GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / ata / sata_mv.c
blobfc66906654b87276d864da8dc0fc9497c95307e6
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * sata_mv TODO list:
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.28"
77 * module options
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 "IRQ coalescing I/O count threshold (0..255)");
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 "IRQ coalescing time threshold in usecs");
96 enum {
97 /* BAR's are enumerated in terms of pci_resource_start() terms */
98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
99 MV_IO_BAR = 2, /* offset 0x18: IO space */
100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
110 MV_PCI_REG_BASE = 0,
113 * Per-chip ("all ports") interrupt coalescing feature.
114 * This is only for GEN_II / GEN_IIE hardware.
116 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
119 COAL_REG_BASE = 0x18000,
120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
127 * Registers for the (unused here) transaction coalescing feature:
129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
132 SATAHC0_REG_BASE = 0x20000,
133 FLASH_CTL = 0x1046c,
134 GPIO_PORT_CTL = 0x104f0,
135 RESET_CFG = 0x180d8,
137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
142 MV_MAX_Q_DEPTH = 32,
143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 * CRPB needs alignment on a 256B boundary. Size == 256B
147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
151 MV_MAX_SG_CT = 256,
152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 MV_PORT_HC_SHIFT = 2,
156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
160 /* Host Flags */
161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
164 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
166 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
168 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
169 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
171 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
173 CRQB_FLAG_READ = (1 << 0),
174 CRQB_TAG_SHIFT = 1,
175 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
176 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
177 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
178 CRQB_CMD_ADDR_SHIFT = 8,
179 CRQB_CMD_CS = (0x2 << 11),
180 CRQB_CMD_LAST = (1 << 15),
182 CRPB_FLAG_STATUS_SHIFT = 8,
183 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
184 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
186 EPRD_FLAG_END_OF_TBL = (1 << 31),
188 /* PCI interface registers */
190 MV_PCI_COMMAND = 0xc00,
191 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
192 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
194 PCI_MAIN_CMD_STS = 0xd30,
195 STOP_PCI_MASTER = (1 << 2),
196 PCI_MASTER_EMPTY = (1 << 3),
197 GLOB_SFT_RST = (1 << 4),
199 MV_PCI_MODE = 0xd00,
200 MV_PCI_MODE_MASK = 0x30,
202 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
203 MV_PCI_DISC_TIMER = 0xd04,
204 MV_PCI_MSI_TRIGGER = 0xc38,
205 MV_PCI_SERR_MASK = 0xc28,
206 MV_PCI_XBAR_TMOUT = 0x1d04,
207 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
208 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
209 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
210 MV_PCI_ERR_COMMAND = 0x1d50,
212 PCI_IRQ_CAUSE = 0x1d58,
213 PCI_IRQ_MASK = 0x1d5c,
214 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
216 PCIE_IRQ_CAUSE = 0x1900,
217 PCIE_IRQ_MASK = 0x1910,
218 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
220 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
221 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
222 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
223 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
224 SOC_HC_MAIN_IRQ_MASK = 0x20024,
225 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
226 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
227 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
228 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
229 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
230 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
231 PCI_ERR = (1 << 18),
232 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
233 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
234 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
235 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
236 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
237 GPIO_INT = (1 << 22),
238 SELF_INT = (1 << 23),
239 TWSI_INT = (1 << 24),
240 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
241 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
242 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
244 /* SATAHC registers */
245 HC_CFG = 0x00,
247 HC_IRQ_CAUSE = 0x14,
248 DMA_IRQ = (1 << 0), /* shift by port # */
249 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
250 DEV_IRQ = (1 << 8), /* shift by port # */
253 * Per-HC (Host-Controller) interrupt coalescing feature.
254 * This is present on all chip generations.
256 * Coalescing defers the interrupt until either the IO_THRESHOLD
257 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
260 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
262 SOC_LED_CTRL = 0x2c,
263 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
264 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
265 /* with dev activity LED */
267 /* Shadow block registers */
268 SHD_BLK = 0x100,
269 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
271 /* SATA registers */
272 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
273 SATA_ACTIVE = 0x350,
274 FIS_IRQ_CAUSE = 0x364,
275 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
277 LTMODE = 0x30c, /* requires read-after-write */
278 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
280 PHY_MODE2 = 0x330,
281 PHY_MODE3 = 0x310,
283 PHY_MODE4 = 0x314, /* requires read-after-write */
284 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
285 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
286 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
287 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
289 SATA_IFCTL = 0x344,
290 SATA_TESTCTL = 0x348,
291 SATA_IFSTAT = 0x34c,
292 VENDOR_UNIQUE_FIS = 0x35c,
294 FISCFG = 0x360,
295 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
296 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
298 PHY_MODE9_GEN2 = 0x398,
299 PHY_MODE9_GEN1 = 0x39c,
300 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
302 MV5_PHY_MODE = 0x74,
303 MV5_LTMODE = 0x30,
304 MV5_PHY_CTL = 0x0C,
305 SATA_IFCFG = 0x050,
307 MV_M2_PREAMP_MASK = 0x7e0,
309 /* Port registers */
310 EDMA_CFG = 0,
311 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
312 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
313 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
314 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
315 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
316 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
317 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
319 EDMA_ERR_IRQ_CAUSE = 0x8,
320 EDMA_ERR_IRQ_MASK = 0xc,
321 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
322 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
323 EDMA_ERR_DEV = (1 << 2), /* device error */
324 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
325 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
326 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
327 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
328 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
329 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
330 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
331 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
332 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
333 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
334 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
336 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
337 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
338 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
339 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
340 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
342 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
344 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
345 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
346 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
347 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
348 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
349 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
351 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
353 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
354 EDMA_ERR_OVERRUN_5 = (1 << 5),
355 EDMA_ERR_UNDERRUN_5 = (1 << 6),
357 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
358 EDMA_ERR_LNK_CTRL_RX_1 |
359 EDMA_ERR_LNK_CTRL_RX_3 |
360 EDMA_ERR_LNK_CTRL_TX,
362 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
363 EDMA_ERR_PRD_PAR |
364 EDMA_ERR_DEV_DCON |
365 EDMA_ERR_DEV_CON |
366 EDMA_ERR_SERR |
367 EDMA_ERR_SELF_DIS |
368 EDMA_ERR_CRQB_PAR |
369 EDMA_ERR_CRPB_PAR |
370 EDMA_ERR_INTRL_PAR |
371 EDMA_ERR_IORDY |
372 EDMA_ERR_LNK_CTRL_RX_2 |
373 EDMA_ERR_LNK_DATA_RX |
374 EDMA_ERR_LNK_DATA_TX |
375 EDMA_ERR_TRANS_PROTO,
377 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
378 EDMA_ERR_PRD_PAR |
379 EDMA_ERR_DEV_DCON |
380 EDMA_ERR_DEV_CON |
381 EDMA_ERR_OVERRUN_5 |
382 EDMA_ERR_UNDERRUN_5 |
383 EDMA_ERR_SELF_DIS_5 |
384 EDMA_ERR_CRQB_PAR |
385 EDMA_ERR_CRPB_PAR |
386 EDMA_ERR_INTRL_PAR |
387 EDMA_ERR_IORDY,
389 EDMA_REQ_Q_BASE_HI = 0x10,
390 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
392 EDMA_REQ_Q_OUT_PTR = 0x18,
393 EDMA_REQ_Q_PTR_SHIFT = 5,
395 EDMA_RSP_Q_BASE_HI = 0x1c,
396 EDMA_RSP_Q_IN_PTR = 0x20,
397 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
398 EDMA_RSP_Q_PTR_SHIFT = 3,
400 EDMA_CMD = 0x28, /* EDMA command register */
401 EDMA_EN = (1 << 0), /* enable EDMA */
402 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
403 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
405 EDMA_STATUS = 0x30, /* EDMA engine status */
406 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
407 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
409 EDMA_IORDY_TMOUT = 0x34,
410 EDMA_ARB_CFG = 0x38,
412 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
413 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
415 BMDMA_CMD = 0x224, /* bmdma command register */
416 BMDMA_STATUS = 0x228, /* bmdma status register */
417 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
418 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
420 /* Host private flags (hp_flags) */
421 MV_HP_FLAG_MSI = (1 << 0),
422 MV_HP_ERRATA_50XXB0 = (1 << 1),
423 MV_HP_ERRATA_50XXB2 = (1 << 2),
424 MV_HP_ERRATA_60X1B2 = (1 << 3),
425 MV_HP_ERRATA_60X1C0 = (1 << 4),
426 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
427 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
428 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
429 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
430 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
431 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
432 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
434 /* Port private flags (pp_flags) */
435 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
436 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
437 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
438 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
439 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
442 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
443 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
444 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
445 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
446 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
448 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
449 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
451 enum {
452 /* DMA boundary 0xffff is required by the s/g splitting
453 * we need on /length/ in mv_fill-sg().
455 MV_DMA_BOUNDARY = 0xffffU,
457 /* mask of register bits containing lower 32 bits
458 * of EDMA request queue DMA address
460 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
462 /* ditto, for response queue */
463 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
466 enum chip_type {
467 chip_504x,
468 chip_508x,
469 chip_5080,
470 chip_604x,
471 chip_608x,
472 chip_6042,
473 chip_7042,
474 chip_soc,
477 /* Command ReQuest Block: 32B */
478 struct mv_crqb {
479 __le32 sg_addr;
480 __le32 sg_addr_hi;
481 __le16 ctrl_flags;
482 __le16 ata_cmd[11];
485 struct mv_crqb_iie {
486 __le32 addr;
487 __le32 addr_hi;
488 __le32 flags;
489 __le32 len;
490 __le32 ata_cmd[4];
493 /* Command ResPonse Block: 8B */
494 struct mv_crpb {
495 __le16 id;
496 __le16 flags;
497 __le32 tmstmp;
500 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
501 struct mv_sg {
502 __le32 addr;
503 __le32 flags_size;
504 __le32 addr_hi;
505 __le32 reserved;
509 * We keep a local cache of a few frequently accessed port
510 * registers here, to avoid having to read them (very slow)
511 * when switching between EDMA and non-EDMA modes.
513 struct mv_cached_regs {
514 u32 fiscfg;
515 u32 ltmode;
516 u32 haltcond;
517 u32 unknown_rsvd;
520 struct mv_port_priv {
521 struct mv_crqb *crqb;
522 dma_addr_t crqb_dma;
523 struct mv_crpb *crpb;
524 dma_addr_t crpb_dma;
525 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
526 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
528 unsigned int req_idx;
529 unsigned int resp_idx;
531 u32 pp_flags;
532 struct mv_cached_regs cached;
533 unsigned int delayed_eh_pmp_map;
536 struct mv_port_signal {
537 u32 amps;
538 u32 pre;
541 struct mv_host_priv {
542 u32 hp_flags;
543 unsigned int board_idx;
544 u32 main_irq_mask;
545 struct mv_port_signal signal[8];
546 const struct mv_hw_ops *ops;
547 int n_ports;
548 void __iomem *base;
549 void __iomem *main_irq_cause_addr;
550 void __iomem *main_irq_mask_addr;
551 u32 irq_cause_offset;
552 u32 irq_mask_offset;
553 u32 unmask_all_irqs;
555 #if defined(CONFIG_HAVE_CLK)
556 struct clk *clk;
557 #endif
559 * These consistent DMA memory pools give us guaranteed
560 * alignment for hardware-accessed data structures,
561 * and less memory waste in accomplishing the alignment.
563 struct dma_pool *crqb_pool;
564 struct dma_pool *crpb_pool;
565 struct dma_pool *sg_tbl_pool;
568 struct mv_hw_ops {
569 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
570 unsigned int port);
571 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
572 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
573 void __iomem *mmio);
574 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
575 unsigned int n_hc);
576 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
577 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
580 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
582 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv_port_start(struct ata_port *ap);
585 static void mv_port_stop(struct ata_port *ap);
586 static int mv_qc_defer(struct ata_queued_cmd *qc);
587 static void mv_qc_prep(struct ata_queued_cmd *qc);
588 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
590 static int mv_hardreset(struct ata_link *link, unsigned int *class,
591 unsigned long deadline);
592 static void mv_eh_freeze(struct ata_port *ap);
593 static void mv_eh_thaw(struct ata_port *ap);
594 static void mv6_dev_config(struct ata_device *dev);
596 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
597 unsigned int port);
598 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
599 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
600 void __iomem *mmio);
601 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
602 unsigned int n_hc);
603 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
604 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
606 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
607 unsigned int port);
608 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
609 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
610 void __iomem *mmio);
611 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
612 unsigned int n_hc);
613 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
614 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
615 void __iomem *mmio);
616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
617 void __iomem *mmio);
618 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
619 void __iomem *mmio, unsigned int n_hc);
620 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
621 void __iomem *mmio);
622 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
623 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
624 void __iomem *mmio, unsigned int port);
625 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
626 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
627 unsigned int port_no);
628 static int mv_stop_edma(struct ata_port *ap);
629 static int mv_stop_edma_engine(void __iomem *port_mmio);
630 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
632 static void mv_pmp_select(struct ata_port *ap, int pmp);
633 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
634 unsigned long deadline);
635 static int mv_softreset(struct ata_link *link, unsigned int *class,
636 unsigned long deadline);
637 static void mv_pmp_error_handler(struct ata_port *ap);
638 static void mv_process_crpb_entries(struct ata_port *ap,
639 struct mv_port_priv *pp);
641 static void mv_sff_irq_clear(struct ata_port *ap);
642 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
643 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
644 static void mv_bmdma_start(struct ata_queued_cmd *qc);
645 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
646 static u8 mv_bmdma_status(struct ata_port *ap);
647 static u8 mv_sff_check_status(struct ata_port *ap);
649 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
650 * because we have to allow room for worst case splitting of
651 * PRDs for 64K boundaries in mv_fill_sg().
