GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / mips / kernel / smtc.c
blob9b1ef58e5612b4421747aa6815f9689017da116c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/slab.h>
31 #include <asm/cpu.h>
32 #include <asm/processor.h>
33 #include <asm/atomic.h>
34 #include <asm/system.h>
35 #include <asm/hardirq.h>
36 #include <asm/hazards.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/mipsregs.h>
40 #include <asm/cacheflush.h>
41 #include <asm/time.h>
42 #include <asm/addrspace.h>
43 #include <asm/smtc.h>
44 #include <asm/smtc_proc.h>
47 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
48 * in do_IRQ. These are passed in setup_irq_smtc() and stored
49 * in this table.
51 unsigned long irq_hwmask[NR_IRQS];
53 #define LOCK_MT_PRA() \
54 local_irq_save(flags); \
55 mtflags = dmt()
57 #define UNLOCK_MT_PRA() \
58 emt(mtflags); \
59 local_irq_restore(flags)
61 #define LOCK_CORE_PRA() \
62 local_irq_save(flags); \
63 mtflags = dvpe()
65 #define UNLOCK_CORE_PRA() \
66 evpe(mtflags); \
67 local_irq_restore(flags)
70 * Data structures purely associated with SMTC parallelism
75 * Table for tracking ASIDs whose lifetime is prolonged.
78 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
81 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
84 #define IPIBUF_PER_CPU 4
86 struct smtc_ipi_q IPIQ[NR_CPUS];
87 static struct smtc_ipi_q freeIPIq;
91 * Number of FPU contexts for each VPE
94 static int smtc_nconf1[MAX_SMTC_VPES];
97 /* Forward declarations */
99 void ipi_decode(struct smtc_ipi *);
100 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
101 static void setup_cross_vpe_interrupts(unsigned int nvpe);
102 void init_smtc_stats(void);
104 /* Global SMTC Status */
106 unsigned int smtc_status;
108 /* Boot command line configuration overrides */
110 static int vpe0limit;
111 static int ipibuffers;
112 static int nostlb;
113 static int asidmask;
114 unsigned long smtc_asid_mask = 0xff;
116 static int __init vpe0tcs(char *str)
118 get_option(&str, &vpe0limit);
120 return 1;
123 static int __init ipibufs(char *str)
125 get_option(&str, &ipibuffers);
126 return 1;
129 static int __init stlb_disable(char *s)
131 nostlb = 1;
132 return 1;
135 static int __init asidmask_set(char *str)
137 get_option(&str, &asidmask);
138 switch (asidmask) {
139 case 0x1:
140 case 0x3:
141 case 0x7:
142 case 0xf:
143 case 0x1f:
144 case 0x3f:
145 case 0x7f:
146 case 0xff:
147 smtc_asid_mask = (unsigned long)asidmask;
148 break;
149 default:
150 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
152 return 1;
155 __setup("vpe0tcs=", vpe0tcs);
156 __setup("ipibufs=", ipibufs);
157 __setup("nostlb", stlb_disable);
158 __setup("asidmask=", asidmask_set);
160 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
162 static int hang_trig;
164 static int __init hangtrig_enable(char *s)
166 hang_trig = 1;
167 return 1;
171 __setup("hangtrig", hangtrig_enable);
173 #define DEFAULT_BLOCKED_IPI_LIMIT 32
175 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
177 static int __init tintq(char *str)
179 get_option(&str, &timerq_limit);
180 return 1;
183 __setup("tintq=", tintq);
185 static int imstuckcount[MAX_SMTC_VPES][8];
186 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
187 static int vpemask[MAX_SMTC_VPES][8] = {
188 {0, 0, 1, 0, 0, 0, 0, 1},
189 {0, 0, 0, 0, 0, 0, 0, 1}
191 int tcnoprog[NR_CPUS];
192 static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
193 static int clock_hang_reported[NR_CPUS];
195 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
198 * Configure shared TLB - VPC configuration bit must be set by caller
201 static void smtc_configure_tlb(void)
203 int i, tlbsiz, vpes;
204 unsigned long mvpconf0;
205 unsigned long config1val;
207 /* Set up ASID preservation table */
208 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
209 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
210 smtc_live_asid[vpes][i] = 0;
213 mvpconf0 = read_c0_mvpconf0();
215 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
216 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
217 /* If we have multiple VPEs, try to share the TLB */
218 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
220 * If TLB sizing is programmable, shared TLB
221 * size is the total available complement.
222 * Otherwise, we have to take the sum of all
223 * static VPE TLB entries.
225 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
226 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
228 * If there's more than one VPE, there had better
229 * be more than one TC, because we need one to bind
230 * to each VPE in turn to be able to read
231 * its configuration state!
233 settc(1);
234 /* Stop the TC from doing anything foolish */
235 write_tc_c0_tchalt(TCHALT_H);
236 mips_ihb();
237 /* No need to un-Halt - that happens later anyway */
238 for (i=0; i < vpes; i++) {
239 write_tc_c0_tcbind(i);
241 * To be 100% sure we're really getting the right
242 * information, we exit the configuration state
243 * and do an IHB after each rebinding.
