GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / um / kernel / process.c
blobc3092feff1c2dcd9dc48856ac8c8c437bc17304d
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/uaccess.h>
24 #include "as-layout.h"
25 #include "kern_util.h"
26 #include "os.h"
27 #include "skas.h"
28 #include "tlb.h"
31 * This is a per-cpu array. A processor only modifies its entry and it only
32 * cares about its entry, so it's OK if another processor is modifying its
33 * entry.
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 static inline int external_pid(void)
39 return userspace_pid[0];
42 int pid_to_processor_id(int pid)
44 int i;
46 for (i = 0; i < ncpus; i++) {
47 if (cpu_tasks[i].pid == pid)
48 return i;
50 return -1;
53 void free_stack(unsigned long stack, int order)
55 free_pages(stack, order);
58 unsigned long alloc_stack(int order, int atomic)
60 unsigned long page;
61 gfp_t flags = GFP_KERNEL;
63 if (atomic)
64 flags = GFP_ATOMIC;
65 page = __get_free_pages(flags, order);
67 return page;
70 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 int pid;
74 current->thread.request.u.thread.proc = fn;
75 current->thread.request.u.thread.arg = arg;
76 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
77 &current->thread.regs, 0, NULL, NULL);
78 return pid;
81 static inline void set_current(struct task_struct *task)
83 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
84 { external_pid(), task });
87 extern void arch_switch_to(struct task_struct *to);
89 void *_switch_to(void *prev, void *next, void *last)
91 struct task_struct *from = prev;
92 struct task_struct *to = next;
94 to->thread.prev_sched = from;
95 set_current(to);
97 do {
98 current->thread.saved_task = NULL;
100 switch_threads(&from->thread.switch_buf,
101 &to->thread.switch_buf);
103 arch_switch_to(current);
105 if (current->thread.saved_task)
106 show_regs(&(current->thread.regs));
107 to = current->thread.saved_task;
108 from = current;
109 } while (current->thread.saved_task);
111 return current->thread.prev_sched;
115 void interrupt_end(void)
117 if (need_resched())
118 schedule();
119 if (test_tsk_thread_flag(current, TIF_SIGPENDING))
120 do_signal();
123 void exit_thread(void)
127 void *get_current(void)
129 return current;
133 * This is called magically, by its address being stuffed in a jmp_buf
134 * and being longjmp-d to.
136 void new_thread_handler(void)
138 int (*fn)(void *), n;
139 void *arg;
141 if (current->thread.prev_sched != NULL)
142 schedule_tail(current->thread.prev_sched);
143 current->thread.prev_sched = NULL;
145 fn = current->thread.request.u.thread.proc;
146 arg = current->thread.request.u.thread.arg;
149 * The return value is 1 if the kernel thread execs a process,
150 * 0 if it just exits
152 n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
153 if (n == 1) {
154 /* Handle any immediate reschedules or signals */
155 interrupt_end();
156 userspace(&current->thread.regs.regs);
158 else do_exit(0);
161 /* Called magically, see new_thread_handler above */
162 void fork_handler(void)
164 force_flush_all();
166 schedule_tail(current->thread.prev_sched);
168 arch_switch_to(current);
170 current->thread.prev_sched = NULL;
172 /* Handle any immediate reschedules or signals */
173 interrupt_end();
175 userspace(&current->thread.regs.regs);
178 int copy_thread(unsigned long clone_flags, unsigned long sp,
179 unsigned long stack_top, struct task_struct * p,
180 struct pt_regs *regs)
182 void (*handler)(void);
183 int ret = 0;
185 p->thread = (struct thread_struct) INIT_THREAD;
187 if (current->thread.forking) {
188 memcpy(&p->thread.regs.regs, &regs->regs,
189 sizeof(p->thread.regs.regs));
190 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
191 if (sp != 0)
192 REGS_SP(p->thread.regs.regs.gp) = sp;
194 handler = fork_handler;
196 arch_copy_thread(&current->thread.arch, &p->thread.arch);
198 else {
199 get_safe_registers(p->thread.regs.regs.gp);
200 p->thread.request.u.thread = current->thread.request.u.thread;
201 handler = new_thread_handler;
204 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
206 if (current->thread.forking) {
207 clear_flushed_tls(p);
210 * Set a new TLS for the child thread?
212 if (clone_flags & CLONE_SETTLS)
213 ret = arch_copy_tls(p);
216 return ret;
219 void initial_thread_cb(void (*proc)(void *), void *arg)
221 int save_kmalloc_ok = kmalloc_ok;
223 kmalloc_ok = 0;
224 initial_thread_cb_skas(proc, arg);
225 kmalloc_ok = save_kmalloc_ok;
228 void default_idle(void)
230 unsigned long long nsecs;
232 while (1) {
233 /* endless idle loop with no priority at all */
236 * although we are an idle CPU, we do not want to
237 * get into the scheduler unnecessarily.