653 static struct scsi_host_template mv5_sht = {
654 ATA_BASE_SHT(DRV_NAME),
655 .sg_tablesize = MV_MAX_SG_CT / 2,
656 .dma_boundary = MV_DMA_BOUNDARY,
659 static struct scsi_host_template mv6_sht = {
660 ATA_NCQ_SHT(DRV_NAME),
661 .can_queue = MV_MAX_Q_DEPTH - 1,
662 .sg_tablesize = MV_MAX_SG_CT / 2,
663 .dma_boundary = MV_DMA_BOUNDARY,
666 static struct ata_port_operations mv5_ops = {
667 .inherits = &ata_sff_port_ops,
669 .lost_interrupt = ATA_OP_NULL,
671 .qc_defer = mv_qc_defer,
672 .qc_prep = mv_qc_prep,
673 .qc_issue = mv_qc_issue,
675 .freeze = mv_eh_freeze,
676 .thaw = mv_eh_thaw,
677 .hardreset = mv_hardreset,
679 .scr_read = mv5_scr_read,
680 .scr_write = mv5_scr_write,
682 .port_start = mv_port_start,
683 .port_stop = mv_port_stop,
686 static struct ata_port_operations mv6_ops = {
687 .inherits = &ata_bmdma_port_ops,
689 .lost_interrupt = ATA_OP_NULL,
691 .qc_defer = mv_qc_defer,
692 .qc_prep = mv_qc_prep,
693 .qc_issue = mv_qc_issue,
695 .dev_config = mv6_dev_config,
697 .freeze = mv_eh_freeze,
698 .thaw = mv_eh_thaw,
699 .hardreset = mv_hardreset,
700 .softreset = mv_softreset,
701 .pmp_hardreset = mv_pmp_hardreset,
702 .pmp_softreset = mv_softreset,
703 .error_handler = mv_pmp_error_handler,
705 .scr_read = mv_scr_read,
706 .scr_write = mv_scr_write,
708 .sff_check_status = mv_sff_check_status,
709 .sff_irq_clear = mv_sff_irq_clear,
710 .check_atapi_dma = mv_check_atapi_dma,
711 .bmdma_setup = mv_bmdma_setup,
712 .bmdma_start = mv_bmdma_start,
713 .bmdma_stop = mv_bmdma_stop,
714 .bmdma_status = mv_bmdma_status,
716 .port_start = mv_port_start,
717 .port_stop = mv_port_stop,
720 static struct ata_port_operations mv_iie_ops = {
721 .inherits = &mv6_ops,
722 .dev_config = ATA_OP_NULL,
723 .qc_prep = mv_qc_prep_iie,
726 static const struct ata_port_info mv_port_info[] = {
727 { /* chip_504x */
728 .flags = MV_GEN_I_FLAGS,
729 .pio_mask = ATA_PIO4,
730 .udma_mask = ATA_UDMA6,
731 .port_ops = &mv5_ops,
733 { /* chip_508x */
734 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
735 .pio_mask = ATA_PIO4,
736 .udma_mask = ATA_UDMA6,
737 .port_ops = &mv5_ops,
739 { /* chip_5080 */
740 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
741 .pio_mask = ATA_PIO4,
742 .udma_mask = ATA_UDMA6,
743 .port_ops = &mv5_ops,
745 { /* chip_604x */
746 .flags = MV_GEN_II_FLAGS,
747 .pio_mask = ATA_PIO4,
748 .udma_mask = ATA_UDMA6,
749 .port_ops = &mv6_ops,
751 { /* chip_608x */
752 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
753 .pio_mask = ATA_PIO4,
754 .udma_mask = ATA_UDMA6,
755 .port_ops = &mv6_ops,
757 { /* chip_6042 */
758 .flags = MV_GEN_IIE_FLAGS,
759 .pio_mask = ATA_PIO4,
760 .udma_mask = ATA_UDMA6,
761 .port_ops = &mv_iie_ops,
763 { /* chip_7042 */
764 .flags = MV_GEN_IIE_FLAGS,
765 .pio_mask = ATA_PIO4,
766 .udma_mask = ATA_UDMA6,
767 .port_ops = &mv_iie_ops,
769 { /* chip_soc */
770 .flags = MV_GEN_IIE_FLAGS,
771 .pio_mask = ATA_PIO4,
772 .udma_mask = ATA_UDMA6,
773 .port_ops = &mv_iie_ops,
777 static const struct pci_device_id mv_pci_tbl[] = {
778 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
779 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
780 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
781 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
782 /* RocketRAID 1720/174x have different identifiers */
783 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
784 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
785 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
787 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
788 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
789 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
790 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
791 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
793 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
795 /* Adaptec 1430SA */
796 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
798 /* Marvell 7042 support */
799 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
801 /* Highpoint RocketRAID PCIe series */
802 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
803 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
805 { } /* terminate list */
808 static const struct mv_hw_ops mv5xxx_ops = {
809 .phy_errata = mv5_phy_errata,
810 .enable_leds = mv5_enable_leds,
811 .read_preamp = mv5_read_preamp,
812 .reset_hc = mv5_reset_hc,
813 .reset_flash = mv5_reset_flash,
814 .reset_bus = mv5_reset_bus,
817 static const struct mv_hw_ops mv6xxx_ops = {
818 .phy_errata = mv6_phy_errata,
819 .enable_leds = mv6_enable_leds,
820 .read_preamp = mv6_read_preamp,
821 .reset_hc = mv6_reset_hc,
822 .reset_flash = mv6_reset_flash,
823 .reset_bus = mv_reset_pci_bus,
826 static const struct mv_hw_ops mv_soc_ops = {
827 .phy_errata = mv6_phy_errata,
828 .enable_leds = mv_soc_enable_leds,
829 .read_preamp = mv_soc_read_preamp,
830 .reset_hc = mv_soc_reset_hc,
831 .reset_flash = mv_soc_reset_flash,
832 .reset_bus = mv_soc_reset_bus,
835 static const struct mv_hw_ops mv_soc_65n_ops = {
836 .phy_errata = mv_soc_65n_phy_errata,
837 .enable_leds = mv_soc_enable_leds,
838 .reset_hc = mv_soc_reset_hc,
839 .reset_flash = mv_soc_reset_flash,
840 .reset_bus = mv_soc_reset_bus,
844 * Functions
847 static inline void writelfl(unsigned long data, void __iomem *addr)
849 writel(data, addr);
850 (void) readl(addr); /* flush to avoid PCI posted write */
853 static inline unsigned int mv_hc_from_port(unsigned int port)
855 return port >> MV_PORT_HC_SHIFT;
858 static inline unsigned int mv_hardport_from_port(unsigned int port)
860 return port & MV_PORT_MASK;
864 * Consolidate some rather tricky bit shift calculations.
865 * This is hot-path stuff, so not a function.
866 * Simple code, with two return values, so macro rather than inline.
868 * port is the sole input, in range 0..7.
869 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
870 * hardport is the other output, in range 0..3.
872 * Note that port and hardport may be the same variable in some cases.
874 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
876 shift = mv_hc_from_port(port) * HC_SHIFT; \
877 hardport = mv_hardport_from_port(port); \
878 shift += hardport * 2; \
881 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
883 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
886 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
887 unsigned int port)
889 return mv_hc_base(base, mv_hc_from_port(port));
892 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
894 return mv_hc_base_from_port(base, port) +
895 MV_SATAHC_ARBTR_REG_SZ +
896 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
899 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
901 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
902 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
904 return hc_mmio + ofs;
907 static inline void __iomem *mv_host_base(struct ata_host *host)
909 struct mv_host_priv *hpriv = host->private_data;
910 return hpriv->base;
913 static inline void __iomem *mv_ap_base(struct ata_port *ap)
915 return mv_port_base(mv_host_base(ap->host), ap->port_no);
918 static inline int mv_get_hc_count(unsigned long port_flags)
920 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
924 * mv_save_cached_regs - (re-)initialize cached port registers
925 * @ap: the port whose registers we are caching
927 * Initialize the local cache of port registers,
928 * so that reading them over and over again can
929 * be avoided on the hotter paths of this driver.
930 * This saves a few microseconds each time we switch
931 * to/from EDMA mode to perform (eg.) a drive cache flush.
933 static void mv_save_cached_regs(struct ata_port *ap)
935 void __iomem *port_mmio = mv_ap_base(ap);
936 struct mv_port_priv *pp = ap->private_data;
938 pp->cached.fiscfg = readl(port_mmio + FISCFG);
939 pp->cached.ltmode = readl(port_mmio + LTMODE);
940 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
941 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
945 * mv_write_cached_reg - write to a cached port register
946 * @addr: hardware address of the register
947 * @old: pointer to cached value of the register
948 * @new: new value for the register
950 * Write a new value to a cached register,
951 * but only if the value is different from before.
953 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
955 if (new != *old) {
956 unsigned long laddr;
957 *old = new;
958 laddr = (long)addr & 0xffff;
959 if (laddr >= 0x300 && laddr <= 0x33c) {
960 laddr &= 0x000f;
961 if (laddr == 0x4 || laddr == 0xc) {
962 writelfl(new, addr); /* read after write */
963 return;
966 writel(new, addr); /* unaffected by the errata */
970 static void mv_set_edma_ptrs(void __iomem *port_mmio,
971 struct mv_host_priv *hpriv,
972 struct mv_port_priv *pp)
974 u32 index;
977 * initialize request queue
979 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
980 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
982 WARN_ON(pp->crqb_dma & 0x3ff);
983 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
984 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
985 port_mmio + EDMA_REQ_Q_IN_PTR);
986 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
989 * initialize response queue
991 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
992 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
994 WARN_ON(pp->crpb_dma & 0xff);
995 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
996 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
997 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
998 port_mmio + EDMA_RSP_Q_OUT_PTR);
1001 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1004 * When writing to the main_irq_mask in hardware,
1005 * we must ensure exclusivity between the interrupt coalescing bits
1006 * and the corresponding individual port DONE_IRQ bits.
1008 * Note that this register is really an "IRQ enable" register,
1009 * not an "IRQ mask" register as Marvell's naming might suggest.
1011 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1012 mask &= ~DONE_IRQ_0_3;
1013 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1014 mask &= ~DONE_IRQ_4_7;
1015 writelfl(mask, hpriv->main_irq_mask_addr);
1018 static void mv_set_main_irq_mask(struct ata_host *host,
1019 u32 disable_bits, u32 enable_bits)
1021 struct mv_host_priv *hpriv = host->private_data;
1022 u32 old_mask, new_mask;
1024 old_mask = hpriv->main_irq_mask;
1025 new_mask = (old_mask & ~disable_bits) | enable_bits;
1026 if (new_mask != old_mask) {
1027 hpriv->main_irq_mask = new_mask;
1028 mv_write_main_irq_mask(new_mask, hpriv);
1032 static void mv_enable_port_irqs(struct ata_port *ap,
1033 unsigned int port_bits)
1035 unsigned int shift, hardport, port = ap->port_no;
1036 u32 disable_bits, enable_bits;
1038 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1040 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1041 enable_bits = port_bits << shift;
1042 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1045 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1046 void __iomem *port_mmio,
1047 unsigned int port_irqs)
1049 struct mv_host_priv *hpriv = ap->host->private_data;
1050 int hardport = mv_hardport_from_port(ap->port_no);
1051 void __iomem *hc_mmio = mv_hc_base_from_port(
1052 mv_host_base(ap->host), ap->port_no);
1053 u32 hc_irq_cause;
1055 /* clear EDMA event indicators, if any */
1056 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1058 /* clear pending irq events */
1059 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1060 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1062 /* clear FIS IRQ Cause */
1063 if (IS_GEN_IIE(hpriv))
1064 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1066 mv_enable_port_irqs(ap, port_irqs);
1069 static void mv_set_irq_coalescing(struct ata_host *host,
1070 unsigned int count, unsigned int usecs)
1072 struct mv_host_priv *hpriv = host->private_data;
1073 void __iomem *mmio = hpriv->base, *hc_mmio;
1074 u32 coal_enable = 0;
1075 unsigned long flags;
1076 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1077 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1078 ALL_PORTS_COAL_DONE;
1080 /* Disable IRQ coalescing if either threshold is zero */
1081 if (!usecs || !count) {
1082 clks = count = 0;
1083 } else {
1084 /* Respect maximum limits of the hardware */
1085 clks = usecs * COAL_CLOCKS_PER_USEC;
1086 if (clks > MAX_COAL_TIME_THRESHOLD)
1087 clks = MAX_COAL_TIME_THRESHOLD;
1088 if (count > MAX_COAL_IO_COUNT)
1089 count = MAX_COAL_IO_COUNT;
1092 spin_lock_irqsave(&host->lock, flags);
1093 mv_set_main_irq_mask(host, coal_disable, 0);
1095 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1097 * GEN_II/GEN_IIE with dual host controllers:
1098 * one set of global thresholds for the entire chip.
1100 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1101 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1102 /* clear leftover coal IRQ bit */
1103 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1104 if (count)
1105 coal_enable = ALL_PORTS_COAL_DONE;
1106 clks = count = 0; /* force clearing of regular regs below */
1110 * All chips: independent thresholds for each HC on the chip.
1112 hc_mmio = mv_hc_base_from_port(mmio, 0);
1113 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1114 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1115 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1116 if (count)
1117 coal_enable |= PORTS_0_3_COAL_DONE;
1118 if (is_dual_hc) {
1119 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1120 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1121 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1122 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1123 if (count)
1124 coal_enable |= PORTS_4_7_COAL_DONE;
1127 mv_set_main_irq_mask(host, 0, coal_enable);
1128 spin_unlock_irqrestore(&host->lock, flags);
1132 * mv_start_edma - Enable eDMA engine
1133 * @base: port base address
1134 * @pp: port private data
1136 * Verify the local cache of the eDMA state is accurate with a
1137 * WARN_ON.
1139 * LOCKING:
1140 * Inherited from caller.
1142 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1143 struct mv_port_priv *pp, u8 protocol)
1145 int want_ncq = (protocol == ATA_PROT_NCQ);
1147 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1148 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1149 if (want_ncq != using_ncq)
1150 mv_stop_edma(ap);
1152 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1153 struct mv_host_priv *hpriv = ap->host->private_data;
1155 mv_edma_cfg(ap, want_ncq, 1);
1157 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1158 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1160 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1161 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1165 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1167 void __iomem *port_mmio = mv_ap_base(ap);
1168 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1169 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1170 int i;
1173 * Wait for the EDMA engine to finish transactions in progress.