245 write_c0_mvpcontrol(
246 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
247 mips_ihb();
249 * Only count if the MMU Type indicated is TLB
251 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
252 config1val = read_vpe_c0_config1();
253 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
256 /* Put core back in configuration state */
257 write_c0_mvpcontrol(
258 read_c0_mvpcontrol() | MVPCONTROL_VPC );
259 mips_ihb();
262 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
263 ehb();
266 * Setup kernel data structures to use software total,
267 * rather than read the per-VPE Config1 value. The values
268 * for "CPU 0" gets copied to all the other CPUs as part
269 * of their initialization in smtc_cpu_setup().
272 /* MIPS32 limits TLB indices to 64 */
273 if (tlbsiz > 64)
274 tlbsiz = 64;
275 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
276 smtc_status |= SMTC_TLB_SHARED;
277 local_flush_tlb_all();
279 printk("TLB of %d entry pairs shared by %d VPEs\n",
280 tlbsiz, vpes);
281 } else {
282 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
289 * Incrementally build the CPU map out of constituent MIPS MT cores,
290 * using the specified available VPEs and TCs. Plaform code needs
291 * to ensure that each MIPS MT core invokes this routine on reset,
292 * one at a time(!).
294 * This version of the build_cpu_map and prepare_cpus routines assumes
295 * that *all* TCs of a MIPS MT core will be used for Linux, and that
296 * they will be spread across *all* available VPEs (to minimise the
297 * loss of efficiency due to exception service serialization).
298 * An improved version would pick up configuration information and
299 * possibly leave some TCs/VPEs as "slave" processors.
301 * Use c0_MVPConf0 to find out how many TCs are available, setting up
302 * cpu_possible_map and the logical/physical mappings.
305 int __init smtc_build_cpu_map(int start_cpu_slot)
307 int i, ntcs;
310 * The CPU map isn't actually used for anything at this point,
311 * so it's not clear what else we should do apart from set
312 * everything up so that "logical" = "physical".
314 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
315 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
316 set_cpu_possible(i, true);
317 __cpu_number_map[i] = i;
318 __cpu_logical_map[i] = i;
320 #ifdef CONFIG_MIPS_MT_FPAFF
321 /* Initialize map of CPUs with FPUs */
322 cpus_clear(mt_fpu_cpumask);
323 #endif
325 /* One of those TC's is the one booting, and not a secondary... */
326 printk("%i available secondary CPU TC(s)\n", i - 1);
328 return i;
332 * Common setup before any secondaries are started
333 * Make sure all CPUs are in a sensible state before we boot any of the
334 * secondaries.
336 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
337 * as possible across the available VPEs.
340 static void smtc_tc_setup(int vpe, int tc, int cpu)
342 static int cp1contexts[MAX_SMTC_VPES];
345 * Make a local copy of the available FPU contexts in order
346 * to keep track of TCs that can have one.
348 if (tc == 1)
350 cp1contexts[0] = smtc_nconf1[0] - 1;
351 cp1contexts[1] = smtc_nconf1[1];
354 settc(tc);
355 write_tc_c0_tchalt(TCHALT_H);
356 mips_ihb();
357 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
358 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
359 | TCSTATUS_A);
361 * TCContext gets an offset from the base of the IPIQ array
362 * to be used in low-level code to detect the presence of
363 * an active IPI queue.
365 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
367 /* Bind TC to VPE. */
368 write_tc_c0_tcbind(vpe);
370 /* In general, all TCs should have the same cpu_data indications. */
371 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
373 /* Check to see if there is a FPU context available for this TC. */
374 if (!cp1contexts[vpe])
375 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
376 else
377 cp1contexts[vpe]--;
379 /* Store the TC and VPE into the cpu_data structure. */
380 cpu_data[cpu].vpe_id = vpe;
381 cpu_data[cpu].tc_id = tc;
383 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
387 * Tweak to get Count registers synced as closely as possible. The
388 * value seems good for 34K-class cores.
391 #define CP0_SKEW 8
393 void smtc_prepare_cpus(int cpus)
395 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
396 unsigned long flags;
397 unsigned long val;
398 int nipi;
399 struct smtc_ipi *pipi;
401 /* disable interrupts so we can disable MT */
402 local_irq_save(flags);
403 /* disable MT so we can configure */
404 dvpe();
405 dmt();
407 spin_lock_init(&freeIPIq.lock);
410 * We probably don't have as many VPEs as we do SMP "CPUs",
411 * but it's possible - and in any case we'll never use more!
