GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / sparc / kernel / smp_32.c
blob0e01e7e37073cf04464ed63bb6bd3d6cf67dcfdb
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
37 #include "irq.h"
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
43 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
45 /* The only guaranteed locking primitive available on all Sparc
46 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
47 * places the current byte at the effective address into dest_reg and
48 * places 0xff there afterwards. Pretty lame locking primitive
49 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
50 * instruction which is much better...
53 void __cpuinit smp_store_cpu_info(int id)
55 int cpu_node;
57 cpu_data(id).udelay_val = loops_per_jiffy;
59 cpu_find_by_mid(id, &cpu_node);
60 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
61 "clock-frequency", 0);
62 cpu_data(id).prom_node = cpu_node;
63 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
65 if (cpu_data(id).mid < 0)
66 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
69 void __init smp_cpus_done(unsigned int max_cpus)
71 extern void smp4m_smp_done(void);
72 extern void smp4d_smp_done(void);
73 unsigned long bogosum = 0;
74 int cpu, num = 0;
76 for_each_online_cpu(cpu) {
77 num++;
78 bogosum += cpu_data(cpu).udelay_val;
81 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
82 num, bogosum/(500000/HZ),
83 (bogosum/(5000/HZ))%100);
85 switch(sparc_cpu_model) {
86 case sun4:
87 printk("SUN4\n");
88 BUG();
89 break;
90 case sun4c:
91 printk("SUN4C\n");
92 BUG();
93 break;
94 case sun4m:
95 smp4m_smp_done();
96 break;
97 case sun4d:
98 smp4d_smp_done();
99 break;
100 case sparc_leon:
101 leon_smp_done();
102 break;
103 case sun4e:
104 printk("SUN4E\n");
105 BUG();
106 break;
107 case sun4u:
108 printk("SUN4U\n");
109 BUG();
110 break;
111 default:
112 printk("UNKNOWN!\n");
113 BUG();
114 break;
118 void cpu_panic(void)
120 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
121 panic("SMP bolixed\n");
124 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
126 void smp_send_reschedule(int cpu)
128 /* See sparc64 */
131 void smp_send_stop(void)
135 void smp_flush_cache_all(void)
137 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
138 local_flush_cache_all();
141 void smp_flush_tlb_all(void)
143 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
144 local_flush_tlb_all();
147 void smp_flush_cache_mm(struct mm_struct *mm)
149 if(mm->context != NO_CONTEXT) {
150 cpumask_t cpu_mask = *mm_cpumask(mm);
151 cpu_clear(smp_processor_id(), cpu_mask);
152 if (!cpus_empty(cpu_mask))
153 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
154 local_flush_cache_mm(mm);
158 void smp_flush_tlb_mm(struct mm_struct *mm)
160 if(mm->context != NO_CONTEXT) {
161 cpumask_t cpu_mask = *mm_cpumask(mm);
162 cpu_clear(smp_processor_id(), cpu_mask);
163 if (!cpus_empty(cpu_mask)) {
164 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
165 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
166 cpumask_copy(mm_cpumask(mm),
167 cpumask_of(smp_processor_id()));
169 local_flush_tlb_mm(mm);
173 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
174 unsigned long end)
176 struct mm_struct *mm = vma->vm_mm;
178 if (mm->context != NO_CONTEXT) {
179 cpumask_t cpu_mask = *mm_cpumask(mm);
180 cpu_clear(smp_processor_id(), cpu_mask);
181 if (!cpus_empty(cpu_mask))
182 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
183 local_flush_cache_range(vma, start, end);
187 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
188 unsigned long end)
190 struct mm_struct *mm = vma->vm_mm;
192 if (mm->context != NO_CONTEXT) {
193 cpumask_t cpu_mask = *mm_cpumask(mm);
194 cpu_clear(smp_processor_id(), cpu_mask);
195 if (!cpus_empty(cpu_mask))
196 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
197 local_flush_tlb_range(vma, start, end);
201 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
203 struct mm_struct *mm = vma->vm_mm;
205 if(mm->context != NO_CONTEXT) {
206 cpumask_t cpu_mask = *mm_cpumask(mm);
207 cpu_clear(smp_processor_id(), cpu_mask);
208 if (!cpus_empty(cpu_mask))
209 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
210 local_flush_cache_page(vma, page);
214 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
