GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / tile / kernel / single_step.c
blob289e6b0d9252932c9674effd6bc5b486ac90412a
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* No support for single-step yet. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
35 int unaligned_printk;
37 static int __init setup_unaligned_printk(char *str)
39 long val;
40 if (strict_strtol(str, 0, &val) != 0)
41 return 0;
42 unaligned_printk = val;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk ? "enabled" : "disabled");
45 return 1;
47 __setup("unaligned_printk=", setup_unaligned_printk);
49 unsigned int unaligned_fixup_count;
51 enum mem_op {
52 MEMOP_NONE,
53 MEMOP_LOAD,
54 MEMOP_STORE,
55 MEMOP_LOAD_POSTINCR,
56 MEMOP_STORE_POSTINCR
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset)
61 tile_bundle_bits result;
63 /* mask out the old offset */
64 tile_bundle_bits mask = create_BrOff_X1(-1);
65 result = n & (~mask);
67 /* or in the new offset */
68 result |= create_BrOff_X1(offset);
70 return result;
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
75 tile_bundle_bits result;
76 tile_bundle_bits op;
78 result = n & (~TILE_X1_MASK);
80 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82 create_Dest_X1(dest) |
83 create_SrcB_X1(TREG_ZERO) |
84 create_SrcA_X1(src) ;
86 result |= op;
87 return result;
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
92 return move_X1(n, TREG_ZERO, TREG_ZERO);
95 static inline tile_bundle_bits addi_X1(
96 tile_bundle_bits n, int dest, int src, int imm)
98 n &= ~TILE_X1_MASK;
100 n |= (create_SrcA_X1(src) |
101 create_Dest_X1(dest) |
102 create_Imm8_X1(imm) |
103 create_S_X1(0) |
104 create_Opcode_X1(IMM_0_OPCODE_X1) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
107 return n;
110 static tile_bundle_bits rewrite_load_store_unaligned(
111 struct single_step_state *state,
112 tile_bundle_bits bundle,
113 struct pt_regs *regs,
114 enum mem_op mem_op,
115 int size, int sign_ext)
117 unsigned char __user *addr;
118 int val_reg, addr_reg, err, val;
120 /* Get address and value registers */
121 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122 addr_reg = get_SrcA_Y2(bundle);
123 val_reg = get_SrcBDest_Y2(bundle);
124 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125 addr_reg = get_SrcA_X1(bundle);
126 val_reg = get_Dest_X1(bundle);
127 } else {
128 addr_reg = get_SrcA_X1(bundle);
129 val_reg = get_SrcB_X1(bundle);
132 if ((val_reg >= PTREGS_NR_GPRS &&
133 (val_reg != TREG_ZERO ||
134 mem_op == MEMOP_LOAD ||
135 mem_op == MEMOP_LOAD_POSTINCR)) ||
136 addr_reg >= PTREGS_NR_GPRS)
137 return bundle;
139 /* If it's aligned, don't handle it specially */
140 addr = (void __user *)regs->regs[addr_reg];
141 if (((unsigned long)addr % size) == 0)
142 return bundle;
144 #ifndef __LITTLE_ENDIAN
145 # error We assume little-endian representation with copy_xx_user size 2 here
146 #endif
147 /* Handle unaligned load/store */
148 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
149 unsigned short val_16;
150 switch (size) {
151 case 2:
152 err = copy_from_user(&val_16, addr, sizeof(val_16));
153 val = sign_ext ? ((short)val_16) : val_16;
154 break;
155 case 4:
156 err = copy_from_user(&val, addr, sizeof(val));
157 break;
158 default:
159 BUG();
161 if (err == 0) {
162 state->update_reg = val_reg;
163 state->update_value = val;
164 state->update = 1;
166 } else {
167 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
168 err = copy_to_user(addr, &val, size);
171 if (err) {
172 siginfo_t info = {
173 .si_signo = SIGSEGV,
174 .si_code = SEGV_MAPERR,
175 .si_addr = addr
177 force_sig_info(info.si_signo, &info, current);
178 return (tile_bundle_bits) 0;
181 if (unaligned_fixup == 0) {
182 siginfo_t info = {
183 .si_signo = SIGBUS,
184 .si_code = BUS_ADRALN,
185 .si_addr = addr
187 force_sig_info(info.si_signo, &info, current);
188 return (tile_bundle_bits) 0;
191 if (unaligned_printk || unaligned_fixup_count == 0) {
192 pr_info("Process %d/%s: PC %#lx: Fixup of"
193 " unaligned %s at %#lx.\n",
194 current->pid, current->comm, regs->pc,
195 (mem_op == MEMOP_LOAD ||
196 mem_op == MEMOP_LOAD_POSTINCR) ?