413 for (i=0; i<NR_CPUS; i++) {
414 IPIQ[i].head = IPIQ[i].tail = NULL;
415 spin_lock_init(&IPIQ[i].lock);
416 IPIQ[i].depth = 0;
417 IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
420 /* cpu_data index starts at zero */
421 cpu = 0;
422 cpu_data[cpu].vpe_id = 0;
423 cpu_data[cpu].tc_id = 0;
424 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
425 cpu++;
427 /* Report on boot-time options */
428 mips_mt_set_cpuoptions();
429 if (vpelimit > 0)
430 printk("Limit of %d VPEs set\n", vpelimit);
431 if (tclimit > 0)
432 printk("Limit of %d TCs set\n", tclimit);
433 if (nostlb) {
434 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
436 if (asidmask)
437 printk("ASID mask value override to 0x%x\n", asidmask);
439 /* Temporary */
440 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
441 if (hang_trig)
442 printk("Logic Analyser Trigger on suspected TC hang\n");
443 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
445 /* Put MVPE's into 'configuration state' */
446 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
448 val = read_c0_mvpconf0();
449 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
450 if (vpelimit > 0 && nvpe > vpelimit)
451 nvpe = vpelimit;
452 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
453 if (ntc > NR_CPUS)
454 ntc = NR_CPUS;
455 if (tclimit > 0 && ntc > tclimit)
456 ntc = tclimit;
457 slop = ntc % nvpe;
458 for (i = 0; i < nvpe; i++) {
459 tcpervpe[i] = ntc / nvpe;
460 if (slop) {
461 if((slop - i) > 0) tcpervpe[i]++;
464 /* Handle command line override for VPE0 */
465 if (vpe0limit > ntc) vpe0limit = ntc;
466 if (vpe0limit > 0) {
467 int slopslop;
468 if (vpe0limit < tcpervpe[0]) {
469 /* Reducing TC count - distribute to others */
470 slop = tcpervpe[0] - vpe0limit;
471 slopslop = slop % (nvpe - 1);
472 tcpervpe[0] = vpe0limit;
473 for (i = 1; i < nvpe; i++) {
474 tcpervpe[i] += slop / (nvpe - 1);
475 if(slopslop && ((slopslop - (i - 1) > 0)))
476 tcpervpe[i]++;
478 } else if (vpe0limit > tcpervpe[0]) {
479 /* Increasing TC count - steal from others */
480 slop = vpe0limit - tcpervpe[0];
481 slopslop = slop % (nvpe - 1);
482 tcpervpe[0] = vpe0limit;
483 for (i = 1; i < nvpe; i++) {
484 tcpervpe[i] -= slop / (nvpe - 1);
485 if(slopslop && ((slopslop - (i - 1) > 0)))
486 tcpervpe[i]--;
491 /* Set up shared TLB */
492 smtc_configure_tlb();
494 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
495 /* Get number of CP1 contexts for each VPE. */
496 if (tc == 0)
499 * Do not call settc() for TC0 or the FPU context
500 * value will be incorrect. Besides, we know that
501 * we are TC0 anyway.
503 smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() &
504 VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
505 if (nvpe == 2)
507 settc(1);
508 smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() &
509 VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
510 settc(0);
513 if (tcpervpe[vpe] == 0)
514 continue;
515 if (vpe != 0)
516 printk(", ");
517 printk("VPE %d: TC", vpe);
518 for (i = 0; i < tcpervpe[vpe]; i++) {
520 * TC 0 is bound to VPE 0 at reset,
521 * and is presumably executing this
522 * code. Leave it alone!
524 if (tc != 0) {
525 smtc_tc_setup(vpe, tc, cpu);
526 if (vpe != 0) {
528 * Set MVP bit (possibly again). Do it
529 * here to catch CPUs that have no TCs
530 * bound to the VPE at reset. In that
531 * case, a TC must be bound to the VPE
532 * before we can set VPEControl[MVP]
534 write_vpe_c0_vpeconf0(
535 read_vpe_c0_vpeconf0() |
536 VPECONF0_MVP);
538 cpu++;
540 printk(" %d", tc);
541 tc++;
543 if (vpe != 0) {
545 * Allow this VPE to control others.
547 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
548 VPECONF0_MVP);
551 * Clear any stale software interrupts from VPE's Cause
553 write_vpe_c0_cause(0);
556 * Clear ERL/EXL of VPEs other than 0
557 * and set restricted interrupt enable/mask.
559 write_vpe_c0_status((read_vpe_c0_status()
560 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
561 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
562 | ST0_IE));
564 * set config to be the same as vpe0,
565 * particularly kseg0 coherency alg
567 write_vpe_c0_config(read_c0_config());
568 /* Clear any pending timer interrupt */
569 write_vpe_c0_compare(0);
570 /* Propagate Config7 */
571 write_vpe_c0_config7(read_c0_config7());
572 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
573 ehb();
575 /* enable multi-threading within VPE */
576 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
577 /* enable the VPE */
578 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
582 * Pull any physically present but unused TCs out of circulation.
584 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
585 set_cpu_possible(tc, false);
586 set_cpu_present(tc, false);
587 tc++;
590 /* release config state */
591 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
593 printk("\n");
595 /* Set up coprocessor affinity CPU mask(s) */
597 #ifdef CONFIG_MIPS_MT_FPAFF
598 for (tc = 0; tc < ntc; tc++) {
599 if (cpu_data[tc].options & MIPS_CPU_FPU)
600 cpu_set(tc, mt_fpu_cpumask);
602 #endif
604 /* set up ipi interrupts... */
606 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
608 setup_cross_vpe_interrupts(nvpe);
610 /* Set up queue of free IPI "messages". */
611 nipi = NR_CPUS * IPIBUF_PER_CPU;
612 if (ipibuffers > 0)
613 nipi = ipibuffers;
615 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
616 if (pipi == NULL)
617 panic("kmalloc of IPI message buffers failed\n");
618 else
619 printk("IPI buffer pool of %d buffers\n", nipi);
620 for (i = 0; i < nipi; i++) {
621 smtc_ipi_nq(&freeIPIq, pipi);
622 pipi++;
625 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
626 emt(EMT_ENABLE);
627 evpe(EVPE_ENABLE);
628 local_irq_restore(flags);
629 /* Initialize SMTC /proc statistics/diagnostics */
630 init_smtc_stats();
635 * Setup the PC, SP, and GP of a secondary processor and start it
636 * running!