239 if (need_resched())
240 schedule();
242 tick_nohz_stop_sched_tick(1);
243 nsecs = disable_timer();
244 idle_sleep(nsecs);
245 tick_nohz_restart_sched_tick();
249 void cpu_idle(void)
251 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
252 default_idle();
255 int __cant_sleep(void) {
256 return in_atomic() || irqs_disabled() || in_interrupt();
257 /* Is in_interrupt() really needed? */
260 int user_context(unsigned long sp)
262 unsigned long stack;
264 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
265 return stack != (unsigned long) current_thread_info();
268 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
270 void do_uml_exitcalls(void)
272 exitcall_t *call;
274 call = &__uml_exitcall_end;
275 while (--call >= &__uml_exitcall_begin)
276 (*call)();
279 char *uml_strdup(const char *string)
281 return kstrdup(string, GFP_KERNEL);
284 int copy_to_user_proc(void __user *to, void *from, int size)
286 return copy_to_user(to, from, size);
289 int copy_from_user_proc(void *to, void __user *from, int size)
291 return copy_from_user(to, from, size);
294 int clear_user_proc(void __user *buf, int size)
296 return clear_user(buf, size);
299 int strlen_user_proc(char __user *str)
301 return strlen_user(str);
304 int smp_sigio_handler(void)
306 #ifdef CONFIG_SMP
307 int cpu = current_thread_info()->cpu;
308 IPI_handler(cpu);
309 if (cpu != 0)
310 return 1;
311 #endif
312 return 0;
315 int cpu(void)
317 return current_thread_info()->cpu;
320 static atomic_t using_sysemu = ATOMIC_INIT(0);
321 int sysemu_supported;
323 void set_using_sysemu(int value)
325 if (value > sysemu_supported)
326 return;
327 atomic_set(&using_sysemu, value);
330 int get_using_sysemu(void)
332 return atomic_read(&using_sysemu);
335 static int sysemu_proc_show(struct seq_file *m, void *v)
337 seq_printf(m, "%d\n", get_using_sysemu());
338 return 0;
341 static int sysemu_proc_open(struct inode *inode, struct file *file)
343 return single_open(file, sysemu_proc_show, NULL);
346 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
347 size_t count, loff_t *pos)
349 char tmp[2];
351 if (copy_from_user(tmp, buf, 1))
352 return -EFAULT;
354 if (tmp[0] >= '0' && tmp[0] <= '2')
355 set_using_sysemu(tmp[0] - '0');
356 /* We use the first char, but pretend to write everything */
357 return count;
360 static const struct file_operations sysemu_proc_fops = {
361 .owner = THIS_MODULE,
362 .open = sysemu_proc_open,
363 .read = seq_read,
364 .llseek = seq_lseek,
365 .release = single_release,
366 .write = sysemu_proc_write,
369 int __init make_proc_sysemu(void)
371 struct proc_dir_entry *ent;
372 if (!sysemu_supported)
373 return 0;
375 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
377 if (ent == NULL)
379 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
380 return 0;
383 return 0;
386 late_initcall(make_proc_sysemu);
388 int singlestepping(void * t)
390 struct task_struct *task = t ? t : current;
392 if (!(task->ptrace & PT_DTRACE))
393 return 0;
395 if (task->thread.singlestep_syscall)
396 return 1;
398 return 2;
402 * Only x86 and x86_64 have an arch_align_stack().
403 * All other arches have "#define arch_align_stack(x) (x)"
404 * in their asm/system.h
405 * As this is included in UML from asm-um/system-generic.h,
406 * we can use it to behave as the subarch does.
408 #ifndef arch_align_stack
409 unsigned long arch_align_stack(unsigned long sp)
411 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
412 sp -= get_random_int() % 8192;
413 return sp & ~0xf;
415 #endif
417 unsigned long get_wchan(struct task_struct *p)
419 unsigned long stack_page, sp, ip;
420 bool seen_sched = 0;
422 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
423 return 0;
425 stack_page = (unsigned long) task_stack_page(p);
426 /* Bail if the process has no kernel stack for some reason */
427 if (stack_page == 0)
428 return 0;
430 sp = p->thread.switch_buf->JB_SP;
432 * Bail if the stack pointer is below the bottom of the kernel
433 * stack for some reason
435 if (sp < stack_page)
436 return 0;
438 while (sp < stack_page + THREAD_SIZE) {
439 ip = *((unsigned long *) sp);
440 if (in_sched_functions(ip))
441 /* Ignore everything until we're above the scheduler */
442 seen_sched = 1;
443 else if (kernel_text_address(ip) && seen_sched)
444 return ip;
446 sp += sizeof(unsigned long);
449 return 0;
452 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
454 int cpu = current_thread_info()->cpu;
456 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);