197 "load" : "store",
198 (unsigned long)addr);
199 if (!unaligned_printk) {
200 #define P pr_info
201 P("\n");
202 P("Unaligned fixups in the kernel will slow your application considerably.\n");
203 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
204 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
205 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
206 P("access will become a SIGBUS you can debug. No further warnings will be\n");
207 P("shown so as to avoid additional slowdown, but you can track the number\n");
208 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
209 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
210 P("\n");
211 #undef P
214 ++unaligned_fixup_count;
216 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
217 /* Convert the Y2 instruction to a prefetch. */
218 bundle &= ~(create_SrcBDest_Y2(-1) |
219 create_Opcode_Y2(-1));
220 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
221 create_Opcode_Y2(LW_OPCODE_Y2));
222 /* Replace the load postincr with an addi */
223 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
224 bundle = addi_X1(bundle, addr_reg, addr_reg,
225 get_Imm8_X1(bundle));
226 /* Replace the store postincr with an addi */
227 } else if (mem_op == MEMOP_STORE_POSTINCR) {
228 bundle = addi_X1(bundle, addr_reg, addr_reg,
229 get_Dest_Imm8_X1(bundle));
230 } else {
231 /* Convert the X1 instruction to a nop. */
232 bundle &= ~(create_Opcode_X1(-1) |
233 create_UnShOpcodeExtension_X1(-1) |
234 create_UnOpcodeExtension_X1(-1));
235 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
236 create_UnShOpcodeExtension_X1(
237 UN_0_SHUN_0_OPCODE_X1) |
238 create_UnOpcodeExtension_X1(
239 NOP_UN_0_SHUN_0_OPCODE_X1));
242 return bundle;
246 * single_step_once() - entry point when single stepping has been triggered.
247 * @regs: The machine register state
249 * When we arrive at this routine via a trampoline, the single step
250 * engine copies the executing bundle to the single step buffer.
251 * If the instruction is a condition branch, then the target is
252 * reset to one past the next instruction. If the instruction
253 * sets the lr, then that is noted. If the instruction is a jump
254 * or call, then the new target pc is preserved and the current
255 * bundle instruction set to null.
257 * The necessary post-single-step rewriting information is stored in
258 * single_step_state-> We use data segment values because the
259 * stack will be rewound when we run the rewritten single-stepped
260 * instruction.