637 * smp_bootstrap is the place to resume from
638 * __KSTK_TOS(idle) is apparently the stack pointer
639 * (unsigned long)idle->thread_info the gp
642 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
644 extern u32 kernelsp[NR_CPUS];
645 unsigned long flags;
646 int mtflags;
648 LOCK_MT_PRA();
649 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
650 dvpe();
652 settc(cpu_data[cpu].tc_id);
654 /* pc */
655 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
657 /* stack pointer */
658 kernelsp[cpu] = __KSTK_TOS(idle);
659 write_tc_gpr_sp(__KSTK_TOS(idle));
661 /* global pointer */
662 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
664 smtc_status |= SMTC_MTC_ACTIVE;
665 write_tc_c0_tchalt(0);
666 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
667 evpe(EVPE_ENABLE);
669 UNLOCK_MT_PRA();
672 void smtc_init_secondary(void)
674 local_irq_enable();
677 void smtc_smp_finish(void)
679 int cpu = smp_processor_id();
682 * Lowest-numbered CPU per VPE starts a clock tick.
683 * Like per_cpu_trap_init() hack, this assumes that
684 * SMTC init code assigns TCs consdecutively and
685 * in ascending order across available VPEs.
687 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
688 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
690 printk("TC %d going on-line as CPU %d\n",
691 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
694 void smtc_cpus_done(void)
699 * Support for SMTC-optimized driver IRQ registration
703 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
704 * in do_IRQ. These are passed in setup_irq_smtc() and stored
705 * in this table.
708 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
709 unsigned long hwmask)
711 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
712 unsigned int vpe = current_cpu_data.vpe_id;
714 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
715 #endif
716 irq_hwmask[irq] = hwmask;
718 return setup_irq(irq, new);
721 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
723 * Support for IRQ affinity to TCs
726 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
729 * If a "fast path" cache of quickly decodable affinity state
730 * is maintained, this is where it gets done, on a call up
731 * from the platform affinity code.
735 void smtc_forward_irq(unsigned int irq)
737 int target;
740 * OK wise guy, now figure out how to get the IRQ
741 * to be serviced on an authorized "CPU".
743 * Ideally, to handle the situation where an IRQ has multiple
744 * eligible CPUS, we would maintain state per IRQ that would
745 * allow a fair distribution of service requests. Since the
746 * expected use model is any-or-only-one, for simplicity
747 * and efficiency, we just pick the easiest one to find.
750 target = cpumask_first(irq_desc[irq].affinity);
753 * We depend on the platform code to have correctly processed
754 * IRQ affinity change requests to ensure that the IRQ affinity
755 * mask has been purged of bits corresponding to nonexistent and
756 * offline "CPUs", and to TCs bound to VPEs other than the VPE
757 * connected to the physical interrupt input for the interrupt
758 * in question. Otherwise we have a nasty problem with interrupt
759 * mask management. This is best handled in non-performance-critical
760 * platform IRQ affinity setting code, to minimize interrupt-time
761 * checks.
764 /* If no one is eligible, service locally */
765 if (target >= NR_CPUS) {
766 do_IRQ_no_affinity(irq);
767 return;
770 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
773 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
776 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
777 * Within a VPE one TC can interrupt another by different approaches.
778 * The easiest to get right would probably be to make all TCs except
779 * the target IXMT and set a software interrupt, but an IXMT-based
780 * scheme requires that a handler must run before a new IPI could
781 * be sent, which would break the "broadcast" loops in MIPS MT.
782 * A more gonzo approach within a VPE is to halt the TC, extract
783 * its Restart, Status, and a couple of GPRs, and program the Restart
784 * address to emulate an interrupt.
786 * Within a VPE, one can be confident that the target TC isn't in
787 * a critical EXL state when halted, since the write to the Halt
788 * register could not have issued on the writing thread if the
789 * halting thread had EXL set. So k0 and k1 of the target TC
790 * can be used by the injection code. Across VPEs, one can't
791 * be certain that the target TC isn't in a critical exception
792 * state. So we try a two-step process of sending a software
793 * interrupt to the target VPE, which either handles the event
794 * itself (if it was the target) or injects the event within
795 * the VPE.
