GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / mips / kernel / setup.c
blob85aef3fc6716f8bc123ed614c454ad3f6dc2f07a
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37 EXPORT_SYMBOL(cpu_data);
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
44 * Despite it's name this variable is even if we don't have PCI
46 unsigned int PCI_DMA_BUS_IS_PHYS;
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
51 * Setup information
53 * These are initialized so they are in the .data section
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57 EXPORT_SYMBOL(mips_machtype);
59 struct boot_mem_map boot_mem_map;
61 static char __initdata command_line[COMMAND_LINE_SIZE];
62 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64 #ifdef CONFIG_CMDLINE_BOOL
65 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
66 #endif
69 * mips_io_port_base is the begin of the address space to which x86 style
70 * I/O ports are mapped.
72 const unsigned long mips_io_port_base __read_mostly = -1;
73 EXPORT_SYMBOL(mips_io_port_base);
75 static struct resource code_resource = { .name = "Kernel code", };
76 static struct resource data_resource = { .name = "Kernel data", };
78 void __init add_memory_region(phys_t start, phys_t size, long type)
80 int x = boot_mem_map.nr_map;
81 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
83 /* Sanity check */
84 if (start + size < start) {
85 pr_warning("Trying to add an invalid memory region, skipped\n");
86 return;
90 * Try to merge with previous entry if any. This is far less than
91 * perfect but is sufficient for most real world cases.
93 if (x && prev->addr + prev->size == start && prev->type == type) {
94 prev->size += size;
95 return;
98 if (x == BOOT_MEM_MAP_MAX) {
99 pr_err("Ooops! Too many entries in the memory map!\n");
100 return;
103 boot_mem_map.map[x].addr = start;
104 boot_mem_map.map[x].size = size;
105 boot_mem_map.map[x].type = type;
106 boot_mem_map.nr_map++;
109 static void __init print_memory_map(void)
111 int i;
112 const int field = 2 * sizeof(unsigned long);
114 for (i = 0; i < boot_mem_map.nr_map; i++) {
115 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
116 field, (unsigned long long) boot_mem_map.map[i].size,
117 field, (unsigned long long) boot_mem_map.map[i].addr);
119 switch (boot_mem_map.map[i].type) {
120 case BOOT_MEM_RAM:
121 printk(KERN_CONT "(usable)\n");
122 break;
123 case BOOT_MEM_ROM_DATA:
124 printk(KERN_CONT "(ROM data)\n");
125 break;
126 case BOOT_MEM_RESERVED:
127 printk(KERN_CONT "(reserved)\n");
128 break;
129 default:
130 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
131 break;
137 * Manage initrd
139 #ifdef CONFIG_BLK_DEV_INITRD
141 static int __init rd_start_early(char *p)
143 unsigned long start = memparse(p, &p);
145 #ifdef CONFIG_64BIT
146 /* Guess if the sign extension was forgotten by bootloader */
147 if (start < XKPHYS)
148 start = (int)start;
149 #endif
150 initrd_start = start;
151 initrd_end += start;
152 return 0;
154 early_param("rd_start", rd_start_early);
156 static int __init rd_size_early(char *p)
158 initrd_end += memparse(p, &p);
159 return 0;
161 early_param("rd_size", rd_size_early);
163 /* it returns the next free pfn after initrd */
164 static unsigned long __init init_initrd(void)
166 unsigned long end;
169 * Board specific code or command line parser should have
170 * already set up initrd_start and initrd_end. In these cases
171 * perfom sanity checks and use them if all looks good.
173 if (!initrd_start || initrd_end <= initrd_start)
174 goto disable;
176 if (initrd_start & ~PAGE_MASK) {
177 pr_err("initrd start must be page aligned\n");
178 goto disable;
180 if (initrd_start < PAGE_OFFSET) {
181 pr_err("initrd start < PAGE_OFFSET\n");
182 goto disable;
186 * Sanitize initrd addresses. For example firmware
187 * can't guess if they need to pass them through
188 * 64-bits values if the kernel has been built in pure
189 * 32-bit. We need also to switch from KSEG0 to XKPHYS
190 * addresses now, so the code can now safely use __pa().