262 void single_step_once(struct pt_regs *regs)
264 extern tile_bundle_bits __single_step_ill_insn;
265 extern tile_bundle_bits __single_step_j_insn;
266 extern tile_bundle_bits __single_step_addli_insn;
267 extern tile_bundle_bits __single_step_auli_insn;
268 struct thread_info *info = (void *)current_thread_info();
269 struct single_step_state *state = info->step_state;
270 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
271 tile_bundle_bits __user *buffer, *pc;
272 tile_bundle_bits bundle;
273 int temp_reg;
274 int target_reg = TREG_LR;
275 int err;
276 enum mem_op mem_op = MEMOP_NONE;
277 int size = 0, sign_ext = 0; /* happy compiler */
279 asm(
280 " .pushsection .rodata.single_step\n"
281 " .align 8\n"
282 " .globl __single_step_ill_insn\n"
283 "__single_step_ill_insn:\n"
284 " ill\n"
285 " .globl __single_step_addli_insn\n"
286 "__single_step_addli_insn:\n"
287 " { nop; addli r0, zero, 0 }\n"
288 " .globl __single_step_auli_insn\n"
289 "__single_step_auli_insn:\n"
290 " { nop; auli r0, r0, 0 }\n"
291 " .globl __single_step_j_insn\n"
292 "__single_step_j_insn:\n"
293 " j .\n"
294 " .popsection\n"
297 if (state == NULL) {
298 /* allocate a page of writable, executable memory */
299 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
300 if (state == NULL) {
301 pr_err("Out of kernel memory trying to single-step\n");
302 return;
305 /* allocate a cache line of writable, executable memory */
306 down_write(&current->mm->mmap_sem);
307 buffer = (void __user *) do_mmap(NULL, 0, 64,
308 PROT_EXEC | PROT_READ | PROT_WRITE,
309 MAP_PRIVATE | MAP_ANONYMOUS,
311 up_write(&current->mm->mmap_sem);
313 if (IS_ERR((void __force *)buffer)) {
314 kfree(state);
315 pr_err("Out of kernel pages trying to single-step\n");
316 return;
319 state->buffer = buffer;
320 state->is_enabled = 0;
322 info->step_state = state;
324 /* Validate our stored instruction patterns */
325 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
326 ADDLI_OPCODE_X1);
327 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
328 AULI_OPCODE_X1);
329 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
330 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
331 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
335 * If we are returning from a syscall, we still haven't hit the
336 * "ill" for the swint1 instruction. So back the PC up to be
337 * pointing at the swint1, but we'll actually return directly
338 * back to the "ill" so we come back in via SIGILL as if we
339 * had "executed" the swint1 without ever being in kernel space.
341 if (regs->faultnum == INT_SWINT_1)
342 regs->pc -= 8;
344 pc = (tile_bundle_bits __user *)(regs->pc);
345 if (get_user(bundle, pc) != 0) {
346 pr_err("Couldn't read instruction at %p trying to step\n", pc);
347 return;
350 /* We'll follow the instruction with 2 ill op bundles */
351 state->orig_pc = (unsigned long)pc;
352 state->next_pc = (unsigned long)(pc + 1);
353 state->branch_next_pc = 0;
354 state->update = 0;
356 if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
357 /* two wide, check for control flow */
358 int opcode = get_Opcode_X1(bundle);
360 switch (opcode) {
361 /* branches */
362 case BRANCH_OPCODE_X1:
364 int32_t offset = signExtend17(get_BrOff_X1(bundle));
367 * For branches, we use a rewriting trick to let the
368 * hardware evaluate whether the branch is taken or
369 * untaken. We record the target offset and then
370 * rewrite the branch instruction to target 1 insn
371 * ahead if the branch is taken. We then follow the
372 * rewritten branch with two bundles, each containing
373 * an "ill" instruction. The supervisor examines the
374 * pc after the single step code is executed, and if
375 * the pc is the first ill instruction, then the
376 * branch (if any) was not taken. If the pc is the
377 * second ill instruction, then the branch was
378 * taken. The new pc is computed for these cases, and
379 * inserted into the registers for the thread. If
380 * the pc is the start of the single step code, then
381 * an exception or interrupt was taken before the
382 * code started processing, and the same "original"
383 * pc is restored. This change, different from the
384 * original implementation, has the advantage of
385 * executing a single user instruction.