798 static void smtc_ipi_qdump(void)
800 int i;
801 struct smtc_ipi *temp;
803 for (i = 0; i < NR_CPUS ;i++) {
804 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
805 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
806 IPIQ[i].depth);
807 temp = IPIQ[i].head;
809 while (temp != IPIQ[i].tail) {
810 pr_debug("%d %d %d: ", temp->type, temp->dest,
811 (int)temp->arg);
812 #ifdef SMTC_IPI_DEBUG
813 pr_debug("%u %lu\n", temp->sender, temp->stamp);
814 #else
815 pr_debug("\n");
816 #endif
817 temp = temp->flink;
823 * The standard atomic.h primitives don't quite do what we want
824 * here: We need an atomic add-and-return-previous-value (which
825 * could be done with atomic_add_return and a decrement) and an
826 * atomic set/zero-and-return-previous-value (which can't really
827 * be done with the atomic.h primitives). And since this is
828 * MIPS MT, we can assume that we have LL/SC.
830 static inline int atomic_postincrement(atomic_t *v)
832 unsigned long result;
834 unsigned long temp;
836 __asm__ __volatile__(
837 "1: ll %0, %2 \n"
838 " addu %1, %0, 1 \n"
839 " sc %1, %2 \n"
840 " beqz %1, 1b \n"
841 __WEAK_LLSC_MB
842 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
843 : "m" (v->counter)
844 : "memory");
846 return result;
849 void smtc_send_ipi(int cpu, int type, unsigned int action)
851 int tcstatus;
852 struct smtc_ipi *pipi;
853 unsigned long flags;
854 int mtflags;
855 unsigned long tcrestart;
856 extern void r4k_wait_irqoff(void), __pastwait(void);
857 int set_resched_flag = (type == LINUX_SMP_IPI &&
858 action == SMP_RESCHEDULE_YOURSELF);
860 if (cpu == smp_processor_id()) {
861 printk("Cannot Send IPI to self!\n");
862 return;
864 if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
865 return; /* There is a reschedule queued already */
867 /* Set up a descriptor, to be delivered either promptly or queued */
868 pipi = smtc_ipi_dq(&freeIPIq);
869 if (pipi == NULL) {
870 bust_spinlocks(1);
871 mips_mt_regdump(dvpe());
872 panic("IPI Msg. Buffers Depleted\n");
874 pipi->type = type;
875 pipi->arg = (void *)action;
876 pipi->dest = cpu;
877 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
878 /* If not on same VPE, enqueue and send cross-VPE interrupt */
879 IPIQ[cpu].resched_flag |= set_resched_flag;
880 smtc_ipi_nq(&IPIQ[cpu], pipi);
881 LOCK_CORE_PRA();
882 settc(cpu_data[cpu].tc_id);
883 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
884 UNLOCK_CORE_PRA();
885 } else {
887 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
888 * since ASID shootdown on the other VPE may
889 * collide with this operation.
891 LOCK_CORE_PRA();
892 settc(cpu_data[cpu].tc_id);
893 /* Halt the targeted TC */
894 write_tc_c0_tchalt(TCHALT_H);
895 mips_ihb();
898 * Inspect TCStatus - if IXMT is set, we have to queue
899 * a message. Otherwise, we set up the "interrupt"
900 * of the other TC
902 tcstatus = read_tc_c0_tcstatus();
904 if ((tcstatus & TCSTATUS_IXMT) != 0) {
906 * If we're in the the irq-off version of the wait
907 * loop, we need to force exit from the wait and
908 * do a direct post of the IPI.
910 if (cpu_wait == r4k_wait_irqoff) {
911 tcrestart = read_tc_c0_tcrestart();
912 if (tcrestart >= (unsigned long)r4k_wait_irqoff
913 && tcrestart < (unsigned long)__pastwait) {
914 write_tc_c0_tcrestart(__pastwait);
915 tcstatus &= ~TCSTATUS_IXMT;
916 write_tc_c0_tcstatus(tcstatus);
917 goto postdirect;
921 * Otherwise we queue the message for the target TC
922 * to pick up when he does a local_irq_restore()
924 write_tc_c0_tchalt(0);
925 UNLOCK_CORE_PRA();
926 IPIQ[cpu].resched_flag |= set_resched_flag;
927 smtc_ipi_nq(&IPIQ[cpu], pipi);
928 } else {
929 postdirect:
930 post_direct_ipi(cpu, pipi);
931 write_tc_c0_tchalt(0);
932 UNLOCK_CORE_PRA();
938 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
940 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
942 struct pt_regs *kstack;
943 unsigned long tcstatus;
944 unsigned long tcrestart;
945 extern u32 kernelsp[NR_CPUS];
946 extern void __smtc_ipi_vector(void);
947 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
949 /* Extract Status, EPC from halted TC */
950 tcstatus = read_tc_c0_tcstatus();
951 tcrestart = read_tc_c0_tcrestart();
952 /* If TCRestart indicates a WAIT instruction, advance the PC */
953 if ((tcrestart & 0x80000000)
954 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
955 tcrestart += 4;
958 * Save on TC's future kernel stack
960 * CU bit of Status is indicator that TC was
961 * already running on a kernel stack...
