GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / x86 / include / asm / uv / uv_hub.h
blobbf6b88ef8eebb17d273c8f75c82c77b24213f003
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 */
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
27 * Addressing Terminology
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
34 * N - Number of bits in the node portion of a socket physical
35 * address.
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
56 * M - number of node offset bits (35 .. 40)
59 * Memory/UV-HUB Processor Socket Address Format:
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
70 * boot time. M & N values are set by the hardware/BIOS at boot.
73 * APICID format
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
78 * 1111110000000000
79 * 5432109876543210
80 * pppppppppplc0cch
81 * sssssssssss
83 * p = pnode bits
84 * l = socket number on board
85 * c = core
86 * h = hyperthread
87 * s = bits that are in the SOCKET_ID CSR
89 * Note: Processor only supports 12 bits in the APICID register. The ACPI
90 * tables hold all 16 bits. Software needs to be aware of this.
92 * Unless otherwise specified, all references to APICID refer to
93 * the FULL value contained in ACPI tables, not the subset in the
94 * processor APICID register.
99 * Maximum number of bricks in all partitions and in all coherency domains.
100 * This is the total number of bricks accessible in the numalink fabric. It
101 * includes all C & M bricks. Routers are NOT included.
103 * This value is also the value of the maximum number of non-router NASIDs
104 * in the numalink fabric.
106 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
108 #define UV_MAX_NUMALINK_BLADES 16384
111 * Maximum number of C/Mbricks within a software SSI (hardware may support
112 * more).
114 #define UV_MAX_SSI_BLADES 256
117 * The largest possible NASID of a C or M brick (+ 2)
119 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
121 struct uv_scir_s {
122 struct timer_list timer;
123 unsigned long offset;
124 unsigned long last;
125 unsigned long idle_on;
126 unsigned long idle_off;
127 unsigned char state;
128 unsigned char enabled;
132 * The following defines attributes of the HUB chip. These attributes are
133 * frequently referenced and are kept in the per-cpu data areas of each cpu.
134 * They are kept together in a struct to minimize cache misses.
136 struct uv_hub_info_s {
137 unsigned long global_mmr_base;
138 unsigned long gpa_mask;
139 unsigned int gnode_extra;
140 unsigned long gnode_upper;
141 unsigned long lowmem_remap_top;
142 unsigned long lowmem_remap_base;
143 unsigned short pnode;
144 unsigned short pnode_mask;
145 unsigned short coherency_domain_number;
146 unsigned short numa_blade_id;
147 unsigned char blade_processor_id;
148 unsigned char m_val;
149 unsigned char n_val;
150 struct uv_scir_s scir;
153 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
154 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
155 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
158 * Local & Global MMR space macros.
159 * Note: macros are intended to be used ONLY by inline functions
160 * in this file - not by other kernel code.
161 * n - NASID (full 15-bit global nasid)
162 * g - GNODE (full 15-bit global nasid, right shifted 1)
163 * p - PNODE (local part of nsids, right shifted 1)
165 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
166 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
167 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
169 #define UV_LOCAL_MMR_BASE 0xf4000000UL
170 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
171 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
172 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
173 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
175 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
177 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
178 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
180 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
182 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
183 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
185 #define UV_APIC_PNODE_SHIFT 6
187 /* Local Bus from cpu's perspective */
188 #define LOCAL_BUS_BASE 0x1c00000
189 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
192 * System Controller Interface Reg
194 * Note there are NO leds on a UV system. This register is only
195 * used by the system controller to monitor system-wide operation.
196 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
197 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
198 * a node.
200 * The window is located at top of ACPI MMR space
202 #define SCIR_WINDOW_COUNT 64
203 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
204 LOCAL_BUS_SIZE - \
205 SCIR_WINDOW_COUNT)
207 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
208 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
209 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
211 /* Loop through all installed blades */
212 #define for_each_possible_blade(bid) \
213 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
216 * Macros for converting between kernel virtual addresses, socket local physical
217 * addresses, and UV global physical addresses.
218 * Note: use the standard __pa() & __va() macros for converting
219 * between socket virtual and socket physical addresses.
222 /* socket phys RAM --> UV global physical address */
223 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
225 if (paddr < uv_hub_info->lowmem_remap_top)
226 paddr |= uv_hub_info->lowmem_remap_base;
227 return paddr | uv_hub_info->gnode_upper;
231 /* socket virtual --> UV global physical address */
232 static inline unsigned long uv_gpa(void *v)
234 return uv_soc_phys_ram_to_gpa(__pa(v));
237 /* Top two bits indicate the requested address is in MMR space. */
238 static inline int
239 uv_gpa_in_mmr_space(unsigned long gpa)
241 return (gpa >> 62) == 0x3UL;
244 /* UV global physical address --> socket phys RAM */
245 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
247 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
248 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
249 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
251 if (paddr >= remap_base && paddr < remap_base + remap_top)
252 paddr -= remap_base;
253 return paddr;
257 /* gnode -> pnode */
258 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
260 return gpa >> uv_hub_info->m_val;
263 /* gpa -> pnode */
264 static inline int uv_gpa_to_pnode(unsigned long gpa)
266 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
268 return uv_gpa_to_gnode(gpa) & n_mask;
271 /* pnode, offset --> socket virtual */
272 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
274 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
279 * Extract a PNODE from an APICID (full apicid, not processor subset)
281 static inline int uv_apicid_to_pnode(int apicid)
283 return (apicid >> UV_APIC_PNODE_SHIFT);
287 * Access global MMRs using the low memory MMR32 space. This region supports
288 * faster MMR access but not all MMRs are accessible in this space.