387 state->branch_next_pc = (unsigned long)(pc + offset);
389 /* rewrite branch offset to go forward one bundle */
390 bundle = set_BrOff_X1(bundle, 2);
392 break;
394 /* jumps */
395 case JALB_OPCODE_X1:
396 case JALF_OPCODE_X1:
397 state->update = 1;
398 state->next_pc =
399 (unsigned long) (pc + get_JOffLong_X1(bundle));
400 break;
402 case JB_OPCODE_X1:
403 case JF_OPCODE_X1:
404 state->next_pc =
405 (unsigned long) (pc + get_JOffLong_X1(bundle));
406 bundle = nop_X1(bundle);
407 break;
409 case SPECIAL_0_OPCODE_X1:
410 switch (get_RRROpcodeExtension_X1(bundle)) {
411 /* jump-register */
412 case JALRP_SPECIAL_0_OPCODE_X1:
413 case JALR_SPECIAL_0_OPCODE_X1:
414 state->update = 1;
415 state->next_pc =
416 regs->regs[get_SrcA_X1(bundle)];
417 break;
419 case JRP_SPECIAL_0_OPCODE_X1:
420 case JR_SPECIAL_0_OPCODE_X1:
421 state->next_pc =
422 regs->regs[get_SrcA_X1(bundle)];
423 bundle = nop_X1(bundle);
424 break;
426 case LNK_SPECIAL_0_OPCODE_X1:
427 state->update = 1;
428 target_reg = get_Dest_X1(bundle);
429 break;
431 /* stores */
432 case SH_SPECIAL_0_OPCODE_X1:
433 mem_op = MEMOP_STORE;
434 size = 2;
435 break;
437 case SW_SPECIAL_0_OPCODE_X1:
438 mem_op = MEMOP_STORE;
439 size = 4;
440 break;
442 break;
444 /* loads and iret */
445 case SHUN_0_OPCODE_X1:
446 if (get_UnShOpcodeExtension_X1(bundle) ==
447 UN_0_SHUN_0_OPCODE_X1) {
448 switch (get_UnOpcodeExtension_X1(bundle)) {
449 case LH_UN_0_SHUN_0_OPCODE_X1:
450 mem_op = MEMOP_LOAD;
451 size = 2;
452 sign_ext = 1;
453 break;
455 case LH_U_UN_0_SHUN_0_OPCODE_X1:
456 mem_op = MEMOP_LOAD;
457 size = 2;
458 sign_ext = 0;
459 break;
461 case LW_UN_0_SHUN_0_OPCODE_X1:
462 mem_op = MEMOP_LOAD;
463 size = 4;
464 break;
466 case IRET_UN_0_SHUN_0_OPCODE_X1:
468 unsigned long ex0_0 = __insn_mfspr(
469 SPR_EX_CONTEXT_0_0);
470 unsigned long ex0_1 = __insn_mfspr(
471 SPR_EX_CONTEXT_0_1);
473 * Special-case it if we're iret'ing
474 * to PL0 again. Otherwise just let
475 * it run and it will generate SIGILL.
477 if (EX1_PL(ex0_1) == USER_PL) {
478 state->next_pc = ex0_0;
479 regs->ex1 = ex0_1;
480 bundle = nop_X1(bundle);
485 break;
487 #if CHIP_HAS_WH64()
488 /* postincrement operations */
489 case IMM_0_OPCODE_X1:
490 switch (get_ImmOpcodeExtension_X1(bundle)) {
491 case LWADD_IMM_0_OPCODE_X1:
492 mem_op = MEMOP_LOAD_POSTINCR;
493 size = 4;
494 break;
496 case LHADD_IMM_0_OPCODE_X1:
497 mem_op = MEMOP_LOAD_POSTINCR;
498 size = 2;
499 sign_ext = 1;
500 break;
502 case LHADD_U_IMM_0_OPCODE_X1:
503 mem_op = MEMOP_LOAD_POSTINCR;
504 size = 2;
505 sign_ext = 0;
506 break;
508 case SWADD_IMM_0_OPCODE_X1:
509 mem_op = MEMOP_STORE_POSTINCR;
510 size = 4;
511 break;
513 case SHADD_IMM_0_OPCODE_X1:
514 mem_op = MEMOP_STORE_POSTINCR;
515 size = 2;
516 break;
518 default:
519 break;
521 break;
522 #endif /* CHIP_HAS_WH64() */
525 if (state->update) {
527 * Get an available register. We start with a
528 * bitmask with 1's for available registers.
