GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / x86 / kernel / ftrace.c
blobcd37469b54eeed3fc479d2c931d8d2ed933ea411
1 /*
2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/spinlock.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <linux/ftrace.h>
18 #include <linux/percpu.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
23 #include <trace/syscall.h>
25 #include <asm/cacheflush.h>
26 #include <asm/ftrace.h>
27 #include <asm/nops.h>
28 #include <asm/nmi.h>
31 #ifdef CONFIG_DYNAMIC_FTRACE
34 * modifying_code is set to notify NMIs that they need to use
35 * memory barriers when entering or exiting. But we don't want
36 * to burden NMIs with unnecessary memory barriers when code
37 * modification is not being done (which is most of the time).
39 * A mutex is already held when ftrace_arch_code_modify_prepare
40 * and post_process are called. No locks need to be taken here.
42 * Stop machine will make sure currently running NMIs are done
43 * and new NMIs will see the updated variable before we need
44 * to worry about NMIs doing memory barriers.
46 static int modifying_code __read_mostly;
47 static DEFINE_PER_CPU(int, save_modifying_code);
49 int ftrace_arch_code_modify_prepare(void)
51 set_kernel_text_rw();
52 modifying_code = 1;
53 return 0;
56 int ftrace_arch_code_modify_post_process(void)
58 modifying_code = 0;
59 set_kernel_text_ro();
60 return 0;
63 union ftrace_code_union {
64 char code[MCOUNT_INSN_SIZE];
65 struct {
66 char e8;
67 int offset;
68 } __attribute__((packed));
71 static int ftrace_calc_offset(long ip, long addr)
73 return (int)(addr - ip);
76 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
78 static union ftrace_code_union calc;
80 calc.e8 = 0xe8;
81 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
84 * No locking needed, this must be called via kstop_machine
85 * which in essence is like running on a uniprocessor machine.
87 return calc.code;
91 * Modifying code must take extra care. On an SMP machine, if
92 * the code being modified is also being executed on another CPU
93 * that CPU will have undefined results and possibly take a GPF.
94 * We use kstop_machine to stop other CPUS from exectuing code.
95 * But this does not stop NMIs from happening. We still need
96 * to protect against that. We separate out the modification of
97 * the code to take care of this.
99 * Two buffers are added: An IP buffer and a "code" buffer.
101 * 1) Put the instruction pointer into the IP buffer
102 * and the new code into the "code" buffer.
103 * 2) Wait for any running NMIs to finish and set a flag that says
104 * we are modifying code, it is done in an atomic operation.
105 * 3) Write the code
106 * 4) clear the flag.
107 * 5) Wait for any running NMIs to finish.
109 * If an NMI is executed, the first thing it does is to call
110 * "ftrace_nmi_enter". This will check if the flag is set to write
111 * and if it is, it will write what is in the IP and "code" buffers.
113 * The trick is, it does not matter if everyone is writing the same
114 * content to the code location. Also, if a CPU is executing code
115 * it is OK to write to that code location if the contents being written
116 * are the same as what exists.
119 #define MOD_CODE_WRITE_FLAG (1 << 31) /* set when NMI should do the write */
120 static atomic_t nmi_running = ATOMIC_INIT(0);
121 static int mod_code_status; /* holds return value of text write */
122 static void *mod_code_ip; /* holds the IP to write to */
123 static void *mod_code_newcode; /* holds the text to write to the IP */
125 static unsigned nmi_wait_count;
126 static atomic_t nmi_update_count = ATOMIC_INIT(0);
128 int ftrace_arch_read_dyn_info(char *buf, int size)
130 int r;
132 r = snprintf(buf, size, "%u %u",
133 nmi_wait_count,
134 atomic_read(&nmi_update_count));
135 return r;
138 static void clear_mod_flag(void)
140 int old = atomic_read(&nmi_running);
142 for (;;) {
143 int new = old & ~MOD_CODE_WRITE_FLAG;
145 if (old == new)
146 break;
148 old = atomic_cmpxchg(&nmi_running, old, new);
152 static void ftrace_mod_code(void)
155 * Yes, more than one CPU process can be writing to mod_code_status.
156 * (and the code itself)
157 * But if one were to fail, then they all should, and if one were
158 * to succeed, then they all should.