1174 * No idea what a good "timeout" value might be, but measurements
1175 * indicate that it often requires hundreds of microseconds
1176 * with two drives in-use. So we use the 15msec value above
1177 * as a rough guess at what even more drives might require.
1179 for (i = 0; i < timeout; ++i) {
1180 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1181 if ((edma_stat & empty_idle) == empty_idle)
1182 break;
1183 udelay(per_loop);
1185 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1189 * mv_stop_edma_engine - Disable eDMA engine
1190 * @port_mmio: io base address
1192 * LOCKING:
1193 * Inherited from caller.
1195 static int mv_stop_edma_engine(void __iomem *port_mmio)
1197 int i;
1199 /* Disable eDMA. The disable bit auto clears. */
1200 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1202 /* Wait for the chip to confirm eDMA is off. */
1203 for (i = 10000; i > 0; i--) {
1204 u32 reg = readl(port_mmio + EDMA_CMD);
1205 if (!(reg & EDMA_EN))
1206 return 0;
1207 udelay(10);
1209 return -EIO;
1212 static int mv_stop_edma(struct ata_port *ap)
1214 void __iomem *port_mmio = mv_ap_base(ap);
1215 struct mv_port_priv *pp = ap->private_data;
1216 int err = 0;
1218 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1219 return 0;
1220 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1221 mv_wait_for_edma_empty_idle(ap);
1222 if (mv_stop_edma_engine(port_mmio)) {
1223 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1224 err = -EIO;
1226 mv_edma_cfg(ap, 0, 0);
1227 return err;
1230 #ifdef ATA_DEBUG
1231 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1233 int b, w;
1234 for (b = 0; b < bytes; ) {
1235 DPRINTK("%p: ", start + b);
1236 for (w = 0; b < bytes && w < 4; w++) {
1237 printk("%08x ", readl(start + b));
1238 b += sizeof(u32);
1240 printk("\n");
1243 #endif
1245 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1247 #ifdef ATA_DEBUG
1248 int b, w;
1249 u32 dw;
1250 for (b = 0; b < bytes; ) {
1251 DPRINTK("%02x: ", b);
1252 for (w = 0; b < bytes && w < 4; w++) {
1253 (void) pci_read_config_dword(pdev, b, &dw);
1254 printk("%08x ", dw);
1255 b += sizeof(u32);
1257 printk("\n");
1259 #endif
1261 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1262 struct pci_dev *pdev)
1264 #ifdef ATA_DEBUG
1265 void __iomem *hc_base = mv_hc_base(mmio_base,
1266 port >> MV_PORT_HC_SHIFT);
1267 void __iomem *port_base;
1268 int start_port, num_ports, p, start_hc, num_hcs, hc;
1270 if (0 > port) {
1271 start_hc = start_port = 0;
1272 num_ports = 8; /* shld be benign for 4 port devs */
1273 num_hcs = 2;
1274 } else {
1275 start_hc = port >> MV_PORT_HC_SHIFT;
1276 start_port = port;
1277 num_ports = num_hcs = 1;
1279 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1280 num_ports > 1 ? num_ports - 1 : start_port);
1282 if (NULL != pdev) {
1283 DPRINTK("PCI config space regs:\n");
1284 mv_dump_pci_cfg(pdev, 0x68);
1286 DPRINTK("PCI regs:\n");
1287 mv_dump_mem(mmio_base+0xc00, 0x3c);
1288 mv_dump_mem(mmio_base+0xd00, 0x34);
1289 mv_dump_mem(mmio_base+0xf00, 0x4);
1290 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1291 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1292 hc_base = mv_hc_base(mmio_base, hc);
1293 DPRINTK("HC regs (HC %i):\n", hc);
1294 mv_dump_mem(hc_base, 0x1c);
1296 for (p = start_port; p < start_port + num_ports; p++) {
1297 port_base = mv_port_base(mmio_base, p);
1298 DPRINTK("EDMA regs (port %i):\n", p);
1299 mv_dump_mem(port_base, 0x54);
1300 DPRINTK("SATA regs (port %i):\n", p);
1301 mv_dump_mem(port_base+0x300, 0x60);
1303 #endif
1306 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1308 unsigned int ofs;
1310 switch (sc_reg_in) {
1311 case SCR_STATUS:
1312 case SCR_CONTROL:
1313 case SCR_ERROR:
1314 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1315 break;
1316 case SCR_ACTIVE:
1317 ofs = SATA_ACTIVE; /* active is not with the others */
1318 break;
1319 default:
1320 ofs = 0xffffffffU;
1321 break;
1323 return ofs;
1326 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1328 unsigned int ofs = mv_scr_offset(sc_reg_in);
1330 if (ofs != 0xffffffffU) {
1331 *val = readl(mv_ap_base(link->ap) + ofs);
1332 return 0;
1333 } else
1334 return -EINVAL;
1337 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1339 unsigned int ofs = mv_scr_offset(sc_reg_in);
1341 if (ofs != 0xffffffffU) {
1342 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1343 if (sc_reg_in == SCR_CONTROL) {
1344 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1345 val |= 0xf000;
1347 writelfl(val, addr);
1348 return 0;
1349 } else
1350 return -EINVAL;
1353 static void mv6_dev_config(struct ata_device *adev)
1356 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1358 * Gen-II does not support NCQ over a port multiplier
1359 * (no FIS-based switching).
1361 if (adev->flags & ATA_DFLAG_NCQ) {
1362 if (sata_pmp_attached(adev->link->ap)) {
1363 adev->flags &= ~ATA_DFLAG_NCQ;
1364 ata_dev_printk(adev, KERN_INFO,
1365 "NCQ disabled for command-based switching\n");
1370 static int mv_qc_defer(struct ata_queued_cmd *qc)
1372 struct ata_link *link = qc->dev->link;
1373 struct ata_port *ap = link->ap;
1374 struct mv_port_priv *pp = ap->private_data;
1377 * Don't allow new commands if we're in a delayed EH state
1378 * for NCQ and/or FIS-based switching.
1380 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1381 return ATA_DEFER_PORT;
1383 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1384 * can run concurrently.
1385 * set excl_link when we want to send a PIO command in DMA mode
1386 * or a non-NCQ command in NCQ mode.
1387 * When we receive a command from that link, and there are no
1388 * outstanding commands, mark a flag to clear excl_link and let
1389 * the command go through.
1391 if (unlikely(ap->excl_link)) {
1392 if (link == ap->excl_link) {
1393 if (ap->nr_active_links)
1394 return ATA_DEFER_PORT;
1395 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1396 return 0;
1397 } else
1398 return ATA_DEFER_PORT;
1402 * If the port is completely idle, then allow the new qc.
1404 if (ap->nr_active_links == 0)
1405 return 0;
1408 * The port is operating in host queuing mode (EDMA) with NCQ
1409 * enabled, allow multiple NCQ commands. EDMA also allows
1410 * queueing multiple DMA commands but libata core currently
1411 * doesn't allow it.
1413 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1414 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1415 if (ata_is_ncq(qc->tf.protocol))
1416 return 0;
1417 else {
1418 ap->excl_link = link;
1419 return ATA_DEFER_PORT;
1423 return ATA_DEFER_PORT;
1426 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1428 struct mv_port_priv *pp = ap->private_data;
1429 void __iomem *port_mmio;
1431 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1432 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1433 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1435 ltmode = *old_ltmode & ~LTMODE_BIT8;
1436 haltcond = *old_haltcond | EDMA_ERR_DEV;
1438 if (want_fbs) {
1439 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1440 ltmode = *old_ltmode | LTMODE_BIT8;
1441 if (want_ncq)
1442 haltcond &= ~EDMA_ERR_DEV;
1443 else
1444 fiscfg |= FISCFG_WAIT_DEV_ERR;
1445 } else {
1446 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1449 port_mmio = mv_ap_base(ap);
1450 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1451 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1452 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1455 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1457 struct mv_host_priv *hpriv = ap->host->private_data;
1458 u32 old, new;
1460 old = readl(hpriv->base + GPIO_PORT_CTL);
1461 if (want_ncq)
1462 new = old | (1 << 22);
1463 else
1464 new = old & ~(1 << 22);
1465 if (new != old)
1466 writel(new, hpriv->base + GPIO_PORT_CTL);
1470 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1471 * @ap: Port being initialized
1473 * There are two DMA modes on these chips: basic DMA, and EDMA.
1475 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1476 * of basic DMA on the GEN_IIE versions of the chips.
1478 * This bit survives EDMA resets, and must be set for basic DMA
1479 * to function, and should be cleared when EDMA is active.
1481 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1483 struct mv_port_priv *pp = ap->private_data;
1484 u32 new, *old = &pp->cached.unknown_rsvd;
1486 if (enable_bmdma)
1487 new = *old | 1;
1488 else
1489 new = *old & ~1;
1490 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1494 * SOC chips have an issue whereby the HDD LEDs don't always blink
1495 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1496 * of the SOC takes care of it, generating a steady blink rate when
1497 * any drive on the chip is active.
1499 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1500 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1502 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1503 * LED operation works then, and provides better (more accurate) feedback.
1505 * Note that this code assumes that an SOC never has more than one HC onboard.
1507 static void mv_soc_led_blink_enable(struct ata_port *ap)
1509 struct ata_host *host = ap->host;
1510 struct mv_host_priv *hpriv = host->private_data;
1511 void __iomem *hc_mmio;
1512 u32 led_ctrl;
1514 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1515 return;
1516 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1517 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1518 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1519 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1522 static void mv_soc_led_blink_disable(struct ata_port *ap)
1524 struct ata_host *host = ap->host;
1525 struct mv_host_priv *hpriv = host->private_data;
1526 void __iomem *hc_mmio;
1527 u32 led_ctrl;
1528 unsigned int port;
1530 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1531 return;
1533 /* disable led-blink only if no ports are using NCQ */
1534 for (port = 0; port < hpriv->n_ports; port++) {
1535 struct ata_port *this_ap = host->ports[port];
1536 struct mv_port_priv *pp = this_ap->private_data;
1538 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1539 return;
1542 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1543 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1544 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1545 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1548 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1550 u32 cfg;
1551 struct mv_port_priv *pp = ap->private_data;
1552 struct mv_host_priv *hpriv = ap->host->private_data;
1553 void __iomem *port_mmio = mv_ap_base(ap);
1555 /* set up non-NCQ EDMA configuration */
1556 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1557 pp->pp_flags &=
1558 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1560 if (IS_GEN_I(hpriv))
1561 cfg |= (1 << 8); /* enab config burst size mask */
1563 else if (IS_GEN_II(hpriv)) {
1564 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1565 mv_60x1_errata_sata25(ap, want_ncq);
1567 } else if (IS_GEN_IIE(hpriv)) {
1568 int want_fbs = sata_pmp_attached(ap);
1570 * Possible future enhancement:
1572 * The chip can use FBS with non-NCQ, if we allow it,
1573 * But first we need to have the error handling in place
1574 * for this mode (datasheet section 7.3.15.4.2.3).
1575 * So disallow non-NCQ FBS for now.
1577 want_fbs &= want_ncq;
1579 mv_config_fbs(ap, want_ncq, want_fbs);
1581 if (want_fbs) {
1582 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1583 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1586 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1587 if (want_edma) {
1588 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1589 if (!IS_SOC(hpriv))
1590 cfg |= (1 << 18); /* enab early completion */
1592 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1593 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1594 mv_bmdma_enable_iie(ap, !want_edma);
1596 if (IS_SOC(hpriv)) {
1597 if (want_ncq)
1598 mv_soc_led_blink_enable(ap);
1599 else
1600 mv_soc_led_blink_disable(ap);
1604 if (want_ncq) {
1605 cfg |= EDMA_CFG_NCQ;
1606 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1609 writelfl(cfg, port_mmio + EDMA_CFG);
1612 static void mv_port_free_dma_mem(struct ata_port *ap)
1614 struct mv_host_priv *hpriv = ap->host->private_data;
1615 struct mv_port_priv *pp = ap->private_data;
1616 int tag;
1618 if (pp->crqb) {
1619 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1620 pp->crqb = NULL;
1622 if (pp->crpb) {
1623 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1624 pp->crpb = NULL;
1627 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1628 * For later hardware, we have one unique sg_tbl per NCQ tag.
1630 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1631 if (pp->sg_tbl[tag]) {
1632 if (tag == 0 || !IS_GEN_I(hpriv))
1633 dma_pool_free(hpriv->sg_tbl_pool,
1634 pp->sg_tbl[tag],
1635 pp->sg_tbl_dma[tag]);
1636 pp->sg_tbl[tag] = NULL;
1642 * mv_port_start - Port specific init/start routine.
1643 * @ap: ATA channel to manipulate
1645 * Allocate and point to DMA memory, init port private memory,
1646 * zero indices.
1648 * LOCKING:
1649 * Inherited from caller.
1651 static int mv_port_start(struct ata_port *ap)
1653 struct device *dev = ap->host->dev;
1654 struct mv_host_priv *hpriv = ap->host->private_data;
1655 struct mv_port_priv *pp;
1656 unsigned long flags;
1657 int tag;
1659 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1660 if (!pp)
1661 return -ENOMEM;
1662 ap->private_data = pp;
1664 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1665 if (!pp->crqb)
1666 return -ENOMEM;
1667 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1669 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1670 if (!pp->crpb)
1671 goto out_port_free_dma_mem;
1672 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1674 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1675 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1676 ap->flags |= ATA_FLAG_AN;
1678 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1679 * For later hardware, we need one unique sg_tbl per NCQ tag.
1681 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1682 if (tag == 0 || !IS_GEN_I(hpriv)) {
1683 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1684 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1685 if (!pp->sg_tbl[tag])
1686 goto out_port_free_dma_mem;
1687 } else {
1688 pp->sg_tbl[tag] = pp->sg_tbl[0];
1689 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1693 spin_lock_irqsave(ap->lock, flags);
1694 mv_save_cached_regs(ap);
1695 mv_edma_cfg(ap, 0, 0);
1696 spin_unlock_irqrestore(ap->lock, flags);
1698 return 0;
1700 out_port_free_dma_mem:
1701 mv_port_free_dma_mem(ap);
1702 return -ENOMEM;
1706 * mv_port_stop - Port specific cleanup/stop routine.
1707 * @ap: ATA channel to manipulate
1709 * Stop DMA, cleanup port memory.