963 if (tcstatus & ST0_CU0) {
964 /* Note that this "- 1" is pointer arithmetic */
965 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
966 } else {
967 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
970 kstack->cp0_epc = (long)tcrestart;
971 /* Save TCStatus */
972 kstack->cp0_tcstatus = tcstatus;
973 /* Pass token of operation to be performed kernel stack pad area */
974 kstack->pad0[4] = (unsigned long)pipi;
975 /* Pass address of function to be called likewise */
976 kstack->pad0[5] = (unsigned long)&ipi_decode;
977 /* Set interrupt exempt and kernel mode */
978 tcstatus |= TCSTATUS_IXMT;
979 tcstatus &= ~TCSTATUS_TKSU;
980 write_tc_c0_tcstatus(tcstatus);
981 ehb();
982 /* Set TC Restart address to be SMTC IPI vector */
983 write_tc_c0_tcrestart(__smtc_ipi_vector);
986 static void ipi_resched_interrupt(void)
988 /* Return from interrupt should be enough to cause scheduler check */
991 static void ipi_call_interrupt(void)
993 /* Invoke generic function invocation code in smp.c */
994 smp_call_function_interrupt();
997 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
999 static void __irq_entry smtc_clock_tick_interrupt(void)
1001 unsigned int cpu = smp_processor_id();
1002 struct clock_event_device *cd;
1003 int irq = MIPS_CPU_IRQ_BASE + 1;
1005 irq_enter();
1006 kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
1007 cd = &per_cpu(mips_clockevent_device, cpu);
1008 cd->event_handler(cd);
1009 irq_exit();
1012 void ipi_decode(struct smtc_ipi *pipi)
1014 void *arg_copy = pipi->arg;
1015 int type_copy = pipi->type;
1017 smtc_ipi_nq(&freeIPIq, pipi);
1019 switch (type_copy) {
1020 case SMTC_CLOCK_TICK:
1021 smtc_clock_tick_interrupt();
1022 break;
1024 case LINUX_SMP_IPI:
1025 switch ((int)arg_copy) {
1026 case SMP_RESCHEDULE_YOURSELF:
1027 ipi_resched_interrupt();
1028 break;
1029 case SMP_CALL_FUNCTION:
1030 ipi_call_interrupt();
1031 break;
1032 default:
1033 printk("Impossible SMTC IPI Argument %p\n", arg_copy);
1034 break;
1036 break;
1037 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1038 case IRQ_AFFINITY_IPI:
1040 * Accept a "forwarded" interrupt that was initially
1041 * taken by a TC who doesn't have affinity for the IRQ.
1043 do_IRQ_no_affinity((int)arg_copy);
1044 break;
1045 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1046 default:
1047 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
1048 break;
1053 * Similar to smtc_ipi_replay(), but invoked from context restore,
1054 * so it reuses the current exception frame rather than set up a
1055 * new one with self_ipi.
1058 void deferred_smtc_ipi(void)
1060 int cpu = smp_processor_id();
1063 * Test is not atomic, but much faster than a dequeue,
1064 * and the vast majority of invocations will have a null queue.
1065 * If irq_disabled when this was called, then any IPIs queued
1066 * after we test last will be taken on the next irq_enable/restore.
1067 * If interrupts were enabled, then any IPIs added after the
1068 * last test will be taken directly.
1071 while (IPIQ[cpu].head != NULL) {
1072 struct smtc_ipi_q *q = &IPIQ[cpu];
1073 struct smtc_ipi *pipi;
1074 unsigned long flags;
1077 * It may be possible we'll come in with interrupts
1078 * already enabled.
1080 local_irq_save(flags);
1081 spin_lock(&q->lock);
1082 pipi = __smtc_ipi_dq(q);
1083 spin_unlock(&q->lock);
1084 if (pipi != NULL) {
1085 if (pipi->type == LINUX_SMP_IPI &&
1086 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1087 IPIQ[cpu].resched_flag = 0;
1088 ipi_decode(pipi);
1091 * The use of the __raw_local restore isn't
1092 * as obviously necessary here as in smtc_ipi_replay(),
1093 * but it's more efficient, given that we're already
1094 * running down the IPI queue.
1096 __raw_local_irq_restore(flags);
1101 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1102 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1103 * in some regards preferable to have external logic for "doorbell" hardware
1104 * interrupts.
1107 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1109 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1111 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1112 int my_tc = cpu_data[smp_processor_id()].tc_id;
1113 int cpu;
1114 struct smtc_ipi *pipi;
1115 unsigned long tcstatus;
1116 int sent;
1117 unsigned long flags;
1118 unsigned int mtflags;
1119 unsigned int vpflags;
1122 * So long as cross-VPE interrupts are done via
1123 * MFTR/MTTR read-modify-writes of Cause, we need
1124 * to stop other VPEs whenever the local VPE does
1125 * anything similar.
1127 local_irq_save(flags);
1128 vpflags = dvpe();
1129 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1130 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1131 irq_enable_hazard();
1132 evpe(vpflags);
1133 local_irq_restore(flags);
1136 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1137 * queued for TCs on this VPE other than the current one.
1138 * Return-from-interrupt should cause us to drain the queue
1139 * for the current TC, so we ought not to have to do it explicitly here.