529 * We truncate to the low 32 registers since
530 * we are guaranteed to have set bits in the
531 * low 32 bits, then use ctz to pick the first.
533 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
534 (1ULL << get_SrcA_X0(bundle)) |
535 (1ULL << get_SrcB_X0(bundle)) |
536 (1ULL << target_reg));
537 temp_reg = __builtin_ctz(mask);
538 state->update_reg = temp_reg;
539 state->update_value = regs->regs[temp_reg];
540 regs->regs[temp_reg] = (unsigned long) (pc+1);
541 regs->flags |= PT_FLAGS_RESTORE_REGS;
542 bundle = move_X1(bundle, target_reg, temp_reg);
544 } else {
545 int opcode = get_Opcode_Y2(bundle);
547 switch (opcode) {
548 /* loads */
549 case LH_OPCODE_Y2:
550 mem_op = MEMOP_LOAD;
551 size = 2;
552 sign_ext = 1;
553 break;
555 case LH_U_OPCODE_Y2:
556 mem_op = MEMOP_LOAD;
557 size = 2;
558 sign_ext = 0;
559 break;
561 case LW_OPCODE_Y2:
562 mem_op = MEMOP_LOAD;
563 size = 4;
564 break;
566 /* stores */
567 case SH_OPCODE_Y2:
568 mem_op = MEMOP_STORE;
569 size = 2;
570 break;
572 case SW_OPCODE_Y2:
573 mem_op = MEMOP_STORE;
574 size = 4;
575 break;
580 * Check if we need to rewrite an unaligned load/store.
581 * Returning zero is a special value meaning we need to SIGSEGV.
583 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
584 bundle = rewrite_load_store_unaligned(state, bundle, regs,
585 mem_op, size, sign_ext);
586 if (bundle == 0)
587 return;
590 /* write the bundle to our execution area */
591 buffer = state->buffer;
592 err = __put_user(bundle, buffer++);
595 * If we're really single-stepping, we take an INT_ILL after.
596 * If we're just handling an unaligned access, we can just
597 * jump directly back to where we were in user code.
599 if (is_single_step) {
600 err |= __put_user(__single_step_ill_insn, buffer++);
601 err |= __put_user(__single_step_ill_insn, buffer++);
602 } else {
603 long delta;
605 if (state->update) {
606 /* We have some state to update; do it inline */
607 int ha16;
608 bundle = __single_step_addli_insn;
609 bundle |= create_Dest_X1(state->update_reg);
610 bundle |= create_Imm16_X1(state->update_value);
611 err |= __put_user(bundle, buffer++);
612 bundle = __single_step_auli_insn;
613 bundle |= create_Dest_X1(state->update_reg);
614 bundle |= create_SrcA_X1(state->update_reg);
615 ha16 = (state->update_value + 0x8000) >> 16;
616 bundle |= create_Imm16_X1(ha16);
617 err |= __put_user(bundle, buffer++);
618 state->update = 0;
621 /* End with a jump back to the next instruction */
622 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
623 (unsigned long)buffer) >>
624 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
625 bundle = __single_step_j_insn;
626 bundle |= create_JOffLong_X1(delta);
627 err |= __put_user(bundle, buffer++);
630 if (err) {
631 pr_err("Fault when writing to single-step buffer\n");
632 return;
636 * Flush the buffer.
637 * We do a local flush only, since this is a thread-specific buffer.
639 __flush_icache_range((unsigned long)state->buffer,
640 (unsigned long)buffer);
642 /* Indicate enabled */
643 state->is_enabled = is_single_step;
644 regs->pc = (unsigned long)state->buffer;
646 /* Fault immediately if we are coming back from a syscall. */
647 if (regs->faultnum == INT_SWINT_1)
648 regs->pc += 8;
651 #endif /* !__tilegx__ */