1711 * LOCKING:
1712 * This routine uses the host lock to protect the DMA stop.
1714 static void mv_port_stop(struct ata_port *ap)
1716 unsigned long flags;
1718 spin_lock_irqsave(ap->lock, flags);
1719 mv_stop_edma(ap);
1720 mv_enable_port_irqs(ap, 0);
1721 spin_unlock_irqrestore(ap->lock, flags);
1722 mv_port_free_dma_mem(ap);
1726 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1727 * @qc: queued command whose SG list to source from
1729 * Populate the SG list and mark the last entry.
1731 * LOCKING:
1732 * Inherited from caller.
1734 static void mv_fill_sg(struct ata_queued_cmd *qc)
1736 struct mv_port_priv *pp = qc->ap->private_data;
1737 struct scatterlist *sg;
1738 struct mv_sg *mv_sg, *last_sg = NULL;
1739 unsigned int si;
1741 mv_sg = pp->sg_tbl[qc->tag];
1742 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1743 dma_addr_t addr = sg_dma_address(sg);
1744 u32 sg_len = sg_dma_len(sg);
1746 while (sg_len) {
1747 u32 offset = addr & 0xffff;
1748 u32 len = sg_len;
1750 if (offset + len > 0x10000)
1751 len = 0x10000 - offset;
1753 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1754 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1755 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1756 mv_sg->reserved = 0;
1758 sg_len -= len;
1759 addr += len;
1761 last_sg = mv_sg;
1762 mv_sg++;
1766 if (likely(last_sg))
1767 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1768 mb(); /* ensure data structure is visible to the chipset */
1771 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1773 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1774 (last ? CRQB_CMD_LAST : 0);
1775 *cmdw = cpu_to_le16(tmp);
1779 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1780 * @ap: Port associated with this ATA transaction.
1782 * We need this only for ATAPI bmdma transactions,
1783 * as otherwise we experience spurious interrupts
1784 * after libata-sff handles the bmdma interrupts.
1786 static void mv_sff_irq_clear(struct ata_port *ap)
1788 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1792 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1793 * @qc: queued command to check for chipset/DMA compatibility.
1795 * The bmdma engines cannot handle speculative data sizes
1796 * (bytecount under/over flow). So only allow DMA for
1797 * data transfer commands with known data sizes.
1799 * LOCKING:
1800 * Inherited from caller.
1802 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1804 struct scsi_cmnd *scmd = qc->scsicmd;
1806 if (scmd) {
1807 switch (scmd->cmnd[0]) {
1808 case READ_6:
1809 case READ_10:
1810 case READ_12:
1811 case WRITE_6:
1812 case WRITE_10:
1813 case WRITE_12:
1814 case GPCMD_READ_CD:
1815 case GPCMD_SEND_DVD_STRUCTURE:
1816 case GPCMD_SEND_CUE_SHEET:
1817 return 0; /* DMA is safe */
1820 return -EOPNOTSUPP; /* use PIO instead */
1824 * mv_bmdma_setup - Set up BMDMA transaction
1825 * @qc: queued command to prepare DMA for.
1827 * LOCKING:
1828 * Inherited from caller.
1830 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1832 struct ata_port *ap = qc->ap;
1833 void __iomem *port_mmio = mv_ap_base(ap);
1834 struct mv_port_priv *pp = ap->private_data;
1836 mv_fill_sg(qc);
1838 /* clear all DMA cmd bits */
1839 writel(0, port_mmio + BMDMA_CMD);
1841 /* load PRD table addr. */
1842 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1843 port_mmio + BMDMA_PRD_HIGH);
1844 writelfl(pp->sg_tbl_dma[qc->tag],
1845 port_mmio + BMDMA_PRD_LOW);
1847 /* issue r/w command */
1848 ap->ops->sff_exec_command(ap, &qc->tf);
1852 * mv_bmdma_start - Start a BMDMA transaction
1853 * @qc: queued command to start DMA on.
1855 * LOCKING:
1856 * Inherited from caller.
1858 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1860 struct ata_port *ap = qc->ap;
1861 void __iomem *port_mmio = mv_ap_base(ap);
1862 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1863 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1865 /* start host DMA transaction */
1866 writelfl(cmd, port_mmio + BMDMA_CMD);
1870 * mv_bmdma_stop - Stop BMDMA transfer
1871 * @qc: queued command to stop DMA on.
1873 * Clears the ATA_DMA_START flag in the bmdma control register
1875 * LOCKING:
1876 * Inherited from caller.
1878 static void mv_bmdma_stop_ap(struct ata_port *ap)
1880 void __iomem *port_mmio = mv_ap_base(ap);
1881 u32 cmd;
1883 /* clear start/stop bit */
1884 cmd = readl(port_mmio + BMDMA_CMD);
1885 if (cmd & ATA_DMA_START) {
1886 cmd &= ~ATA_DMA_START;
1887 writelfl(cmd, port_mmio + BMDMA_CMD);
1889 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1890 ata_sff_dma_pause(ap);
1894 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1896 mv_bmdma_stop_ap(qc->ap);
1900 * mv_bmdma_status - Read BMDMA status
1901 * @ap: port for which to retrieve DMA status.
1903 * Read and return equivalent of the sff BMDMA status register.
1905 * LOCKING:
1906 * Inherited from caller.
1908 static u8 mv_bmdma_status(struct ata_port *ap)
1910 void __iomem *port_mmio = mv_ap_base(ap);
1911 u32 reg, status;
1914 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1915 * and the ATA_DMA_INTR bit doesn't exist.
1917 reg = readl(port_mmio + BMDMA_STATUS);
1918 if (reg & ATA_DMA_ACTIVE)
1919 status = ATA_DMA_ACTIVE;
1920 else if (reg & ATA_DMA_ERR)
1921 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1922 else {
1924 * Just because DMA_ACTIVE is 0 (DMA completed),
1925 * this does _not_ mean the device is "done".
1926 * So we should not yet be signalling ATA_DMA_INTR
1927 * in some cases. Eg. DSM/TRIM, and perhaps others.
1929 mv_bmdma_stop_ap(ap);
1930 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1931 status = 0;
1932 else
1933 status = ATA_DMA_INTR;
1935 return status;
1938 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1940 struct ata_taskfile *tf = &qc->tf;
1941 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1942 if (qc->dev->multi_count > 7) {
1943 switch (tf->command) {
1944 case ATA_CMD_WRITE_MULTI:
1945 tf->command = ATA_CMD_PIO_WRITE;
1946 break;
1947 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1948 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1949 /* fall through */
1950 case ATA_CMD_WRITE_MULTI_EXT:
1951 tf->command = ATA_CMD_PIO_WRITE_EXT;
1952 break;
1959 * mv_qc_prep - Host specific command preparation.
1960 * @qc: queued command to prepare
1962 * This routine simply redirects to the general purpose routine
1963 * if command is not DMA. Else, it handles prep of the CRQB
1964 * (command request block), does some sanity checking, and calls
1965 * the SG load routine.
1967 * LOCKING:
1968 * Inherited from caller.
1970 static void mv_qc_prep(struct ata_queued_cmd *qc)
1972 struct ata_port *ap = qc->ap;
1973 struct mv_port_priv *pp = ap->private_data;
1974 __le16 *cw;
1975 struct ata_taskfile *tf = &qc->tf;
1976 u16 flags = 0;
1977 unsigned in_index;
1979 switch (tf->protocol) {
1980 case ATA_PROT_DMA:
1981 if (tf->command == ATA_CMD_DSM)
1982 return;
1983 /* fall-thru */
1984 case ATA_PROT_NCQ:
1985 break; /* continue below */
1986 case ATA_PROT_PIO:
1987 mv_rw_multi_errata_sata24(qc);
1988 return;
1989 default:
1990 return;
1993 /* Fill in command request block
1995 if (!(tf->flags & ATA_TFLAG_WRITE))
1996 flags |= CRQB_FLAG_READ;
1997 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1998 flags |= qc->tag << CRQB_TAG_SHIFT;
1999 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2001 /* get current queue index from software */
2002 in_index = pp->req_idx;
2004 pp->crqb[in_index].sg_addr =
2005 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2006 pp->crqb[in_index].sg_addr_hi =
2007 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2008 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2010 cw = &pp->crqb[in_index].ata_cmd[0];
2012 /* Sadly, the CRQB cannot accomodate all registers--there are
2013 * only 11 bytes...so we must pick and choose required
2014 * registers based on the command. So, we drop feature and
2015 * hob_feature for [RW] DMA commands, but they are needed for
2016 * NCQ. NCQ will drop hob_nsect, which is not needed there
2017 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2019 switch (tf->command) {
2020 case ATA_CMD_READ:
2021 case ATA_CMD_READ_EXT:
2022 case ATA_CMD_WRITE:
2023 case ATA_CMD_WRITE_EXT:
2024 case ATA_CMD_WRITE_FUA_EXT:
2025 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2026 break;
2027 case ATA_CMD_FPDMA_READ:
2028 case ATA_CMD_FPDMA_WRITE:
2029 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2030 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2031 break;
2032 default:
2033 BUG_ON(tf->command);
2034 break;
2036 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2037 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2038 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2039 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2040 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2041 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2042 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2043 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2044 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2046 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2047 return;
2048 mv_fill_sg(qc);
2052 * mv_qc_prep_iie - Host specific command preparation.
2053 * @qc: queued command to prepare
2055 * This routine simply redirects to the general purpose routine
2056 * if command is not DMA. Else, it handles prep of the CRQB
2057 * (command request block), does some sanity checking, and calls
2058 * the SG load routine.
2060 * LOCKING:
2061 * Inherited from caller.
2063 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2065 struct ata_port *ap = qc->ap;
2066 struct mv_port_priv *pp = ap->private_data;
2067 struct mv_crqb_iie *crqb;
2068 struct ata_taskfile *tf = &qc->tf;
2069 unsigned in_index;
2070 u32 flags = 0;
2072 if ((tf->protocol != ATA_PROT_DMA) &&
2073 (tf->protocol != ATA_PROT_NCQ))
2074 return;
2075 if (tf->command == ATA_CMD_DSM)
2076 return; /* use bmdma for this */
2078 /* Fill in Gen IIE command request block */
2079 if (!(tf->flags & ATA_TFLAG_WRITE))
2080 flags |= CRQB_FLAG_READ;
2082 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2083 flags |= qc->tag << CRQB_TAG_SHIFT;
2084 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2085 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2087 /* get current queue index from software */
2088 in_index = pp->req_idx;
2090 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2091 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2092 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2093 crqb->flags = cpu_to_le32(flags);
2095 crqb->ata_cmd[0] = cpu_to_le32(
2096 (tf->command << 16) |
2097 (tf->feature << 24)
2099 crqb->ata_cmd[1] = cpu_to_le32(
2100 (tf->lbal << 0) |
2101 (tf->lbam << 8) |
2102 (tf->lbah << 16) |
2103 (tf->device << 24)
2105 crqb->ata_cmd[2] = cpu_to_le32(
2106 (tf->hob_lbal << 0) |
2107 (tf->hob_lbam << 8) |
2108 (tf->hob_lbah << 16) |
2109 (tf->hob_feature << 24)
2111 crqb->ata_cmd[3] = cpu_to_le32(
2112 (tf->nsect << 0) |
2113 (tf->hob_nsect << 8)
2116 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2117 return;
2118 mv_fill_sg(qc);
2122 * mv_sff_check_status - fetch device status, if valid
2123 * @ap: ATA port to fetch status from
2125 * When using command issue via mv_qc_issue_fis(),
2126 * the initial ATA_BUSY state does not show up in the
2127 * ATA status (shadow) register. This can confuse libata!
2129 * So we have a hook here to fake ATA_BUSY for that situation,
2130 * until the first time a BUSY, DRQ, or ERR bit is seen.
2132 * The rest of the time, it simply returns the ATA status register.
2134 static u8 mv_sff_check_status(struct ata_port *ap)
2136 u8 stat = ioread8(ap->ioaddr.status_addr);
2137 struct mv_port_priv *pp = ap->private_data;
2139 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2140 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2141 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2142 else
2143 stat = ATA_BUSY;
2145 return stat;
2149 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2150 * @fis: fis to be sent
2151 * @nwords: number of 32-bit words in the fis
2153 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2155 void __iomem *port_mmio = mv_ap_base(ap);
2156 u32 ifctl, old_ifctl, ifstat;
2157 int i, timeout = 200, final_word = nwords - 1;
2159 /* Initiate FIS transmission mode */
2160 old_ifctl = readl(port_mmio + SATA_IFCTL);
2161 ifctl = 0x100 | (old_ifctl & 0xf);
2162 writelfl(ifctl, port_mmio + SATA_IFCTL);
2164 /* Send all words of the FIS except for the final word */
2165 for (i = 0; i < final_word; ++i)
2166 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2168 /* Flag end-of-transmission, and then send the final word */
2169 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2170 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2173 * Wait for FIS transmission to complete.
2174 * This typically takes just a single iteration.
2176 do {
2177 ifstat = readl(port_mmio + SATA_IFSTAT);
2178 } while (!(ifstat & 0x1000) && --timeout);
2180 /* Restore original port configuration */
2181 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2183 /* See if it worked */
2184 if ((ifstat & 0x3000) != 0x1000) {
2185 ata_port_printk(ap, KERN_WARNING,
2186 "%s transmission error, ifstat=%08x\n",
2187 __func__, ifstat);
2188 return AC_ERR_OTHER;
2190 return 0;
2194 * mv_qc_issue_fis - Issue a command directly as a FIS
2195 * @qc: queued command to start
2197 * Note that the ATA shadow registers are not updated
2198 * after command issue, so the device will appear "READY"
2199 * if polled, even while it is BUSY processing the command.
2201 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2203 * Note: we don't get updated shadow regs on *completion*
2204 * of non-data commands. So avoid sending them via this function,
2205 * as they will appear to have completed immediately.
2207 * GEN_IIE has special registers that we could get the result tf from,
2208 * but earlier chipsets do not. For now, we ignore those registers.