1142 for_each_online_cpu(cpu) {
1143 if (cpu_data[cpu].vpe_id != my_vpe)
1144 continue;
1146 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1147 if (pipi != NULL) {
1148 if (cpu_data[cpu].tc_id != my_tc) {
1149 sent = 0;
1150 LOCK_MT_PRA();
1151 settc(cpu_data[cpu].tc_id);
1152 write_tc_c0_tchalt(TCHALT_H);
1153 mips_ihb();
1154 tcstatus = read_tc_c0_tcstatus();
1155 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1156 post_direct_ipi(cpu, pipi);
1157 sent = 1;
1159 write_tc_c0_tchalt(0);
1160 UNLOCK_MT_PRA();
1161 if (!sent) {
1162 smtc_ipi_req(&IPIQ[cpu], pipi);
1164 } else {
1166 * ipi_decode() should be called
1167 * with interrupts off
1169 local_irq_save(flags);
1170 if (pipi->type == LINUX_SMP_IPI &&
1171 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1172 IPIQ[cpu].resched_flag = 0;
1173 ipi_decode(pipi);
1174 local_irq_restore(flags);
1179 return IRQ_HANDLED;
1182 static void ipi_irq_dispatch(void)
1184 do_IRQ(cpu_ipi_irq);
1187 static struct irqaction irq_ipi = {
1188 .handler = ipi_interrupt,
1189 .flags = IRQF_DISABLED | IRQF_PERCPU,
1190 .name = "SMTC_IPI"
1193 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1195 if (nvpe < 1)
1196 return;
1198 if (!cpu_has_vint)
1199 panic("SMTC Kernel requires Vectored Interrupt support");
1201 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1203 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1205 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1209 * SMTC-specific hacks invoked from elsewhere in the kernel.
1213 * smtc_ipi_replay is called from raw_local_irq_restore
1216 void smtc_ipi_replay(void)
1218 unsigned int cpu = smp_processor_id();
1221 * To the extent that we've ever turned interrupts off,
1222 * we may have accumulated deferred IPIs. This is subtle.
1223 * we should be OK: If we pick up something and dispatch
1224 * it here, that's great. If we see nothing, but concurrent
1225 * with this operation, another TC sends us an IPI, IXMT
1226 * is clear, and we'll handle it as a real pseudo-interrupt
1227 * and not a pseudo-pseudo interrupt. The important thing
1228 * is to do the last check for queued message *after* the
1229 * re-enabling of interrupts.
1231 while (IPIQ[cpu].head != NULL) {
1232 struct smtc_ipi_q *q = &IPIQ[cpu];
1233 struct smtc_ipi *pipi;
1234 unsigned long flags;
1237 * It's just possible we'll come in with interrupts
1238 * already enabled.
1240 local_irq_save(flags);
1242 spin_lock(&q->lock);
1243 pipi = __smtc_ipi_dq(q);
1244 spin_unlock(&q->lock);
1246 ** But use a raw restore here to avoid recursion.
1248 __raw_local_irq_restore(flags);
1250 if (pipi) {
1251 self_ipi(pipi);
1252 smtc_cpu_stats[cpu].selfipis++;
1257 EXPORT_SYMBOL(smtc_ipi_replay);
1259 void smtc_idle_loop_hook(void)
1261 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1262 int im;
1263 int flags;
1264 int mtflags;
1265 int bit;
1266 int vpe;
1267 int tc;
1268 int hook_ntcs;
1270 * printk within DMT-protected regions can deadlock,
1271 * so buffer diagnostic messages for later output.
1273 char *pdb_msg;
1274 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1276 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1277 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1278 int mvpconf0;
1279 /* Tedious stuff to just do once */
1280 mvpconf0 = read_c0_mvpconf0();
1281 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1282 if (hook_ntcs > NR_CPUS)
1283 hook_ntcs = NR_CPUS;
1284 for (tc = 0; tc < hook_ntcs; tc++) {
1285 tcnoprog[tc] = 0;
1286 clock_hang_reported[tc] = 0;
1288 for (vpe = 0; vpe < 2; vpe++)
1289 for (im = 0; im < 8; im++)
1290 imstuckcount[vpe][im] = 0;
1291 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1292 atomic_set(&idle_hook_initialized, 1000);
1293 } else {
1294 /* Someone else is initializing in parallel - let 'em finish */
1295 while (atomic_read(&idle_hook_initialized) < 1000)
1300 /* Have we stupidly left IXMT set somewhere? */
1301 if (read_c0_tcstatus() & 0x400) {
1302 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1303 ehb();
1304 printk("Dangling IXMT in cpu_idle()\n");
1307 /* Have we stupidly left an IM bit turned off? */
1308 #define IM_LIMIT 2000
1309 local_irq_save(flags);
1310 mtflags = dmt();
1311 pdb_msg = &id_ho_db_msg[0];
1312 im = read_c0_status();
1313 vpe = current_cpu_data.vpe_id;
1314 for (bit = 0; bit < 8; bit++) {
1316 * In current prototype, I/O interrupts
1317 * are masked for VPE > 0
1319 if (vpemask[vpe][bit]) {
1320 if (!(im & (0x100 << bit)))
1321 imstuckcount[vpe][bit]++;
1322 else
1323 imstuckcount[vpe][bit] = 0;
1324 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1325 set_c0_status(0x100 << bit);
1326 ehb();
1327 imstuckcount[vpe][bit] = 0;
1328 pdb_msg += sprintf(pdb_msg,
1329 "Dangling IM %d fixed for VPE %d\n", bit,
1330 vpe);
1335 emt(mtflags);
1336 local_irq_restore(flags);
1337 if (pdb_msg != &id_ho_db_msg[0])
1338 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1339 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1341 smtc_ipi_replay();
1344 void smtc_soft_dump(void)
1346 int i;
1348 printk("Counter Interrupts taken per CPU (TC)\n");
1349 for (i=0; i < NR_CPUS; i++) {
1350 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1352 printk("Self-IPI invocations:\n");
1353 for (i=0; i < NR_CPUS; i++) {
1354 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1356 smtc_ipi_qdump();
1357 printk("%d Recoveries of \"stolen\" FPU\n",
1358 atomic_read(&smtc_fpu_recoveries));
1363 * TLB management routines special to SMTC
1366 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1368 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1369 int tlb, i;
1372 * It would be nice to be able to use a spinlock here,
1373 * but this is invoked from within TLB flush routines
1374 * that protect themselves with DVPE, so if a lock is
1375 * held by another TC, it'll never be freed.