192 end = __pa(initrd_end);
193 initrd_end = (unsigned long)__va(end);
194 initrd_start = (unsigned long)__va(__pa(initrd_start));
196 ROOT_DEV = Root_RAM0;
197 return PFN_UP(end);
198 disable:
199 initrd_start = 0;
200 initrd_end = 0;
201 return 0;
204 static void __init finalize_initrd(void)
206 unsigned long size = initrd_end - initrd_start;
208 if (size == 0) {
209 printk(KERN_INFO "Initrd not found or empty");
210 goto disable;
212 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
213 printk(KERN_ERR "Initrd extends beyond end of memory");
214 goto disable;
217 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
218 initrd_below_start_ok = 1;
220 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
221 initrd_start, size);
222 return;
223 disable:
224 printk(KERN_CONT " - disabling initrd\n");
225 initrd_start = 0;
226 initrd_end = 0;
229 #else /* !CONFIG_BLK_DEV_INITRD */
231 static unsigned long __init init_initrd(void)
233 return 0;
236 #define finalize_initrd() do {} while (0)
238 #endif
241 * Initialize the bootmem allocator. It also setup initrd related data
242 * if needed.
244 #ifdef CONFIG_SGI_IP27
246 static void __init bootmem_init(void)
248 init_initrd();
249 finalize_initrd();
252 #else /* !CONFIG_SGI_IP27 */
254 static void __init bootmem_init(void)
256 unsigned long reserved_end;
257 unsigned long mapstart = ~0UL;
258 unsigned long bootmap_size;
259 int i;
262 * Init any data related to initrd. It's a nop if INITRD is
263 * not selected. Once that done we can determine the low bound
264 * of usable memory.
266 reserved_end = max(init_initrd(),
267 (unsigned long) PFN_UP(__pa_symbol(&_end)));
270 * max_low_pfn is not a number of pages. The number of pages
271 * of the system is given by 'max_low_pfn - min_low_pfn'.
273 min_low_pfn = ~0UL;
274 max_low_pfn = 0;
277 * Find the highest page frame number we have available.
279 for (i = 0; i < boot_mem_map.nr_map; i++) {
280 unsigned long start, end;
282 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
283 continue;
285 start = PFN_UP(boot_mem_map.map[i].addr);
286 end = PFN_DOWN(boot_mem_map.map[i].addr
287 + boot_mem_map.map[i].size);
289 if (end > max_low_pfn)
290 max_low_pfn = end;
291 if (start < min_low_pfn)
292 min_low_pfn = start;
293 if (end <= reserved_end)
294 continue;
295 if (start >= mapstart)
296 continue;
297 mapstart = max(reserved_end, start);
300 if (min_low_pfn >= max_low_pfn)
301 panic("Incorrect memory mapping !!!");
302 if (min_low_pfn > ARCH_PFN_OFFSET) {
303 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
304 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
305 min_low_pfn - ARCH_PFN_OFFSET);
306 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
307 pr_info("%lu free pages won't be used\n",
308 ARCH_PFN_OFFSET - min_low_pfn);
310 min_low_pfn = ARCH_PFN_OFFSET;
313 * Determine low and high memory ranges
315 max_pfn = max_low_pfn;
316 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
317 #ifdef CONFIG_HIGHMEM
318 highstart_pfn = PFN_DOWN(HIGHMEM_START);
319 highend_pfn = max_low_pfn;
320 #endif
321 max_low_pfn = PFN_DOWN(HIGHMEM_START);
325 * Initialize the boot-time allocator with low memory only.
327 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
328 min_low_pfn, max_low_pfn);
331 for (i = 0; i < boot_mem_map.nr_map; i++) {
332 unsigned long start, end;
334 start = PFN_UP(boot_mem_map.map[i].addr);
335 end = PFN_DOWN(boot_mem_map.map[i].addr
336 + boot_mem_map.map[i].size);
338 if (start <= min_low_pfn)
339 start = min_low_pfn;
340 if (start >= end)
341 continue;
343 #ifndef CONFIG_HIGHMEM
344 if (end > max_low_pfn)
345 end = max_low_pfn;
348 * ... finally, is the area going away?
350 if (end <= start)
351 continue;
352 #endif
354 add_active_range(0, start, end);
358 * Register fully available low RAM pages with the bootmem allocator.
360 for (i = 0; i < boot_mem_map.nr_map; i++) {
361 unsigned long start, end, size;
364 * Reserve usable memory.
366 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
367 continue;
369 start = PFN_UP(boot_mem_map.map[i].addr);
370 end = PFN_DOWN(boot_mem_map.map[i].addr
371 + boot_mem_map.map[i].size);
373 * We are rounding up the start address of usable memory
374 * and at the end of the usable range downwards.
376 if (start >= max_low_pfn)
377 continue;
378 if (start < reserved_end)
379 start = reserved_end;
380 if (end > max_low_pfn)
381 end = max_low_pfn;
384 * ... finally, is the area going away?
386 if (end <= start)
387 continue;
388 size = end - start;
390 /* Register lowmem ranges */
391 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
392 memory_present(0, start, end);
396 * Reserve the bootmap memory.