2210 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2212 struct ata_port *ap = qc->ap;
2213 struct mv_port_priv *pp = ap->private_data;
2214 struct ata_link *link = qc->dev->link;
2215 u32 fis[5];
2216 int err = 0;
2218 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2219 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2220 if (err)
2221 return err;
2223 switch (qc->tf.protocol) {
2224 case ATAPI_PROT_PIO:
2225 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2226 /* fall through */
2227 case ATAPI_PROT_NODATA:
2228 ap->hsm_task_state = HSM_ST_FIRST;
2229 break;
2230 case ATA_PROT_PIO:
2231 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2232 if (qc->tf.flags & ATA_TFLAG_WRITE)
2233 ap->hsm_task_state = HSM_ST_FIRST;
2234 else
2235 ap->hsm_task_state = HSM_ST;
2236 break;
2237 default:
2238 ap->hsm_task_state = HSM_ST_LAST;
2239 break;
2242 if (qc->tf.flags & ATA_TFLAG_POLLING)
2243 ata_sff_queue_pio_task(link, 0);
2244 return 0;
2248 * mv_qc_issue - Initiate a command to the host
2249 * @qc: queued command to start
2251 * This routine simply redirects to the general purpose routine
2252 * if command is not DMA. Else, it sanity checks our local
2253 * caches of the request producer/consumer indices then enables
2254 * DMA and bumps the request producer index.
2256 * LOCKING:
2257 * Inherited from caller.
2259 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2261 static int limit_warnings = 10;
2262 struct ata_port *ap = qc->ap;
2263 void __iomem *port_mmio = mv_ap_base(ap);
2264 struct mv_port_priv *pp = ap->private_data;
2265 u32 in_index;
2266 unsigned int port_irqs;
2268 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2270 switch (qc->tf.protocol) {
2271 case ATA_PROT_DMA:
2272 if (qc->tf.command == ATA_CMD_DSM) {
2273 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2274 return AC_ERR_OTHER;
2275 break; /* use bmdma for this */
2277 /* fall thru */
2278 case ATA_PROT_NCQ:
2279 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2280 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2281 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2283 /* Write the request in pointer to kick the EDMA to life */
2284 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2285 port_mmio + EDMA_REQ_Q_IN_PTR);
2286 return 0;
2288 case ATA_PROT_PIO:
2290 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2292 * Someday, we might implement special polling workarounds
2293 * for these, but it all seems rather unnecessary since we
2294 * normally use only DMA for commands which transfer more
2295 * than a single block of data.
2297 * Much of the time, this could just work regardless.
2298 * So for now, just log the incident, and allow the attempt.
2300 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2301 --limit_warnings;
2302 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2303 ": attempting PIO w/multiple DRQ: "
2304 "this may fail due to h/w errata\n");
2306 /* drop through */
2307 case ATA_PROT_NODATA:
2308 case ATAPI_PROT_PIO:
2309 case ATAPI_PROT_NODATA:
2310 if (ap->flags & ATA_FLAG_PIO_POLLING)
2311 qc->tf.flags |= ATA_TFLAG_POLLING;
2312 break;
2315 if (qc->tf.flags & ATA_TFLAG_POLLING)
2316 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2317 else
2318 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2321 * We're about to send a non-EDMA capable command to the
2322 * port. Turn off EDMA so there won't be problems accessing
2323 * shadow block, etc registers.
2325 mv_stop_edma(ap);
2326 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2327 mv_pmp_select(ap, qc->dev->link->pmp);
2329 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2330 struct mv_host_priv *hpriv = ap->host->private_data;
2331 if (IS_GEN_II(hpriv))
2332 return mv_qc_issue_fis(qc);
2334 return ata_bmdma_qc_issue(qc);
2337 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2339 struct mv_port_priv *pp = ap->private_data;
2340 struct ata_queued_cmd *qc;
2342 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2343 return NULL;
2344 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2345 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2346 return qc;
2347 return NULL;
2350 static void mv_pmp_error_handler(struct ata_port *ap)
2352 unsigned int pmp, pmp_map;
2353 struct mv_port_priv *pp = ap->private_data;
2355 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2357 * Perform NCQ error analysis on failed PMPs
2358 * before we freeze the port entirely.
2360 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2362 pmp_map = pp->delayed_eh_pmp_map;
2363 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2364 for (pmp = 0; pmp_map != 0; pmp++) {
2365 unsigned int this_pmp = (1 << pmp);
2366 if (pmp_map & this_pmp) {
2367 struct ata_link *link = &ap->pmp_link[pmp];
2368 pmp_map &= ~this_pmp;
2369 ata_eh_analyze_ncq_error(link);
2372 ata_port_freeze(ap);
2374 sata_pmp_error_handler(ap);
2377 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2379 void __iomem *port_mmio = mv_ap_base(ap);
2381 return readl(port_mmio + SATA_TESTCTL) >> 16;
2384 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2386 struct ata_eh_info *ehi;
2387 unsigned int pmp;
2390 * Initialize EH info for PMPs which saw device errors
2392 ehi = &ap->link.eh_info;
2393 for (pmp = 0; pmp_map != 0; pmp++) {
2394 unsigned int this_pmp = (1 << pmp);
2395 if (pmp_map & this_pmp) {
2396 struct ata_link *link = &ap->pmp_link[pmp];
2398 pmp_map &= ~this_pmp;
2399 ehi = &link->eh_info;
2400 ata_ehi_clear_desc(ehi);
2401 ata_ehi_push_desc(ehi, "dev err");
2402 ehi->err_mask |= AC_ERR_DEV;
2403 ehi->action |= ATA_EH_RESET;
2404 ata_link_abort(link);
2409 static int mv_req_q_empty(struct ata_port *ap)
2411 void __iomem *port_mmio = mv_ap_base(ap);
2412 u32 in_ptr, out_ptr;
2414 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2415 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2416 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2417 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2418 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2421 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2423 struct mv_port_priv *pp = ap->private_data;
2424 int failed_links;
2425 unsigned int old_map, new_map;
2428 * Device error during FBS+NCQ operation:
2430 * Set a port flag to prevent further I/O being enqueued.
2431 * Leave the EDMA running to drain outstanding commands from this port.
2432 * Perform the post-mortem/EH only when all responses are complete.
2433 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2435 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2436 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2437 pp->delayed_eh_pmp_map = 0;
2439 old_map = pp->delayed_eh_pmp_map;
2440 new_map = old_map | mv_get_err_pmp_map(ap);
2442 if (old_map != new_map) {
2443 pp->delayed_eh_pmp_map = new_map;
2444 mv_pmp_eh_prep(ap, new_map & ~old_map);
2446 failed_links = hweight16(new_map);
2448 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2449 "failed_links=%d nr_active_links=%d\n",
2450 __func__, pp->delayed_eh_pmp_map,
2451 ap->qc_active, failed_links,
2452 ap->nr_active_links);
2454 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2455 mv_process_crpb_entries(ap, pp);
2456 mv_stop_edma(ap);
2457 mv_eh_freeze(ap);
2458 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2459 return 1; /* handled */
2461 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2462 return 1; /* handled */
2465 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2468 * Possible future enhancement:
2470 * FBS+non-NCQ operation is not yet implemented.
2471 * See related notes in mv_edma_cfg().
2473 * Device error during FBS+non-NCQ operation:
2475 * We need to snapshot the shadow registers for each failed command.
2476 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2478 return 0; /* not handled */
2481 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2483 struct mv_port_priv *pp = ap->private_data;
2485 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2486 return 0; /* EDMA was not active: not handled */
2487 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2488 return 0; /* FBS was not active: not handled */
2490 if (!(edma_err_cause & EDMA_ERR_DEV))
2491 return 0; /* non DEV error: not handled */
2492 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2493 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2494 return 0; /* other problems: not handled */
2496 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2498 * EDMA should NOT have self-disabled for this case.
2499 * If it did, then something is wrong elsewhere,
2500 * and we cannot handle it here.
2502 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2503 ata_port_printk(ap, KERN_WARNING,
2504 "%s: err_cause=0x%x pp_flags=0x%x\n",
2505 __func__, edma_err_cause, pp->pp_flags);
2506 return 0; /* not handled */
2508 return mv_handle_fbs_ncq_dev_err(ap);
2509 } else {
2511 * EDMA should have self-disabled for this case.
2512 * If it did not, then something is wrong elsewhere,
2513 * and we cannot handle it here.
2515 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2516 ata_port_printk(ap, KERN_WARNING,
2517 "%s: err_cause=0x%x pp_flags=0x%x\n",
2518 __func__, edma_err_cause, pp->pp_flags);
2519 return 0; /* not handled */
2521 return mv_handle_fbs_non_ncq_dev_err(ap);
2523 return 0; /* not handled */
2526 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2528 struct ata_eh_info *ehi = &ap->link.eh_info;
2529 char *when = "idle";
2531 ata_ehi_clear_desc(ehi);
2532 if (edma_was_enabled) {
2533 when = "EDMA enabled";
2534 } else {
2535 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2536 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2537 when = "polling";
2539 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2540 ehi->err_mask |= AC_ERR_OTHER;
2541 ehi->action |= ATA_EH_RESET;
2542 ata_port_freeze(ap);
2546 * mv_err_intr - Handle error interrupts on the port
2547 * @ap: ATA channel to manipulate
2549 * Most cases require a full reset of the chip's state machine,
2550 * which also performs a COMRESET.
2551 * Also, if the port disabled DMA, update our cached copy to match.
2553 * LOCKING:
2554 * Inherited from caller.
2556 static void mv_err_intr(struct ata_port *ap)
2558 void __iomem *port_mmio = mv_ap_base(ap);
2559 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2560 u32 fis_cause = 0;
2561 struct mv_port_priv *pp = ap->private_data;
2562 struct mv_host_priv *hpriv = ap->host->private_data;
2563 unsigned int action = 0, err_mask = 0;
2564 struct ata_eh_info *ehi = &ap->link.eh_info;
2565 struct ata_queued_cmd *qc;
2566 int abort = 0;
2569 * Read and clear the SError and err_cause bits.
2570 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2571 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2573 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2574 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2576 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2577 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2578 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2579 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2581 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2583 if (edma_err_cause & EDMA_ERR_DEV) {
2585 * Device errors during FIS-based switching operation
2586 * require special handling.
2588 if (mv_handle_dev_err(ap, edma_err_cause))
2589 return;
2592 qc = mv_get_active_qc(ap);
2593 ata_ehi_clear_desc(ehi);
2594 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2595 edma_err_cause, pp->pp_flags);
2597 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2598 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2599 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2600 u32 ec = edma_err_cause &
2601 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2602 sata_async_notification(ap);
2603 if (!ec)
2604 return; /* Just an AN; no need for the nukes */
2605 ata_ehi_push_desc(ehi, "SDB notify");
2609 * All generations share these EDMA error cause bits:
2611 if (edma_err_cause & EDMA_ERR_DEV) {
2612 err_mask |= AC_ERR_DEV;
2613 action |= ATA_EH_RESET;
2614 ata_ehi_push_desc(ehi, "dev error");
2616 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2617 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2618 EDMA_ERR_INTRL_PAR)) {
2619 err_mask |= AC_ERR_ATA_BUS;
2620 action |= ATA_EH_RESET;
2621 ata_ehi_push_desc(ehi, "parity error");
2623 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2624 ata_ehi_hotplugged(ehi);
2625 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2626 "dev disconnect" : "dev connect");
2627 action |= ATA_EH_RESET;
2631 * Gen-I has a different SELF_DIS bit,
2632 * different FREEZE bits, and no SERR bit:
2634 if (IS_GEN_I(hpriv)) {
2635 eh_freeze_mask = EDMA_EH_FREEZE_5;
2636 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2637 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2638 ata_ehi_push_desc(ehi, "EDMA self-disable");
2640 } else {
2641 eh_freeze_mask = EDMA_EH_FREEZE;
2642 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2643 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2644 ata_ehi_push_desc(ehi, "EDMA self-disable");
2646 if (edma_err_cause & EDMA_ERR_SERR) {
2647 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2648 err_mask |= AC_ERR_ATA_BUS;
2649 action |= ATA_EH_RESET;
2653 if (!err_mask) {
2654 err_mask = AC_ERR_OTHER;
2655 action |= ATA_EH_RESET;
2658 ehi->serror |= serr;
2659 ehi->action |= action;
2661 if (qc)
2662 qc->err_mask |= err_mask;
2663 else
2664 ehi->err_mask |= err_mask;
2666 if (err_mask == AC_ERR_DEV) {
2668 * Cannot do ata_port_freeze() here,
2669 * because it would kill PIO access,
2670 * which is needed for further diagnosis.
2672 mv_eh_freeze(ap);
2673 abort = 1;
2674 } else if (edma_err_cause & eh_freeze_mask) {
2676 * Note to self: ata_port_freeze() calls ata_port_abort()
2678 ata_port_freeze(ap);
2679 } else {
2680 abort = 1;
2683 if (abort) {
2684 if (qc)
2685 ata_link_abort(qc->dev->link);
2686 else
2687 ata_port_abort(ap);
2691 static void mv_process_crpb_response(struct ata_port *ap,
2692 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2694 u8 ata_status;
2695 u16 edma_status = le16_to_cpu(response->flags);
2696 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2698 if (unlikely(!qc)) {
2699 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2700 __func__, tag);
2701 return;
2705 * edma_status from a response queue entry:
2706 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2707 * MSB is saved ATA status from command completion.
2709 if (!ncq_enabled) {
2710 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2711 if (err_cause) {
2713 * Error will be seen/handled by
2714 * mv_err_intr(). So do nothing at all here.
2716 return;
2719 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2720 if (!ac_err_mask(ata_status))
2721 ata_qc_complete(qc);
2722 /* else: leave it for mv_err_intr() */
2725 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2727 void __iomem *port_mmio = mv_ap_base(ap);
2728 struct mv_host_priv *hpriv = ap->host->private_data;
2729 u32 in_index;
2730 bool work_done = false;
2731 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2733 /* Get the hardware queue position index */
2734 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2735 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2737 /* Process new responses from since the last time we looked */
2738 while (in_index != pp->resp_idx) {
2739 unsigned int tag;
2740 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2742 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2744 if (IS_GEN_I(hpriv)) {
2745 /* 50xx: no NCQ, only one command active at a time */
2746 tag = ap->link.active_tag;
2747 } else {
2748 /* Gen II/IIE: get command tag from CRPB entry */
2749 tag = le16_to_cpu(response->id) & 0x1f;
2751 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2752 work_done = true;
2755 /* Update the software queue position index in hardware */
2756 if (work_done)
2757 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2758 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2759 port_mmio + EDMA_RSP_Q_OUT_PTR);
2762 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2764 struct mv_port_priv *pp;
2765 int edma_was_enabled;
2768 * Grab a snapshot of the EDMA_EN flag setting,
2769 * so that we have a consistent view for this port,
2770 * even if something we call of our routines changes it.
