) {
4418 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4419 return rv;
4422 printk(KERN_INFO "ipmi message handler version "
4423 IPMI_DRIVER_VERSION "\n");
4425 #ifdef CONFIG_PROC_FS
4426 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4427 if (!proc_ipmi_root) {
4428 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4429 return -ENOMEM;
4432 #endif /* CONFIG_PROC_FS */
4434 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4435 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4437 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4439 initialized = 1;
4441 return 0;
4444 static __init int ipmi_init_msghandler_mod(void)
4446 ipmi_init_msghandler();
4447 return 0;
4450 static __exit void cleanup_ipmi(void)
4452 int count;
4454 if (!initialized)
4455 return;
4457 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4460 * This can't be called if any interfaces exist, so no worry
4461 * about shutting down the interfaces.
4465 * Tell the timer to stop, then wait for it to stop. This
4466 * avoids problems with race conditions removing the timer
4467 * here.
4469 atomic_inc(&stop_operation);
4470 del_timer_sync(&ipmi_timer);
4472 #ifdef CONFIG_PROC_FS
4473 remove_proc_entry(proc_ipmi_root->name, NULL);
4474 #endif /* CONFIG_PROC_FS */
4476 driver_unregister(&ipmidriver.driver);
4478 initialized = 0;
4480 /* Check for buffer leaks. */
4481 count = atomic_read(&smi_msg_inuse_count);
4482 if (count != 0)
4483 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4484 count);
4485 count = atomic_read(&recv_msg_inuse_count);
4486 if (count != 0)
4487 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4488 count);
4490 module_exit(cleanup_ipmi);
4492 module_init(ipmi_init_msghandler_mod);
4493 MODULE_LICENSE("GPL");
4494 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4495 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4496 " interface.");
4497 MODULE_VERSION(IPMI_DRIVER_VERSION);