398 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
401 * Reserve initrd memory if needed.
403 finalize_initrd();
406 #endif /* CONFIG_SGI_IP27 */
409 * arch_mem_init - initialize memory management subsystem
411 * o plat_mem_setup() detects the memory configuration and will record detected
412 * memory areas using add_memory_region.
414 * At this stage the memory configuration of the system is known to the
415 * kernel but generic memory management system is still entirely uninitialized.
417 * o bootmem_init()
418 * o sparse_init()
419 * o paging_init()
421 * At this stage the bootmem allocator is ready to use.
423 * NOTE: historically plat_mem_setup did the entire platform initialization.
424 * This was rather impractical because it meant plat_mem_setup had to
425 * get away without any kind of memory allocator. To keep old code from
426 * breaking plat_setup was just renamed to plat_setup and a second platform
427 * initialization hook for anything else was introduced.
430 static int usermem __initdata;
432 static int __init early_parse_mem(char *p)
434 unsigned long start, size;
437 * If a user specifies memory size, we
438 * blow away any automatically generated
439 * size.
441 if (usermem == 0) {
442 boot_mem_map.nr_map = 0;
443 usermem = 1;
445 start = 0;
446 size = memparse(p, &p);
447 if (*p == '@')
448 start = memparse(p + 1, &p);
450 add_memory_region(start, size, BOOT_MEM_RAM);
451 return 0;
453 early_param("mem", early_parse_mem);
455 static void __init arch_mem_init(char **cmdline_p)
457 extern void plat_mem_setup(void);
459 /* call board setup routine */
460 plat_mem_setup();
462 pr_info("Determined physical RAM map:\n");
463 print_memory_map();
465 #ifdef CONFIG_CMDLINE_BOOL
466 #ifdef CONFIG_CMDLINE_OVERRIDE
467 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
468 #else
469 if (builtin_cmdline[0]) {
470 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
471 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
473 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
474 #endif
475 #else
476 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
477 #endif
478 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
480 *cmdline_p = command_line;
482 parse_early_param();
484 if (usermem) {
485 pr_info("User-defined physical RAM map:\n");
486 print_memory_map();
489 bootmem_init();
490 sparse_init();
491 paging_init();
494 static void __init resource_init(void)
496 int i;
498 if (UNCAC_BASE != IO_BASE)
499 return;
501 code_resource.start = __pa_symbol(&_text);
502 code_resource.end = __pa_symbol(&_etext) - 1;
503 data_resource.start = __pa_symbol(&_etext);
504 data_resource.end = __pa_symbol(&_edata) - 1;
507 * Request address space for all standard RAM.
509 for (i = 0; i < boot_mem_map.nr_map; i++) {
510 struct resource *res;
511 unsigned long start, end;
513 start = boot_mem_map.map[i].addr;
514 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
515 if (start >= HIGHMEM_START)
516 continue;
517 if (end >= HIGHMEM_START)
518 end = HIGHMEM_START - 1;
520 res = alloc_bootmem(sizeof(struct resource));
521 switch (boot_mem_map.map[i].type) {
522 case BOOT_MEM_RAM:
523 case BOOT_MEM_ROM_DATA:
524 res->name = "System RAM";
525 break;
526 case BOOT_MEM_RESERVED:
527 default:
528 res->name = "reserved";
531 res->start = start;
532 res->end = end;
534 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
535 request_resource(&iomem_resource, res);
538 * We don't know which RAM region contains kernel data,
539 * so we try it repeatedly and let the resource manager
540 * test it.
542 request_resource(res, &code_resource);
543 request_resource(res, &data_resource);
547 void __init setup_arch(char **cmdline_p)
549 cpu_probe();
550 prom_init();
552 #ifdef CONFIG_EARLY_PRINTK
553 setup_early_printk();
554 #endif
555 cpu_report();
556 check_bugs_early();
558 #if defined(CONFIG_VT)
559 #if defined(CONFIG_VGA_CONSOLE)
560 conswitchp = &vga_con;
561 #elif defined(CONFIG_DUMMY_CONSOLE)
562 conswitchp = &dummy_con;
563 #endif
564 #endif
566 arch_mem_init(cmdline_p);
568 resource_init();
569 plat_smp_setup();
572 unsigned long kernelsp[NR_CPUS];
573 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
575 #ifdef CONFIG_DEBUG_FS
576 struct dentry *mips_debugfs_dir;
577 static int __init debugfs_mips(void)
579 struct dentry *d;
581 d = debugfs_create_dir("mips", NULL);
582 if (!d)
583 return -ENOMEM;
584 mips_debugfs_dir = d;
585 return 0;
587 arch_initcall(debugfs_mips);
588 #endif