2772 pp = ap->private_data;
2773 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2775 * Process completed CRPB response(s) before other events.
2777 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2778 mv_process_crpb_entries(ap, pp);
2779 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2780 mv_handle_fbs_ncq_dev_err(ap);
2783 * Handle chip-reported errors, or continue on to handle PIO.
2785 if (unlikely(port_cause & ERR_IRQ)) {
2786 mv_err_intr(ap);
2787 } else if (!edma_was_enabled) {
2788 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2789 if (qc)
2790 ata_bmdma_port_intr(ap, qc);
2791 else
2792 mv_unexpected_intr(ap, edma_was_enabled);
2797 * mv_host_intr - Handle all interrupts on the given host controller
2798 * @host: host specific structure
2799 * @main_irq_cause: Main interrupt cause register for the chip.
2801 * LOCKING:
2802 * Inherited from caller.
2804 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2806 struct mv_host_priv *hpriv = host->private_data;
2807 void __iomem *mmio = hpriv->base, *hc_mmio;
2808 unsigned int handled = 0, port;
2810 /* If asserted, clear the "all ports" IRQ coalescing bit */
2811 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2812 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2814 for (port = 0; port < hpriv->n_ports; port++) {
2815 struct ata_port *ap = host->ports[port];
2816 unsigned int p, shift, hardport, port_cause;
2818 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2820 * Each hc within the host has its own hc_irq_cause register,
2821 * where the interrupting ports bits get ack'd.
2823 if (hardport == 0) { /* first port on this hc ? */
2824 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2825 u32 port_mask, ack_irqs;
2827 * Skip this entire hc if nothing pending for any ports
2829 if (!hc_cause) {
2830 port += MV_PORTS_PER_HC - 1;
2831 continue;
2834 * We don't need/want to read the hc_irq_cause register,
2835 * because doing so hurts performance, and
2836 * main_irq_cause already gives us everything we need.
2838 * But we do have to *write* to the hc_irq_cause to ack
2839 * the ports that we are handling this time through.
2841 * This requires that we create a bitmap for those
2842 * ports which interrupted us, and use that bitmap
2843 * to ack (only) those ports via hc_irq_cause.
2845 ack_irqs = 0;
2846 if (hc_cause & PORTS_0_3_COAL_DONE)
2847 ack_irqs = HC_COAL_IRQ;
2848 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2849 if ((port + p) >= hpriv->n_ports)
2850 break;
2851 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2852 if (hc_cause & port_mask)
2853 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2855 hc_mmio = mv_hc_base_from_port(mmio, port);
2856 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2857 handled = 1;
2860 * Handle interrupts signalled for this port:
2862 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2863 if (port_cause)
2864 mv_port_intr(ap, port_cause);
2866 return handled;
2869 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2871 struct mv_host_priv *hpriv = host->private_data;
2872 struct ata_port *ap;
2873 struct ata_queued_cmd *qc;
2874 struct ata_eh_info *ehi;
2875 unsigned int i, err_mask, printed = 0;
2876 u32 err_cause;
2878 err_cause = readl(mmio + hpriv->irq_cause_offset);
2880 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2881 err_cause);
2883 DPRINTK("All regs @ PCI error\n");
2884 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2886 writelfl(0, mmio + hpriv->irq_cause_offset);
2888 for (i = 0; i < host->n_ports; i++) {
2889 ap = host->ports[i];
2890 if (!ata_link_offline(&ap->link)) {
2891 ehi = &ap->link.eh_info;
2892 ata_ehi_clear_desc(ehi);
2893 if (!printed++)
2894 ata_ehi_push_desc(ehi,
2895 "PCI err cause 0x%08x", err_cause);
2896 err_mask = AC_ERR_HOST_BUS;
2897 ehi->action = ATA_EH_RESET;
2898 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2899 if (qc)
2900 qc->err_mask |= err_mask;
2901 else
2902 ehi->err_mask |= err_mask;
2904 ata_port_freeze(ap);
2907 return 1; /* handled */
2911 * mv_interrupt - Main interrupt event handler
2912 * @irq: unused
2913 * @dev_instance: private data; in this case the host structure
2915 * Read the read only register to determine if any host
2916 * controllers have pending interrupts. If so, call lower level
2917 * routine to handle. Also check for PCI errors which are only
2918 * reported here.
2920 * LOCKING:
2921 * This routine holds the host lock while processing pending
2922 * interrupts.
2924 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2926 struct ata_host *host = dev_instance;
2927 struct mv_host_priv *hpriv = host->private_data;
2928 unsigned int handled = 0;
2929 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2930 u32 main_irq_cause, pending_irqs;
2932 spin_lock(&host->lock);
2934 /* for MSI: block new interrupts while in here */
2935 if (using_msi)
2936 mv_write_main_irq_mask(0, hpriv);
2938 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2939 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2941 * Deal with cases where we either have nothing pending, or have read
2942 * a bogus register value which can indicate HW removal or PCI fault.
2944 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2945 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2946 handled = mv_pci_error(host, hpriv->base);
2947 else
2948 handled = mv_host_intr(host, pending_irqs);
2951 /* for MSI: unmask; interrupt cause bits will retrigger now */
2952 if (using_msi)
2953 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2955 spin_unlock(&host->lock);
2957 return IRQ_RETVAL(handled);
2960 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2962 unsigned int ofs;
2964 switch (sc_reg_in) {
2965 case SCR_STATUS:
2966 case SCR_ERROR:
2967 case SCR_CONTROL:
2968 ofs = sc_reg_in * sizeof(u32);
2969 break;
2970 default:
2971 ofs = 0xffffffffU;
2972 break;
2974 return ofs;
2977 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2979 struct mv_host_priv *hpriv = link->ap->host->private_data;
2980 void __iomem *mmio = hpriv->base;
2981 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2982 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2984 if (ofs != 0xffffffffU) {
2985 *val = readl(addr + ofs);
2986 return 0;
2987 } else
2988 return -EINVAL;
2991 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2993 struct mv_host_priv *hpriv = link->ap->host->private_data;
2994 void __iomem *mmio = hpriv->base;
2995 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2996 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2998 if (ofs != 0xffffffffU) {
2999 writelfl(val, addr + ofs);
3000 return 0;
3001 } else
3002 return -EINVAL;
3005 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3007 struct pci_dev *pdev = to_pci_dev(host->dev);
3008 int early_5080;
3010 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3012 if (!early_5080) {
3013 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3014 tmp |= (1 << 0);
3015 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3018 mv_reset_pci_bus(host, mmio);
3021 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3023 writel(0x0fcfffff, mmio + FLASH_CTL);
3026 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3027 void __iomem *mmio)
3029 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3030 u32 tmp;
3032 tmp = readl(phy_mmio + MV5_PHY_MODE);
3034 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3035 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3038 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3040 u32 tmp;
3042 writel(0, mmio + GPIO_PORT_CTL);
3045 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3046 tmp |= ~(1 << 0);
3047 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3050 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3051 unsigned int port)
3053 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3054 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3055 u32 tmp;
3056 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3058 if (fix_apm_sq) {
3059 tmp = readl(phy_mmio + MV5_LTMODE);
3060 tmp |= (1 << 19);
3061 writel(tmp, phy_mmio + MV5_LTMODE);
3063 tmp = readl(phy_mmio + MV5_PHY_CTL);
3064 tmp &= ~0x3;
3065 tmp |= 0x1;
3066 writel(tmp, phy_mmio + MV5_PHY_CTL);
3069 tmp = readl(phy_mmio + MV5_PHY_MODE);
3070 tmp &= ~mask;
3071 tmp |= hpriv->signal[port].pre;
3072 tmp |= hpriv->signal[port].amps;
3073 writel(tmp, phy_mmio + MV5_PHY_MODE);
3077 #undef ZERO
3078 #define ZERO(reg) writel(0, port_mmio + (reg))
3079 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3080 unsigned int port)
3082 void __iomem *port_mmio = mv_port_base(mmio, port);
3084 mv_reset_channel(hpriv, mmio, port);
3086 ZERO(0x028); /* command */
3087 writel(0x11f, port_mmio + EDMA_CFG);
3088 ZERO(0x004); /* timer */
3089 ZERO(0x008); /* irq err cause */
3090 ZERO(0x00c); /* irq err mask */
3091 ZERO(0x010); /* rq bah */
3092 ZERO(0x014); /* rq inp */
3093 ZERO(0x018); /* rq outp */
3094 ZERO(0x01c); /* respq bah */
3095 ZERO(0x024); /* respq outp */
3096 ZERO(0x020); /* respq inp */
3097 ZERO(0x02c); /* test control */
3098 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3100 #undef ZERO
3102 #define ZERO(reg) writel(0, hc_mmio + (reg))
3103 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3104 unsigned int hc)
3106 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3107 u32 tmp;
3109 ZERO(0x00c);
3110 ZERO(0x010);
3111 ZERO(0x014);
3112 ZERO(0x018);
3114 tmp = readl(hc_mmio + 0x20);
3115 tmp &= 0x1c1c1c1c;
3116 tmp |= 0x03030303;
3117 writel(tmp, hc_mmio + 0x20);
3119 #undef ZERO
3121 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3122 unsigned int n_hc)
3124 unsigned int hc, port;
3126 for (hc = 0; hc < n_hc; hc++) {
3127 for (port = 0; port < MV_PORTS_PER_HC; port++)
3128 mv5_reset_hc_port(hpriv, mmio,
3129 (hc * MV_PORTS_PER_HC) + port);
3131 mv5_reset_one_hc(hpriv, mmio, hc);
3134 return 0;
3137 #undef ZERO
3138 #define ZERO(reg) writel(0, mmio + (reg))
3139 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3141 struct mv_host_priv *hpriv = host->private_data;
3142 u32 tmp;
3144 tmp = readl(mmio + MV_PCI_MODE);
3145 tmp &= 0xff00ffff;
3146 writel(tmp, mmio + MV_PCI_MODE);
3148 ZERO(MV_PCI_DISC_TIMER);
3149 ZERO(MV_PCI_MSI_TRIGGER);
3150 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3151 ZERO(MV_PCI_SERR_MASK);
3152 ZERO(hpriv->irq_cause_offset);
3153 ZERO(hpriv->irq_mask_offset);
3154 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3155 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3156 ZERO(MV_PCI_ERR_ATTRIBUTE);
3157 ZERO(MV_PCI_ERR_COMMAND);
3159 #undef ZERO
3161 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3163 u32 tmp;
3165 mv5_reset_flash(hpriv, mmio);
3167 tmp = readl(mmio + GPIO_PORT_CTL);
3168 tmp &= 0x3;
3169 tmp |= (1 << 5) | (1 << 6);
3170 writel(tmp, mmio + GPIO_PORT_CTL);
3174 * mv6_reset_hc - Perform the 6xxx global soft reset
3175 * @mmio: base address of the HBA
3177 * This routine only applies to 6xxx parts.
3179 * LOCKING:
3180 * Inherited from caller.
3182 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3183 unsigned int n_hc)
3185 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3186 int i, rc = 0;
3187 u32 t;
3189 /* Following procedure defined in PCI "main command and status
3190 * register" table.