216 struct mm_struct *mm = vma->vm_mm;
218 if(mm->context != NO_CONTEXT) {
219 cpumask_t cpu_mask = *mm_cpumask(mm);
220 cpu_clear(smp_processor_id(), cpu_mask);
221 if (!cpus_empty(cpu_mask))
222 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
223 local_flush_tlb_page(vma, page);
227 void smp_reschedule_irq(void)
229 set_need_resched();
232 void smp_flush_page_to_ram(unsigned long page)
234 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
235 local_flush_page_to_ram(page);
238 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
240 cpumask_t cpu_mask = *mm_cpumask(mm);
241 cpu_clear(smp_processor_id(), cpu_mask);
242 if (!cpus_empty(cpu_mask))
243 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
244 local_flush_sig_insns(mm, insn_addr);
247 extern unsigned int lvl14_resolution;
249 /* /proc/profile writes can call this, don't __init it please. */
250 static DEFINE_SPINLOCK(prof_setup_lock);
252 int setup_profiling_timer(unsigned int multiplier)
254 int i;
255 unsigned long flags;
257 /* Prevent level14 ticker IRQ flooding. */
258 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
259 return -EINVAL;
261 spin_lock_irqsave(&prof_setup_lock, flags);
262 for_each_possible_cpu(i) {
263 load_profile_irq(i, lvl14_resolution / multiplier);
264 prof_multiplier(i) = multiplier;
266 spin_unlock_irqrestore(&prof_setup_lock, flags);
268 return 0;
271 void __init smp_prepare_cpus(unsigned int max_cpus)
273 extern void __init smp4m_boot_cpus(void);
274 extern void __init smp4d_boot_cpus(void);
275 int i, cpuid, extra;
277 printk("Entering SMP Mode...\n");
279 extra = 0;
280 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
281 if (cpuid >= NR_CPUS)
282 extra++;
284 /* i = number of cpus */
285 if (extra && max_cpus > i - extra)
286 printk("Warning: NR_CPUS is too low to start all cpus\n");
288 smp_store_cpu_info(boot_cpu_id);
290 switch(sparc_cpu_model) {
291 case sun4:
292 printk("SUN4\n");
293 BUG();
294 break;
295 case sun4c:
296 printk("SUN4C\n");
297 BUG();
298 break;
299 case sun4m:
300 smp4m_boot_cpus();
301 break;
302 case sun4d:
303 smp4d_boot_cpus();
304 break;
305 case sparc_leon:
306 leon_boot_cpus();
307 break;
308 case sun4e:
309 printk("SUN4E\n");
310 BUG();
311 break;
312 case sun4u:
313 printk("SUN4U\n");
314 BUG();
315 break;
316 default:
317 printk("UNKNOWN!\n");
318 BUG();
319 break;
323 /* Set this up early so that things like the scheduler can init
324 * properly. We use the same cpu mask for both the present and
325 * possible cpu map.
327 void __init smp_setup_cpu_possible_map(void)
329 int instance, mid;
331 instance = 0;
332 while (!cpu_find_by_instance(instance, NULL, &mid)) {
333 if (mid < NR_CPUS) {
334 set_cpu_possible(mid, true);
335 set_cpu_present(mid, true);
337 instance++;
341 void __init smp_prepare_boot_cpu(void)
343 int cpuid = hard_smp_processor_id();
345 if (cpuid >= NR_CPUS) {
346 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
347 prom_halt();
349 if (cpuid != 0)
350 printk("boot cpu id != 0, this could work but is untested\n");
352 current_thread_info()->cpu = cpuid;
353 set_cpu_online(cpuid, true);
354 set_cpu_possible(cpuid, true);
357 int __cpuinit __cpu_up(unsigned int cpu)
359 extern int __cpuinit smp4m_boot_one_cpu(int);
360 extern int __cpuinit smp4d_boot_one_cpu(int);
361 int ret=0;
363 switch(sparc_cpu_model) {
364 case sun4:
365 printk("SUN4\n");
366 BUG();
367 break;
368 case sun4c:
369 printk("SUN4C\n");
370 BUG();
371 break;
372 case sun4m:
373 ret = smp4m_boot_one_cpu(cpu);
374 break;
375 case sun4d:
376 ret = smp4d_boot_one_cpu(cpu);
377 break;
378 case sparc_leon:
379 ret = leon_boot_one_cpu(cpu);
380 break;
381 case sun4e:
382 printk("SUN4E\n");
383 BUG();
384 break;
385 case sun4u:
386 printk("SUN4U\n");
387 BUG();
388 break;
389 default:
390 printk("UNKNOWN!\n");
391 BUG();
392 break;
395 if (!ret) {
396 cpu_set(cpu, smp_commenced_mask);
397 while (!cpu_online(cpu))
398 mb();
400 return ret;
403 void smp_bogo(struct seq_file *m)
405 int i;
407 for_each_online_cpu(i) {
408 seq_printf(m,
409 "Cpu%dBogo\t: %lu.%02lu\n",
411 cpu_data(i).udelay_val/(500000/HZ),
412 (cpu_data(i).udelay_val/(5000/HZ))%100);
416 void smp_info(struct seq_file *m)
418 int i;
420 seq_printf(m, "State:\n");
421 for_each_online_cpu(i)
422 seq_printf(m, "CPU%d\t\t: online\n", i);