290 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
292 return __va(UV_GLOBAL_MMR32_BASE |
293 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
296 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
298 writeq(val, uv_global_mmr32_address(pnode, offset));
301 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
303 return readq(uv_global_mmr32_address(pnode, offset));
307 * Access Global MMR space using the MMR space located at the top of physical
308 * memory.
310 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
312 return __va(UV_GLOBAL_MMR64_BASE |
313 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
316 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
318 writeq(val, uv_global_mmr64_address(pnode, offset));
321 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
323 return readq(uv_global_mmr64_address(pnode, offset));
327 * Global MMR space addresses when referenced by the GRU. (GRU does
328 * NOT use socket addressing).
330 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
332 return UV_GLOBAL_GRU_MMR_BASE | offset |
333 ((unsigned long)pnode << uv_hub_info->m_val);
336 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
338 writeb(val, uv_global_mmr64_address(pnode, offset));
341 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
343 return readb(uv_global_mmr64_address(pnode, offset));
347 * Access hub local MMRs. Faster than using global space but only local MMRs
348 * are accessible.
350 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
352 return __va(UV_LOCAL_MMR_BASE | offset);
355 static inline unsigned long uv_read_local_mmr(unsigned long offset)
357 return readq(uv_local_mmr_address(offset));
360 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
362 writeq(val, uv_local_mmr_address(offset));
365 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
367 return readb(uv_local_mmr_address(offset));
370 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
372 writeb(val, uv_local_mmr_address(offset));
376 * Structures and definitions for converting between cpu, node, pnode, and blade
377 * numbers.
379 struct uv_blade_info {
380 unsigned short nr_possible_cpus;
381 unsigned short nr_online_cpus;
382 unsigned short pnode;
383 short memory_nid;
385 extern struct uv_blade_info *uv_blade_info;
386 extern short *uv_node_to_blade;
387 extern short *uv_cpu_to_blade;
388 extern short uv_possible_blades;
390 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
391 static inline int uv_blade_processor_id(void)
393 return uv_hub_info->blade_processor_id;
396 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
397 static inline int uv_numa_blade_id(void)
399 return uv_hub_info->numa_blade_id;
402 /* Convert a cpu number to the the UV blade number */
403 static inline int uv_cpu_to_blade_id(int cpu)
405 return uv_cpu_to_blade[cpu];
408 /* Convert linux node number to the UV blade number */
409 static inline int uv_node_to_blade_id(int nid)
411 return uv_node_to_blade[nid];
414 /* Convert a blade id to the PNODE of the blade */
415 static inline int uv_blade_to_pnode(int bid)
417 return uv_blade_info[bid].pnode;
420 /* Nid of memory node on blade. -1 if no blade-local memory */
421 static inline int uv_blade_to_memory_nid(int bid)
423 return uv_blade_info[bid].memory_nid;
426 /* Determine the number of possible cpus on a blade */
427 static inline int uv_blade_nr_possible_cpus(int bid)
429 return uv_blade_info[bid].nr_possible_cpus;
432 /* Determine the number of online cpus on a blade */
433 static inline int uv_blade_nr_online_cpus(int bid)
435 return uv_blade_info[bid].nr_online_cpus;
438 /* Convert a cpu id to the PNODE of the blade containing the cpu */
439 static inline int uv_cpu_to_pnode(int cpu)
441 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
444 /* Convert a linux node number to the PNODE of the blade */
445 static inline int uv_node_to_pnode(int nid)
447 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
450 /* Maximum possible number of blades */
451 static inline int uv_num_possible_blades(void)
453 return uv_possible_blades;
456 /* Update SCIR state */
457 static inline void uv_set_scir_bits(unsigned char value)
459 if (uv_hub_info->scir.state != value) {
460 uv_hub_info->scir.state = value;
461 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
465 static inline unsigned long uv_scir_offset(int apicid)
467 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
470 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
472 if (uv_cpu_hub_info(cpu)->scir.state != value) {
473 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
474 uv_cpu_hub_info(cpu)->scir.offset, value);
475 uv_cpu_hub_info(cpu)->scir.state = value;
479 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
481 return (1UL << UVH_IPI_INT_SEND_SHFT) |
482 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
483 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
484 (vector << UVH_IPI_INT_VECTOR_SHFT);
487 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
489 unsigned long val;
490 unsigned long dmode = dest_Fixed;
492 if (vector == NMI_VECTOR)
493 dmode = dest_NMI;
495 val = uv_hub_ipi_value(apicid, vector, dmode);
496 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
500 * Get the minimum revision number of the hub chips within the partition.
501 * 1 - initial rev 1.0 silicon
502 * 2 - rev 2.0 production silicon
504 static inline int uv_get_min_hub_revision_id(void)
506 extern int uv_min_hub_revision_id;
508 return uv_min_hub_revision_id;
511 #endif /* CONFIG_X86_64 */
512 #endif /* _ASM_X86_UV_UV_HUB_H */