3192 t = readl(reg);
3193 writel(t | STOP_PCI_MASTER, reg);
3195 for (i = 0; i < 1000; i++) {
3196 udelay(1);
3197 t = readl(reg);
3198 if (PCI_MASTER_EMPTY & t)
3199 break;
3201 if (!(PCI_MASTER_EMPTY & t)) {
3202 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3203 rc = 1;
3204 goto done;
3207 /* set reset */
3208 i = 5;
3209 do {
3210 writel(t | GLOB_SFT_RST, reg);
3211 t = readl(reg);
3212 udelay(1);
3213 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3215 if (!(GLOB_SFT_RST & t)) {
3216 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3217 rc = 1;
3218 goto done;
3221 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3222 i = 5;
3223 do {
3224 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3225 t = readl(reg);
3226 udelay(1);
3227 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3229 if (GLOB_SFT_RST & t) {
3230 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3231 rc = 1;
3233 done:
3234 return rc;
3237 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3238 void __iomem *mmio)
3240 void __iomem *port_mmio;
3241 u32 tmp;
3243 tmp = readl(mmio + RESET_CFG);
3244 if ((tmp & (1 << 0)) == 0) {
3245 hpriv->signal[idx].amps = 0x7 << 8;
3246 hpriv->signal[idx].pre = 0x1 << 5;
3247 return;
3250 port_mmio = mv_port_base(mmio, idx);
3251 tmp = readl(port_mmio + PHY_MODE2);
3253 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3254 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3257 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3259 writel(0x00000060, mmio + GPIO_PORT_CTL);
3262 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3263 unsigned int port)
3265 void __iomem *port_mmio = mv_port_base(mmio, port);
3267 u32 hp_flags = hpriv->hp_flags;
3268 int fix_phy_mode2 =
3269 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3270 int fix_phy_mode4 =
3271 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3272 u32 m2, m3;
3274 if (fix_phy_mode2) {
3275 m2 = readl(port_mmio + PHY_MODE2);
3276 m2 &= ~(1 << 16);
3277 m2 |= (1 << 31);
3278 writel(m2, port_mmio + PHY_MODE2);
3280 udelay(200);
3282 m2 = readl(port_mmio + PHY_MODE2);
3283 m2 &= ~((1 << 16) | (1 << 31));
3284 writel(m2, port_mmio + PHY_MODE2);
3286 udelay(200);
3290 * Gen-II/IIe PHY_MODE3 errata RM#2:
3291 * Achieves better receiver noise performance than the h/w default:
3293 m3 = readl(port_mmio + PHY_MODE3);
3294 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3296 /* Guideline 88F5182 (GL# SATA-S11) */
3297 if (IS_SOC(hpriv))
3298 m3 &= ~0x1c;
3300 if (fix_phy_mode4) {
3301 u32 m4 = readl(port_mmio + PHY_MODE4);
3302 if (IS_GEN_IIE(hpriv))
3303 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3304 else
3305 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3306 writel(m4, port_mmio + PHY_MODE4);
3308 writel(m3, port_mmio + PHY_MODE3);
3310 /* Revert values of pre-emphasis and signal amps to the saved ones */
3311 m2 = readl(port_mmio + PHY_MODE2);
3313 m2 &= ~MV_M2_PREAMP_MASK;
3314 m2 |= hpriv->signal[port].amps;
3315 m2 |= hpriv->signal[port].pre;
3316 m2 &= ~(1 << 16);
3318 /* according to mvSata 3.6.1, some IIE values are fixed */
3319 if (IS_GEN_IIE(hpriv)) {
3320 m2 &= ~0xC30FF01F;
3321 m2 |= 0x0000900F;
3324 writel(m2, port_mmio + PHY_MODE2);
3327 /* TODO: use the generic LED interface to configure the SATA Presence */
3328 /* & Acitivy LEDs on the board */
3329 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3330 void __iomem *mmio)
3332 return;
3335 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3336 void __iomem *mmio)
3338 void __iomem *port_mmio;
3339 u32 tmp;
3341 port_mmio = mv_port_base(mmio, idx);
3342 tmp = readl(port_mmio + PHY_MODE2);
3344 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3345 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3348 #undef ZERO
3349 #define ZERO(reg) writel(0, port_mmio + (reg))
3350 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3351 void __iomem *mmio, unsigned int port)
3353 void __iomem *port_mmio = mv_port_base(mmio, port);
3355 mv_reset_channel(hpriv, mmio, port);
3357 ZERO(0x028); /* command */
3358 writel(0x101f, port_mmio + EDMA_CFG);
3359 ZERO(0x004); /* timer */
3360 ZERO(0x008); /* irq err cause */
3361 ZERO(0x00c); /* irq err mask */
3362 ZERO(0x010); /* rq bah */
3363 ZERO(0x014); /* rq inp */
3364 ZERO(0x018); /* rq outp */
3365 ZERO(0x01c); /* respq bah */
3366 ZERO(0x024); /* respq outp */
3367 ZERO(0x020); /* respq inp */
3368 ZERO(0x02c); /* test control */
3369 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3372 #undef ZERO
3374 #define ZERO(reg) writel(0, hc_mmio + (reg))
3375 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3376 void __iomem *mmio)
3378 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3380 ZERO(0x00c);
3381 ZERO(0x010);
3382 ZERO(0x014);
3386 #undef ZERO
3388 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3389 void __iomem *mmio, unsigned int n_hc)
3391 unsigned int port;
3393 for (port = 0; port < hpriv->n_ports; port++)
3394 mv_soc_reset_hc_port(hpriv, mmio, port);
3396 mv_soc_reset_one_hc(hpriv, mmio);
3398 return 0;
3401 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3402 void __iomem *mmio)
3404 return;
3407 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3409 return;
3412 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3413 void __iomem *mmio, unsigned int port)
3415 void __iomem *port_mmio = mv_port_base(mmio, port);
3416 u32 reg;
3418 reg = readl(port_mmio + PHY_MODE3);
3419 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3420 reg |= (0x1 << 27);
3421 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3422 reg |= (0x1 << 29);
3423 writel(reg, port_mmio + PHY_MODE3);
3425 reg = readl(port_mmio + PHY_MODE4);
3426 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3427 reg |= (0x1 << 16);
3428 writel(reg, port_mmio + PHY_MODE4);
3430 reg = readl(port_mmio + PHY_MODE9_GEN2);
3431 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3432 reg |= 0x8;
3433 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3434 writel(reg, port_mmio + PHY_MODE9_GEN2);
3436 reg = readl(port_mmio + PHY_MODE9_GEN1);
3437 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3438 reg |= 0x8;
3439 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3440 writel(reg, port_mmio + PHY_MODE9_GEN1);
3444 * soc_is_65 - check if the soc is 65 nano device
3446 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3447 * register, this register should contain non-zero value and it exists only
3448 * in the 65 nano devices, when reading it from older devices we get 0.
3450 static bool soc_is_65n(struct mv_host_priv *hpriv)
3452 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3454 if (readl(port0_mmio + PHYCFG_OFS))
3455 return true;
3456 return false;
3459 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3461 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3463 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3464 if (want_gen2i)
3465 ifcfg |= (1 << 7); /* enable gen2i speed */
3466 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3469 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3470 unsigned int port_no)
3472 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3475 * The datasheet warns against setting EDMA_RESET when EDMA is active
3476 * (but doesn't say what the problem might be). So we first try
3477 * to disable the EDMA engine before doing the EDMA_RESET operation.
3479 mv_stop_edma_engine(port_mmio);
3480 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3482 if (!IS_GEN_I(hpriv)) {
3483 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3484 mv_setup_ifcfg(port_mmio, 1);
3487 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3488 * link, and physical layers. It resets all SATA interface registers
3489 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3491 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3492 udelay(25); /* allow reset propagation */
3493 writelfl(0, port_mmio + EDMA_CMD);
3495 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3497 if (IS_GEN_I(hpriv))
3498 mdelay(1);
3501 static void mv_pmp_select(struct ata_port *ap, int pmp)
3503 if (sata_pmp_supported(ap)) {
3504 void __iomem *port_mmio = mv_ap_base(ap);
3505 u32 reg = readl(port_mmio + SATA_IFCTL);
3506 int old = reg & 0xf;
3508 if (old != pmp) {
3509 reg = (reg & ~0xf) | pmp;
3510 writelfl(reg, port_mmio + SATA_IFCTL);
3515 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3516 unsigned long deadline)
3518 mv_pmp_select(link->ap, sata_srst_pmp(link));
3519 return sata_std_hardreset(link, class, deadline);
3522 static int mv_softreset(struct ata_link *link, unsigned int *class,
3523 unsigned long deadline)
3525 mv_pmp_select(link->ap, sata_srst_pmp(link));
3526 return ata_sff_softreset(link, class, deadline);
3529 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3530 unsigned long deadline)
3532 struct ata_port *ap = link->ap;
3533 struct mv_host_priv *hpriv = ap->host->private_data;
3534 struct mv_port_priv *pp = ap->private_data;
3535 void __iomem *mmio = hpriv->base;
3536 int rc, attempts = 0, extra = 0;
3537 u32 sstatus;
3538 bool online;
3540 mv_reset_channel(hpriv, mmio, ap->port_no);
3541 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3542 pp->pp_flags &=
3543 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3545 do {
3546 const unsigned long *timing =
3547 sata_ehc_deb_timing(&link->eh_context);
3549 rc = sata_link_hardreset(link, timing, deadline + extra,
3550 &online, NULL);
3551 rc = online ? -EAGAIN : rc;
3552 if (rc)
3553 return rc;
3554 sata_scr_read(link, SCR_STATUS, &sstatus);
3555 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3556 /* Force 1.5gb/s link speed and try again */
3557 mv_setup_ifcfg(mv_ap_base(ap), 0);
3558 if (time_after(jiffies + HZ, deadline))
3559 extra = HZ; /* only extend it once, max */
3561 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3562 mv_save_cached_regs(ap);
3563 mv_edma_cfg(ap, 0, 0);
3565 return rc;
3568 static void mv_eh_freeze(struct ata_port *ap)
3570 mv_stop_edma(ap);
3571 mv_enable_port_irqs(ap, 0);
3574 static void mv_eh_thaw(struct ata_port *ap)
3576 struct mv_host_priv *hpriv = ap->host->private_data;
3577 unsigned int port = ap->port_no;
3578 unsigned int hardport = mv_hardport_from_port(port);
3579 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3580 void __iomem *port_mmio = mv_ap_base(ap);
3581 u32 hc_irq_cause;
3583 /* clear EDMA errors on this port */
3584 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3586 /* clear pending irq events */
3587 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3588 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3590 mv_enable_port_irqs(ap, ERR_IRQ);
3594 * mv_port_init - Perform some early initialization on a single port.
3595 * @port: libata data structure storing shadow register addresses
3596 * @port_mmio: base address of the port
3598 * Initialize shadow register mmio addresses, clear outstanding
3599 * interrupts on the port, and unmask interrupts for the future
3600 * start of the port.
3602 * LOCKING:
3603 * Inherited from caller.
3605 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3607 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3609 /* PIO related setup
3611 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3612 port->error_addr =
3613 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3614 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3615 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3616 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3617 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3618 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3619 port->status_addr =
3620 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3621 /* special case: control/altstatus doesn't have ATA_REG_ address */
3622 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3624 /* Clear any currently outstanding port interrupt conditions */
3625 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3626 writelfl(readl(serr), serr);
3627 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3629 /* unmask all non-transient EDMA error interrupts */
3630 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3632 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3633 readl(port_mmio + EDMA_CFG),
3634 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3635 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3638 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3640 struct mv_host_priv *hpriv = host->private_data;
3641 void __iomem *mmio = hpriv->base;
3642 u32 reg;
3644 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3645 return 0; /* not PCI-X capable */
3646 reg = readl(mmio + MV_PCI_MODE);
3647 if ((reg & MV_PCI_MODE_MASK) == 0)
3648 return 0; /* conventional PCI mode */
3649 return 1; /* chip is in PCI-X mode */
3652 static int mv_pci_cut_through_okay(struct ata_host *host)
3654 struct mv_host_priv *hpriv = host->private_data;
3655 void __iomem *mmio = hpriv->base;
3656 u32 reg;
3658 if (!mv_in_pcix_mode(host)) {
3659 reg = readl(mmio + MV_PCI_COMMAND);
3660 if (reg & MV_PCI_COMMAND_MRDTRIG)
3661 return 0; /* not okay */
3663 return 1; /* okay */
3666 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3668 struct mv_host_priv *hpriv = host->private_data;
3669 void __iomem *mmio = hpriv->base;
3671 if (mv_in_pcix_mode(host)) {
3672 u32 reg = readl(mmio + MV_PCI_COMMAND);
3673 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3677 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3679 struct pci_dev *pdev = to_pci_dev(host->dev);
3680 struct mv_host_priv *hpriv = host->private_data;
3681 u32 hp_flags = hpriv->hp_flags;
3683 switch (board_idx) {
3684 case chip_5080:
3685 hpriv->ops = &mv5xxx_ops;
3686 hp_flags |= MV_HP_GEN_I;
3688 switch (pdev->revision) {
3689 case 0x1:
3690 hp_flags |= MV_HP_ERRATA_50XXB0;
3691 break;
3692 case 0x3:
3693 hp_flags |= MV_HP_ERRATA_50XXB2;
3694 break;
3695 default:
3696 dev_printk(KERN_WARNING, &pdev->dev,
3697 "Applying 50XXB2 workarounds to unknown rev\n");
3698 hp_flags |= MV_HP_ERRATA_50XXB2;
3699 break;
3701 break;
3703 case chip_504x:
3704 case chip_508x:
3705 hpriv->ops = &mv5xxx_ops;
3706 hp_flags |= MV_HP_GEN_I;
3708 switch (pdev->revision) {
3709 case 0x0:
3710 hp_flags |= MV_HP_ERRATA_50XXB0;
3711 break;
3712 case 0x3:
3713 hp_flags |= MV_HP_ERRATA_50XXB2;
3714 break;
3715 default:
3716 dev_printk(KERN_WARNING, &pdev->dev,
3717 "Applying B2 workarounds to unknown rev\n");
3718 hp_flags |= MV_HP_ERRATA_50XXB2;
3719 break;
3721 break;
3723 case chip_604x:
3724 case chip_608x:
3725 hpriv->ops = &mv6xxx_ops;
3726 hp_flags |= MV_HP_GEN_II;
3728 switch (pdev->revision) {
3729 case 0x7:
3730 mv_60x1b2_errata_pci7(host);
3731 hp_flags |= MV_HP_ERRATA_60X1B2;
3732 break;
3733 case 0x9:
3734 hp_flags |= MV_HP_ERRATA_60X1C0;
3735 break;
3736 default:
3737 dev_printk(KERN_WARNING, &pdev->dev,
3738 "Applying B2 workarounds to unknown rev\n");
3739 hp_flags |= MV_HP_ERRATA_60X1B2;
3740 break;
3742 break;
3744 case chip_7042:
3745 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3746 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3747 (pdev->device == 0x2300 || pdev->device == 0x2310))
3750 * Highpoint RocketRAID PCIe 23xx series cards:
3752 * Unconfigured drives are treated as "Legacy"
3753 * by the BIOS, and it overwrites sector 8 with
3754 * a "Lgcy" metadata block prior to Linux boot.
3756 * Configured drives (RAID or JBOD) leave sector 8
3757 * alone, but instead overwrite a high numbered
3758 * sector for the RAID metadata. This sector can
3759 * be determined exactly, by truncating the physical
3760 * drive capacity to a nice even GB value.
3762 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3764 * Warn the user, lest they think we're just buggy.
3766 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3767 " BIOS CORRUPTS DATA on all attached drives,"
3768 " regardless of if/how they are configured."
3769 " BEWARE!\n");
3770 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3771 " use sectors 8-9 on \"Legacy\" drives,"
3772 " and avoid the final two gigabytes on"
3773 " all RocketRAID BIOS initialized drives.\n");
3775 /* drop through */
3776 case chip_6042:
3777 hpriv->ops = &mv6xxx_ops;
3778 hp_flags |= MV_HP_GEN_IIE;
3779 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3780 hp_flags |= MV_HP_CUT_THROUGH;
3782 switch (pdev->revision) {
3783 case 0x2: /* Rev.B0: the first/only public release */
3784 hp_flags |= MV_HP_ERRATA_60X1C0;
3785 break;
3786 default:
3787 dev_printk(KERN_WARNING, &pdev->dev,
3788 "Applying 60X1C0 workarounds to unknown rev\n");
3789 hp_flags |= MV_HP_ERRATA_60X1C0;
3790 break;
3792 break;
3793 case chip_soc:
3794 if (soc_is_65n(hpriv))
3795 hpriv->ops = &mv_soc_65n_ops;
3796 else
3797 hpriv->ops = &mv_soc_ops;
3798 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3799 MV_HP_ERRATA_60X1C0;
3800 break;
3802 default:
3803 dev_printk(KERN_ERR, host->dev,
3804 "BUG: invalid board index %u\n", board_idx);
3805 return 1;
3808 hpriv->hp_flags = hp_flags;
3809 if (hp_flags & MV_HP_PCIE) {
3810 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3811 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3812 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3813 } else {
3814 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3815 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3816 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3819 return 0;
3823 * mv_init_host - Perform some early initialization of the host.