160 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
161 MCOUNT_INSN_SIZE);
163 /* if we fail, then kill any new writers */
164 if (mod_code_status)
165 clear_mod_flag();
168 void ftrace_nmi_enter(void)
170 __get_cpu_var(save_modifying_code) = modifying_code;
172 if (!__get_cpu_var(save_modifying_code))
173 return;
175 if (atomic_inc_return(&nmi_running) & MOD_CODE_WRITE_FLAG) {
176 smp_rmb();
177 ftrace_mod_code();
178 atomic_inc(&nmi_update_count);
180 /* Must have previous changes seen before executions */
181 smp_mb();
184 void ftrace_nmi_exit(void)
186 if (!__get_cpu_var(save_modifying_code))
187 return;
189 /* Finish all executions before clearing nmi_running */
190 smp_mb();
191 atomic_dec(&nmi_running);
194 static void wait_for_nmi_and_set_mod_flag(void)
196 if (!atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG))
197 return;
199 do {
200 cpu_relax();
201 } while (atomic_cmpxchg(&nmi_running, 0, MOD_CODE_WRITE_FLAG));
203 nmi_wait_count++;
206 static void wait_for_nmi(void)
208 if (!atomic_read(&nmi_running))
209 return;
211 do {
212 cpu_relax();
213 } while (atomic_read(&nmi_running));
215 nmi_wait_count++;
218 static inline int
219 within(unsigned long addr, unsigned long start, unsigned long end)
221 return addr >= start && addr < end;
224 static int
225 do_ftrace_mod_code(unsigned long ip, void *new_code)
228 * On x86_64, kernel text mappings are mapped read-only with
229 * CONFIG_DEBUG_RODATA. So we use the kernel identity mapping instead
230 * of the kernel text mapping to modify the kernel text.
232 * For 32bit kernels, these mappings are same and we can use
233 * kernel identity mapping to modify code.
235 if (within(ip, (unsigned long)_text, (unsigned long)_etext))
236 ip = (unsigned long)__va(__pa(ip));
238 mod_code_ip = (void *)ip;
239 mod_code_newcode = new_code;
241 /* The buffers need to be visible before we let NMIs write them */
242 smp_mb();
244 wait_for_nmi_and_set_mod_flag();
246 /* Make sure all running NMIs have finished before we write the code */
247 smp_mb();
249 ftrace_mod_code();
251 /* Make sure the write happens before clearing the bit */
252 smp_mb();
254 clear_mod_flag();
255 wait_for_nmi();
257 return mod_code_status;
263 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
265 static unsigned char *ftrace_nop_replace(void)
267 return ftrace_nop;
270 static int
271 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
272 unsigned char *new_code)
274 unsigned char replaced[MCOUNT_INSN_SIZE];
277 * Note: Due to modules and __init, code can
278 * disappear and change, we need to protect against faulting
279 * as well as code changing. We do this by using the
280 * probe_kernel_* functions.
282 * No real locking needed, this code is run through
283 * kstop_machine, or before SMP starts.
286 /* read the text we want to modify */
287 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
288 return -EFAULT;
290 /* Make sure it is what we expect it to be */
291 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
292 return -EINVAL;
294 /* replace the text with the new text */
295 if (do_ftrace_mod_code(ip, new_code))
296 return -EPERM;
298 sync_core();
300 return 0;
303 int ftrace_make_nop(struct module *mod,
304 struct dyn_ftrace *rec, unsigned long addr)
306 unsigned char *new, *old;
307 unsigned long ip = rec->ip;
309 old = ftrace_call_replace(ip, addr);
310 new = ftrace_nop_replace();
312 return ftrace_modify_code(rec->ip, old, new);
315 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
317 unsigned char *new, *old;
318 unsigned long ip = rec->ip;
320 old = ftrace_nop_replace();
321 new = ftrace_call_replace(ip, addr);
323 return ftrace_modify_code(rec->ip, old, new);
326 int ftrace_update_ftrace_func(ftrace_func_t func)
328 unsigned long ip = (unsigned long)(&ftrace_call);
329 unsigned char old[MCOUNT_INSN_SIZE], *new;
330 int ret;
332 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
333 new = ftrace_call_replace(ip, (unsigned long)func);
334 ret = ftrace_modify_code(ip, old, new);
336 return ret;
339 int __init ftrace_dyn_arch_init(void *data)
341 extern const unsigned char ftrace_test_p6nop[];
342 extern const unsigned char ftrace_test_nop5[];
343 extern const unsigned char ftrace_test_jmp[];
344 int faulted = 0;
347 * There is no good nop for all x86 archs.