1377 * DVPE/DMT must not be done with interrupts enabled,
1378 * so even so most callers will already have disabled
1379 * them, let's be really careful...
1382 local_irq_save(flags);
1383 if (smtc_status & SMTC_TLB_SHARED) {
1384 mtflags = dvpe();
1385 tlb = 0;
1386 } else {
1387 mtflags = dmt();
1388 tlb = cpu_data[cpu].vpe_id;
1390 asid = asid_cache(cpu);
1392 do {
1393 if (!((asid += ASID_INC) & ASID_MASK) ) {
1394 if (cpu_has_vtag_icache)
1395 flush_icache_all();
1396 /* Traverse all online CPUs (hack requires contiguous range) */
1397 for_each_online_cpu(i) {
1399 * We don't need to worry about our own CPU, nor those of
1400 * CPUs who don't share our TLB.
1402 if ((i != smp_processor_id()) &&
1403 ((smtc_status & SMTC_TLB_SHARED) ||
1404 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1405 settc(cpu_data[i].tc_id);
1406 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1407 if (!prevhalt) {
1408 write_tc_c0_tchalt(TCHALT_H);
1409 mips_ihb();
1411 tcstat = read_tc_c0_tcstatus();
1412 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1413 if (!prevhalt)
1414 write_tc_c0_tchalt(0);
1417 if (!asid) /* fix version if needed */
1418 asid = ASID_FIRST_VERSION;
1419 local_flush_tlb_all(); /* start new asid cycle */
1421 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1424 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1426 for_each_online_cpu(i) {
1427 if ((smtc_status & SMTC_TLB_SHARED) ||
1428 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1429 cpu_context(i, mm) = asid_cache(i) = asid;
1432 if (smtc_status & SMTC_TLB_SHARED)
1433 evpe(mtflags);
1434 else
1435 emt(mtflags);
1436 local_irq_restore(flags);
1440 * Invoked from macros defined in mmu_context.h
1441 * which must already have disabled interrupts
1442 * and done a DVPE or DMT as appropriate.
1445 void smtc_flush_tlb_asid(unsigned long asid)
1447 int entry;
1448 unsigned long ehi;
1450 entry = read_c0_wired();
1452 /* Traverse all non-wired entries */
1453 while (entry < current_cpu_data.tlbsize) {
1454 write_c0_index(entry);
1455 ehb();
1456 tlb_read();
1457 ehb();
1458 ehi = read_c0_entryhi();
1459 if ((ehi & ASID_MASK) == asid) {
1461 * Invalidate only entries with specified ASID,
1462 * makiing sure all entries differ.
1464 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1465 write_c0_entrylo0(0);
1466 write_c0_entrylo1(0);
1467 mtc0_tlbw_hazard();
1468 tlb_write_indexed();
1470 entry++;
1472 write_c0_index(PARKED_INDEX);
1473 tlbw_use_hazard();
1477 * Support for single-threading cache flush operations.
1480 static int halt_state_save[NR_CPUS];
1483 * To really, really be sure that nothing is being done
1484 * by other TCs, halt them all. This code assumes that
1485 * a DVPE has already been done, so while their Halted
1486 * state is theoretically architecturally unstable, in
1487 * practice, it's not going to change while we're looking
1488 * at it.
1491 void smtc_cflush_lockdown(void)
1493 int cpu;
1495 for_each_online_cpu(cpu) {
1496 if (cpu != smp_processor_id()) {
1497 settc(cpu_data[cpu].tc_id);
1498 halt_state_save[cpu] = read_tc_c0_tchalt();
1499 write_tc_c0_tchalt(TCHALT_H);
1502 mips_ihb();
1505 /* It would be cheating to change the cpu_online states during a flush! */
1507 void smtc_cflush_release(void)
1509 int cpu;
1512 * Start with a hazard barrier to ensure
1513 * that all CACHE ops have played through.
1515 mips_ihb();
1517 for_each_online_cpu(cpu) {
1518 if (cpu != smp_processor_id()) {
1519 settc(cpu_data[cpu].tc_id);
1520 write_tc_c0_tchalt(halt_state_save[cpu]);
1523 mips_ihb();