3824 * @host: ATA host to initialize
3826 * If possible, do an early global reset of the host. Then do
3827 * our port init and clear/unmask all/relevant host interrupts.
3829 * LOCKING:
3830 * Inherited from caller.
3832 static int mv_init_host(struct ata_host *host)
3834 int rc = 0, n_hc, port, hc;
3835 struct mv_host_priv *hpriv = host->private_data;
3836 void __iomem *mmio = hpriv->base;
3838 rc = mv_chip_id(host, hpriv->board_idx);
3839 if (rc)
3840 goto done;
3842 if (IS_SOC(hpriv)) {
3843 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3844 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3845 } else {
3846 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3847 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3850 /* initialize shadow irq mask with register's value */
3851 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3853 /* global interrupt mask: 0 == mask everything */
3854 mv_set_main_irq_mask(host, ~0, 0);
3856 n_hc = mv_get_hc_count(host->ports[0]->flags);
3858 for (port = 0; port < host->n_ports; port++)
3859 if (hpriv->ops->read_preamp)
3860 hpriv->ops->read_preamp(hpriv, port, mmio);
3862 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3863 if (rc)
3864 goto done;
3866 hpriv->ops->reset_flash(hpriv, mmio);
3867 hpriv->ops->reset_bus(host, mmio);
3868 hpriv->ops->enable_leds(hpriv, mmio);
3870 for (port = 0; port < host->n_ports; port++) {
3871 struct ata_port *ap = host->ports[port];
3872 void __iomem *port_mmio = mv_port_base(mmio, port);
3874 mv_port_init(&ap->ioaddr, port_mmio);
3877 for (hc = 0; hc < n_hc; hc++) {
3878 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3880 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3881 "(before clear)=0x%08x\n", hc,
3882 readl(hc_mmio + HC_CFG),
3883 readl(hc_mmio + HC_IRQ_CAUSE));
3885 /* Clear any currently outstanding hc interrupt conditions */
3886 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3889 if (!IS_SOC(hpriv)) {
3890 /* Clear any currently outstanding host interrupt conditions */
3891 writelfl(0, mmio + hpriv->irq_cause_offset);
3893 /* and unmask interrupt generation for host regs */
3894 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3898 * enable only global host interrupts for now.
3899 * The per-port interrupts get done later as ports are set up.
3901 mv_set_main_irq_mask(host, 0, PCI_ERR);
3902 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3903 irq_coalescing_usecs);
3904 done:
3905 return rc;
3908 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3910 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3911 MV_CRQB_Q_SZ, 0);
3912 if (!hpriv->crqb_pool)
3913 return -ENOMEM;
3915 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3916 MV_CRPB_Q_SZ, 0);
3917 if (!hpriv->crpb_pool)
3918 return -ENOMEM;
3920 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3921 MV_SG_TBL_SZ, 0);
3922 if (!hpriv->sg_tbl_pool)
3923 return -ENOMEM;
3925 return 0;
3928 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3929 struct mbus_dram_target_info *dram)
3931 int i;
3933 for (i = 0; i < 4; i++) {
3934 writel(0, hpriv->base + WINDOW_CTRL(i));
3935 writel(0, hpriv->base + WINDOW_BASE(i));
3938 for (i = 0; i < dram->num_cs; i++) {
3939 struct mbus_dram_window *cs = dram->cs + i;
3941 writel(((cs->size - 1) & 0xffff0000) |
3942 (cs->mbus_attr << 8) |
3943 (dram->mbus_dram_target_id << 4) | 1,
3944 hpriv->base + WINDOW_CTRL(i));
3945 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3950 * mv_platform_probe - handle a positive probe of an soc Marvell
3951 * host
3952 * @pdev: platform device found
3954 * LOCKING:
3955 * Inherited from caller.
3957 static int mv_platform_probe(struct platform_device *pdev)
3959 static int printed_version;
3960 const struct mv_sata_platform_data *mv_platform_data;
3961 const struct ata_port_info *ppi[] =
3962 { &mv_port_info[chip_soc], NULL };
3963 struct ata_host *host;
3964 struct mv_host_priv *hpriv;
3965 struct resource *res;
3966 int n_ports, rc;
3968 if (!printed_version++)
3969 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3972 * Simple resource validation ..
3974 if (unlikely(pdev->num_resources != 2)) {
3975 dev_err(&pdev->dev, "invalid number of resources\n");
3976 return -EINVAL;
3980 * Get the register base first
3982 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3983 if (res == NULL)
3984 return -EINVAL;
3986 /* allocate host */
3987 mv_platform_data = pdev->dev.platform_data;
3988 n_ports = mv_platform_data->n_ports;
3990 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3991 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3993 if (!host || !hpriv)
3994 return -ENOMEM;
3995 host->private_data = hpriv;
3996 hpriv->n_ports = n_ports;
3997 hpriv->board_idx = chip_soc;
3999 host->iomap = NULL;
4000 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4001 resource_size(res));
4002 hpriv->base -= SATAHC0_REG_BASE;
4004 #if defined(CONFIG_HAVE_CLK)
4005 hpriv->clk = clk_get(&pdev->dev, NULL);
4006 if (IS_ERR(hpriv->clk))
4007 dev_notice(&pdev->dev, "cannot get clkdev\n");
4008 else
4009 clk_enable(hpriv->clk);
4010 #endif
4013 * (Re-)program MBUS remapping windows if we are asked to.
4015 if (mv_platform_data->dram != NULL)
4016 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4018 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4019 if (rc)
4020 goto err;
4022 /* initialize adapter */
4023 rc = mv_init_host(host);
4024 if (rc)
4025 goto err;
4027 dev_printk(KERN_INFO, &pdev->dev,
4028 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4029 host->n_ports);
4031 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4032 IRQF_SHARED, &mv6_sht);
4033 err:
4034 #if defined(CONFIG_HAVE_CLK)
4035 if (!IS_ERR(hpriv->clk)) {
4036 clk_disable(hpriv->clk);
4037 clk_put(hpriv->clk);
4039 #endif
4041 return rc;
4046 * mv_platform_remove - unplug a platform interface
4047 * @pdev: platform device
4049 * A platform bus SATA device has been unplugged. Perform the needed
4050 * cleanup. Also called on module unload for any active devices.
4052 static int __devexit mv_platform_remove(struct platform_device *pdev)
4054 struct device *dev = &pdev->dev;
4055 struct ata_host *host = dev_get_drvdata(dev);
4056 #if defined(CONFIG_HAVE_CLK)
4057 struct mv_host_priv *hpriv = host->private_data;
4058 #endif
4059 ata_host_detach(host);
4061 #if defined(CONFIG_HAVE_CLK)
4062 if (!IS_ERR(hpriv->clk)) {
4063 clk_disable(hpriv->clk);
4064 clk_put(hpriv->clk);
4066 #endif
4067 return 0;
4070 #ifdef CONFIG_PM
4071 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4073 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4074 if (host)
4075 return ata_host_suspend(host, state);
4076 else
4077 return 0;
4080 static int mv_platform_resume(struct platform_device *pdev)
4082 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4083 int ret;
4085 if (host) {
4086 struct mv_host_priv *hpriv = host->private_data;
4087 const struct mv_sata_platform_data *mv_platform_data = \
4088 pdev->dev.platform_data;
4090 * (Re-)program MBUS remapping windows if we are asked to.
4092 if (mv_platform_data->dram != NULL)
4093 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4095 /* initialize adapter */
4096 ret = mv_init_host(host);
4097 if (ret) {
4098 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4099 return ret;
4101 ata_host_resume(host);
4104 return 0;
4106 #else
4107 #define mv_platform_suspend NULL
4108 #define mv_platform_resume NULL
4109 #endif
4111 static struct platform_driver mv_platform_driver = {
4112 .probe = mv_platform_probe,
4113 .remove = __devexit_p(mv_platform_remove),
4114 .suspend = mv_platform_suspend,
4115 .resume = mv_platform_resume,
4116 .driver = {
4117 .name = DRV_NAME,
4118 .owner = THIS_MODULE,
4123 #ifdef CONFIG_PCI
4124 static int mv_pci_init_one(struct pci_dev *pdev,
4125 const struct pci_device_id *ent);
4126 #ifdef CONFIG_PM
4127 static int mv_pci_device_resume(struct pci_dev *pdev);
4128 #endif
4131 static struct pci_driver mv_pci_driver = {
4132 .name = DRV_NAME,
4133 .id_table = mv_pci_tbl,
4134 .probe = mv_pci_init_one,
4135 .remove = ata_pci_remove_one,
4136 #ifdef CONFIG_PM
4137 .suspend = ata_pci_device_suspend,
4138 .resume = mv_pci_device_resume,
4139 #endif
4143 /* move to PCI layer or libata core? */
4144 static int pci_go_64(struct pci_dev *pdev)
4146 int rc;
4148 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4149 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4150 if (rc) {
4151 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4152 if (rc) {
4153 dev_printk(KERN_ERR, &pdev->dev,
4154 "64-bit DMA enable failed\n");
4155 return rc;
4158 } else {
4159 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4160 if (rc) {
4161 dev_printk(KERN_ERR, &pdev->dev,
4162 "32-bit DMA enable failed\n");
4163 return rc;
4165 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4166 if (rc) {
4167 dev_printk(KERN_ERR, &pdev->dev,
4168 "32-bit consistent DMA enable failed\n");
4169 return rc;
4173 return rc;
4176 static void mv_print_info(struct ata_host *host)
4178 struct pci_dev *pdev = to_pci_dev(host->dev);
4179 struct mv_host_priv *hpriv = host->private_data;
4180 u8 scc;
4181 const char *scc_s, *gen;
4183 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4184 if (scc == 0)
4185 scc_s = "SCSI";
4186 else if (scc == 0x01)
4187 scc_s = "RAID";
4188 else
4189 scc_s = "?";
4191 if (IS_GEN_I(hpriv))
4192 gen = "I";
4193 else if (IS_GEN_II(hpriv))
4194 gen = "II";
4195 else if (IS_GEN_IIE(hpriv))
4196 gen = "IIE";
4197 else
4198 gen = "?";
4200 dev_printk(KERN_INFO, &pdev->dev,
4201 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4202 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4203 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4207 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4208 * @pdev: PCI device found
4209 * @ent: PCI device ID entry for the matched host
4211 * LOCKING:
4212 * Inherited from caller.
4214 static int mv_pci_init_one(struct pci_dev *pdev,
4215 const struct pci_device_id *ent)
4217 static int printed_version;
4218 unsigned int board_idx = (unsigned int)ent->driver_data;
4219 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4220 struct ata_host *host;
4221 struct mv_host_priv *hpriv;
4222 int n_ports, port, rc;
4224 if (!printed_version++)
4225 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4227 /* allocate host */
4228 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4230 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4231 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4232 if (!host || !hpriv)
4233 return -ENOMEM;
4234 host->private_data = hpriv;
4235 hpriv->n_ports = n_ports;
4236 hpriv->board_idx = board_idx;
4238 /* acquire resources */
4239 rc = pcim_enable_device(pdev);
4240 if (rc)
4241 return rc;
4243 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4244 if (rc == -EBUSY)
4245 pcim_pin_device(pdev);
4246 if (rc)
4247 return rc;
4248 host->iomap = pcim_iomap_table(pdev);
4249 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4251 rc = pci_go_64(pdev);
4252 if (rc)
4253 return rc;
4255 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4256 if (rc)
4257 return rc;
4259 for (port = 0; port < host->n_ports; port++) {
4260 struct ata_port *ap = host->ports[port];
4261 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4262 unsigned int offset = port_mmio - hpriv->base;
4264 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4265 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4268 /* initialize adapter */
4269 rc = mv_init_host(host);
4270 if (rc)
4271 return rc;
4273 /* Enable message-switched interrupts, if requested */
4274 if (msi && pci_enable_msi(pdev) == 0)
4275 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4277 mv_dump_pci_cfg(pdev, 0x68);
4278 mv_print_info(host);
4280 pci_set_master(pdev);
4281 pci_try_set_mwi(pdev);
4282 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4283 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4286 #ifdef CONFIG_PM
4287 static int mv_pci_device_resume(struct pci_dev *pdev)
4289 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4290 int rc;
4292 rc = ata_pci_device_do_resume(pdev);
4293 if (rc)
4294 return rc;
4296 /* initialize adapter */
4297 rc = mv_init_host(host);
4298 if (rc)
4299 return rc;
4301 ata_host_resume(host);
4303 return 0;
4305 #endif
4306 #endif
4308 static int mv_platform_probe(struct platform_device *pdev);
4309 static int __devexit mv_platform_remove(struct platform_device *pdev);
4311 static int __init mv_init(void)
4313 int rc = -ENODEV;
4314 #ifdef CONFIG_PCI
4315 rc = pci_register_driver(&mv_pci_driver);
4316 if (rc < 0)
4317 return rc;
4318 #endif
4319 rc = platform_driver_register(&mv_platform_driver);
4321 #ifdef CONFIG_PCI
4322 if (rc < 0)
4323 pci_unregister_driver(&mv_pci_driver);
4324 #endif
4325 return rc;
4328 static void __exit mv_exit(void)
4330 #ifdef CONFIG_PCI
4331 pci_unregister_driver(&mv_pci_driver);
4332 #endif
4333 platform_driver_unregister(&mv_platform_driver);
4336 MODULE_AUTHOR("Brett Russ");
4337 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4338 MODULE_LICENSE("GPL");
4339 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4340 MODULE_VERSION(DRV_VERSION);
4341 MODULE_ALIAS("platform:" DRV_NAME);
4343 module_init(mv_init);
4344 module_exit(mv_exit);