348 * We will default to using the P6_NOP5, but first we
349 * will test to make sure that the nop will actually
350 * work on this CPU. If it faults, we will then
351 * go to a lesser efficient 5 byte nop. If that fails
352 * we then just use a jmp as our nop. This isn't the most
353 * efficient nop, but we can not use a multi part nop
354 * since we would then risk being preempted in the middle
355 * of that nop, and if we enabled tracing then, it might
356 * cause a system crash.
358 * TODO: check the cpuid to determine the best nop.
360 asm volatile (
361 "ftrace_test_jmp:"
362 "jmp ftrace_test_p6nop\n"
363 "nop\n"
364 "nop\n"
365 "nop\n" /* 2 byte jmp + 3 bytes */
366 "ftrace_test_p6nop:"
367 P6_NOP5
368 "jmp 1f\n"
369 "ftrace_test_nop5:"
370 ".byte 0x66,0x66,0x66,0x66,0x90\n"
371 "1:"
372 ".section .fixup, \"ax\"\n"
373 "2: movl $1, %0\n"
374 " jmp ftrace_test_nop5\n"
375 "3: movl $2, %0\n"
376 " jmp 1b\n"
377 ".previous\n"
378 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
379 _ASM_EXTABLE(ftrace_test_nop5, 3b)
380 : "=r"(faulted) : "0" (faulted));
382 switch (faulted) {
383 case 0:
384 pr_info("converting mcount calls to 0f 1f 44 00 00\n");
385 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
386 break;
387 case 1:
388 pr_info("converting mcount calls to 66 66 66 66 90\n");
389 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
390 break;
391 case 2:
392 pr_info("converting mcount calls to jmp . + 5\n");
393 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
394 break;
397 /* The return code is retured via data */
398 *(unsigned long *)data = 0;
400 return 0;
402 #endif
404 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
406 #ifdef CONFIG_DYNAMIC_FTRACE
407 extern void ftrace_graph_call(void);
409 static int ftrace_mod_jmp(unsigned long ip,
410 int old_offset, int new_offset)
412 unsigned char code[MCOUNT_INSN_SIZE];
414 if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
415 return -EFAULT;
417 if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
418 return -EINVAL;
420 *(int *)(&code[1]) = new_offset;
422 if (do_ftrace_mod_code(ip, &code))
423 return -EPERM;
425 return 0;
428 int ftrace_enable_ftrace_graph_caller(void)
430 unsigned long ip = (unsigned long)(&ftrace_graph_call);
431 int old_offset, new_offset;
433 old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
434 new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
436 return ftrace_mod_jmp(ip, old_offset, new_offset);
439 int ftrace_disable_ftrace_graph_caller(void)
441 unsigned long ip = (unsigned long)(&ftrace_graph_call);
442 int old_offset, new_offset;
444 old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
445 new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
447 return ftrace_mod_jmp(ip, old_offset, new_offset);
450 #endif /* !CONFIG_DYNAMIC_FTRACE */
453 * Hook the return address and push it in the stack of return addrs
454 * in current thread info.
456 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
457 unsigned long frame_pointer)
459 unsigned long old;
460 int faulted;
461 struct ftrace_graph_ent trace;
462 unsigned long return_hooker = (unsigned long)
463 &return_to_handler;
465 if (unlikely(atomic_read(&current->tracing_graph_pause)))
466 return;
469 * Protect against fault, even if it shouldn't
470 * happen. This tool is too much intrusive to
471 * ignore such a protection.
473 asm volatile(
474 "1: " _ASM_MOV " (%[parent]), %[old]\n"
475 "2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
476 " movl $0, %[faulted]\n"
477 "3:\n"
479 ".section .fixup, \"ax\"\n"
480 "4: movl $1, %[faulted]\n"
481 " jmp 3b\n"
482 ".previous\n"
484 _ASM_EXTABLE(1b, 4b)
485 _ASM_EXTABLE(2b, 4b)
487 : [old] "=&r" (old), [faulted] "=r" (faulted)
488 : [parent] "r" (parent), [return_hooker] "r" (return_hooker)
489 : "memory"
492 if (unlikely(faulted)) {
493 ftrace_graph_stop();
494 WARN_ON(1);
495 return;
498 if (ftrace_push_return_trace(old, self_addr, &trace.depth,
499 frame_pointer) == -EBUSY) {
500 *parent = old;
501 return;
504 trace.func = self_addr;
506 /* Only trace if the calling function expects to */
507 if (!ftrace_graph_entry(&trace)) {
508 current->curr_ret_stack--;
509 *parent = old;
512 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */