allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / sound / pci / rme9652 / hdspm.c
blob143185e7e4dc0881b6aac43eb91afe5164b2bde6
1 /* -*- linux-c -*-
3 * ALSA driver for RME Hammerfall DSP MADI audio interface(s)
5 * Copyright (c) 2003 Winfried Ritsch (IEM)
6 * code based on hdsp.c Paul Davis
7 * Marcus Andersson
8 * Thomas Charbonnel
9 * Modified 2006-06-01 for AES32 support by Remy Bruno
10 * <remy.bruno@trinnov.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <sound/driver.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/moduleparam.h>
32 #include <linux/slab.h>
33 #include <linux/pci.h>
34 #include <asm/io.h>
36 #include <sound/core.h>
37 #include <sound/control.h>
38 #include <sound/pcm.h>
39 #include <sound/info.h>
40 #include <sound/asoundef.h>
41 #include <sound/rawmidi.h>
42 #include <sound/hwdep.h>
43 #include <sound/initval.h>
45 #include <sound/hdspm.h>
47 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
48 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
49 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
51 /* Disable precise pointer at start */
52 static int precise_ptr[SNDRV_CARDS];
54 /* Send all playback to line outs */
55 static int line_outs_monitor[SNDRV_CARDS];
57 /* Enable Analog Outs on Channel 63/64 by default */
58 static int enable_monitor[SNDRV_CARDS];
60 module_param_array(index, int, NULL, 0444);
61 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
63 module_param_array(id, charp, NULL, 0444);
64 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
66 module_param_array(enable, bool, NULL, 0444);
67 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
69 module_param_array(precise_ptr, bool, NULL, 0444);
70 MODULE_PARM_DESC(precise_ptr, "Enable or disable precise pointer.");
72 module_param_array(line_outs_monitor, bool, NULL, 0444);
73 MODULE_PARM_DESC(line_outs_monitor,
74 "Send playback streams to analog outs by default.");
76 module_param_array(enable_monitor, bool, NULL, 0444);
77 MODULE_PARM_DESC(enable_monitor,
78 "Enable Analog Out on Channel 63/64 by default.");
80 MODULE_AUTHOR
81 ("Winfried Ritsch <ritsch_AT_iem.at>, Paul Davis <paul@linuxaudiosystems.com>, "
82 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
83 "Remy Bruno <remy.bruno@trinnov.com>");
84 MODULE_DESCRIPTION("RME HDSPM");
85 MODULE_LICENSE("GPL");
86 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88 /* --- Write registers. ---
89 These are defined as byte-offsets from the iobase value. */
91 #define HDSPM_controlRegister 64
92 #define HDSPM_interruptConfirmation 96
93 #define HDSPM_control2Reg 256 /* not in specs ???????? */
94 #define HDSPM_freqReg 256 /* for AES32 */
95 #define HDSPM_midiDataOut0 352 /* just believe in old code */
96 #define HDSPM_midiDataOut1 356
97 #define HDSPM_eeprom_wr 384 /* for AES32 */
99 /* DMA enable for 64 channels, only Bit 0 is relevant */
100 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */
101 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */
103 /* 16 page addresses for each of the 64 channels DMA buffer in and out
104 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
105 #define HDSPM_pageAddressBufferOut 8192
106 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4)
108 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */
110 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */
112 /* --- Read registers. ---
113 These are defined as byte-offsets from the iobase value */
114 #define HDSPM_statusRegister 0
115 /*#define HDSPM_statusRegister2 96 */
116 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
117 * offset 192, for AES32 *and* MADI
118 * => need to check that offset 192 is working on MADI */
119 #define HDSPM_statusRegister2 192
120 #define HDSPM_timecodeRegister 128
122 #define HDSPM_midiDataIn0 360
123 #define HDSPM_midiDataIn1 364
125 /* status is data bytes in MIDI-FIFO (0-128) */
126 #define HDSPM_midiStatusOut0 384
127 #define HDSPM_midiStatusOut1 388
128 #define HDSPM_midiStatusIn0 392
129 #define HDSPM_midiStatusIn1 396
132 /* the meters are regular i/o-mapped registers, but offset
133 considerably from the rest. the peak registers are reset
134 when read; the least-significant 4 bits are full-scale counters;
135 the actual peak value is in the most-significant 24 bits.
137 #define HDSPM_MADI_peakrmsbase 4096 /* 4096-8191 2x64x32Bit Meters */
139 /* --- Control Register bits --------- */
140 #define HDSPM_Start (1<<0) /* start engine */
142 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */
143 #define HDSPM_Latency1 (1<<2) /* where n is defined */
144 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */
146 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Slave/Autosync */
148 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
150 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
151 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
152 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
153 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
155 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
156 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
157 56channelMODE=0 */ /* MADI ONLY*/
158 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
160 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
161 0=off, 1=on */ /* MADI ONLY */
162 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
164 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax */ /* MADI ONLY*/
165 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
167 #define HDSPM_SyncRef0 (1<<16) /* 0=WOrd, 1=MADI */
168 #define HDSPM_SyncRef1 (1<<17) /* for AES32: SyncRefN codes the AES # */
169 #define HDSPM_SyncRef2 (1<<13)
170 #define HDSPM_SyncRef3 (1<<25)
172 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
173 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
174 AES additional bits in
175 lower 5 Audiodatabits ??? */
176 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
177 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
179 #define HDSPM_Midi0InterruptEnable (1<<22)
180 #define HDSPM_Midi1InterruptEnable (1<<23)
182 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
184 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
185 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
186 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
188 #define HDSPM_wclk_sel (1<<30)
190 /* --- bit helper defines */
191 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
192 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
193 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
194 #define HDSPM_InputOptical 0
195 #define HDSPM_InputCoaxial (HDSPM_InputSelect0)
196 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|HDSPM_SyncRef2|HDSPM_SyncRef3)
197 #define HDSPM_SyncRef_Word 0
198 #define HDSPM_SyncRef_MADI (HDSPM_SyncRef0)
200 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */
201 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */
203 #define HDSPM_Frequency32KHz HDSPM_Frequency0
204 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1
205 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0)
206 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
207 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
208 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|HDSPM_Frequency0)
209 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
210 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
211 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|HDSPM_Frequency0)
213 /* --- for internal discrimination */
214 #define HDSPM_CLOCK_SOURCE_AUTOSYNC 0 /* Sample Clock Sources */
215 #define HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ 1
216 #define HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ 2
217 #define HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ 3
218 #define HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ 4
219 #define HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ 5
220 #define HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ 6
221 #define HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ 7
222 #define HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ 8
223 #define HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ 9
225 /* Synccheck Status */
226 #define HDSPM_SYNC_CHECK_NO_LOCK 0
227 #define HDSPM_SYNC_CHECK_LOCK 1
228 #define HDSPM_SYNC_CHECK_SYNC 2
230 /* AutoSync References - used by "autosync_ref" control switch */
231 #define HDSPM_AUTOSYNC_FROM_WORD 0
232 #define HDSPM_AUTOSYNC_FROM_MADI 1
233 #define HDSPM_AUTOSYNC_FROM_NONE 2
235 /* Possible sources of MADI input */
236 #define HDSPM_OPTICAL 0 /* optical */
237 #define HDSPM_COAXIAL 1 /* BNC */
239 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask)
240 #define hdspm_decode_latency(x) (((x) & HDSPM_LatencyMask)>>1)
242 #define hdspm_encode_in(x) (((x)&0x3)<<14)
243 #define hdspm_decode_in(x) (((x)>>14)&0x3)
245 /* --- control2 register bits --- */
246 #define HDSPM_TMS (1<<0)
247 #define HDSPM_TCK (1<<1)
248 #define HDSPM_TDI (1<<2)
249 #define HDSPM_JTAG (1<<3)
250 #define HDSPM_PWDN (1<<4)
251 #define HDSPM_PROGRAM (1<<5)
252 #define HDSPM_CONFIG_MODE_0 (1<<6)
253 #define HDSPM_CONFIG_MODE_1 (1<<7)
254 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/
255 #define HDSPM_BIGENDIAN_MODE (1<<9)
256 #define HDSPM_RD_MULTIPLE (1<<10)
258 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
259 that do not conflict with specific bits for AES32 seem to be valid also for the AES32 */
260 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
261 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn. MODE=0 */
262 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 (like inp0) */
263 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */
265 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
266 /* since 64byte accurate last 6 bits
267 are not used */
269 #define HDSPM_madiSync (1<<18) /* MADI is in sync */
270 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
272 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */
273 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */
274 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */
275 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */
277 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with Interrupt */
278 #define HDSPM_midi0IRQPending (1<<30) /* MIDI IRQ is pending */
279 #define HDSPM_midi1IRQPending (1<<31) /* and aktiv */
281 /* --- status bit helpers */
282 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2|HDSPM_madiFreq3)
283 #define HDSPM_madiFreq32 (HDSPM_madiFreq0)
284 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1)
285 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1)
286 #define HDSPM_madiFreq64 (HDSPM_madiFreq2)
287 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2)
288 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2)
289 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
290 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
291 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
293 /* Status2 Register bits */ /* MADI ONLY */
295 #define HDSPM_version0 (1<<0) /* not realy defined but I guess */
296 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */
297 #define HDSPM_version2 (1<<2)
299 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */
300 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */
302 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */
303 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */
304 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */
305 /* missing Bit for 111=128, 1000=176.4, 1001=192 */
307 #define HDSPM_SelSyncRef0 (1<<8) /* Sync Source in slave mode */
308 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */
309 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */
311 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
313 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
314 #define HDSPM_wcFreq32 (HDSPM_wc_freq0)
315 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1)
316 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1)
317 #define HDSPM_wcFreq64 (HDSPM_wc_freq2)
318 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2)
319 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2)
322 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|HDSPM_SelSyncRef2)
323 #define HDSPM_SelSyncRef_WORD 0
324 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
325 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|HDSPM_SelSyncRef2)
328 For AES32, bits for status, status2 and timecode are different
330 /* status */
331 #define HDSPM_AES32_wcLock 0x0200000
332 #define HDSPM_AES32_wcFreq_bit 22
333 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
334 HDSPM_bit2freq */
335 #define HDSPM_AES32_syncref_bit 16
336 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
338 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
339 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
340 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
341 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
342 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
343 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
344 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
345 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
346 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
347 #define HDSPM_AES32_AUTOSYNC_FROM_NONE -1
349 /* status2 */
350 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
351 #define HDSPM_LockAES 0x80
352 #define HDSPM_LockAES1 0x80
353 #define HDSPM_LockAES2 0x40
354 #define HDSPM_LockAES3 0x20
355 #define HDSPM_LockAES4 0x10
356 #define HDSPM_LockAES5 0x8
357 #define HDSPM_LockAES6 0x4
358 #define HDSPM_LockAES7 0x2
359 #define HDSPM_LockAES8 0x1
361 Timecode
362 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
363 AES i+1
364 bits 3210
365 0001 32kHz
366 0010 44.1kHz
367 0011 48kHz
368 0100 64kHz
369 0101 88.2kHz
370 0110 96kHz
371 0111 128kHz
372 1000 176.4kHz
373 1001 192kHz
374 NB: Timecode register doesn't seem to work on AES32 card revision 230
377 /* Mixer Values */
378 #define UNITY_GAIN 32768 /* = 65536/2 */
379 #define MINUS_INFINITY_GAIN 0
381 /* Number of channels for different Speed Modes */
382 #define MADI_SS_CHANNELS 64
383 #define MADI_DS_CHANNELS 32
384 #define MADI_QS_CHANNELS 16
386 /* the size of a substream (1 mono data stream) */
387 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024)
388 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
390 /* the size of the area we need to allocate for DMA transfers. the
391 size is the same regardless of the number of channels, and
392 also the latency to use.
393 for one direction !!!
395 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
396 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
398 /* revisions >= 230 indicate AES32 card */
399 #define HDSPM_AESREVISION 230
401 struct hdspm_midi {
402 struct hdspm *hdspm;
403 int id;
404 struct snd_rawmidi *rmidi;
405 struct snd_rawmidi_substream *input;
406 struct snd_rawmidi_substream *output;
407 char istimer; /* timer in use */
408 struct timer_list timer;
409 spinlock_t lock;
410 int pending;
413 struct hdspm {
414 spinlock_t lock;
415 struct snd_pcm_substream *capture_substream; /* only one playback */
416 struct snd_pcm_substream *playback_substream; /* and/or capture stream */
418 char *card_name; /* for procinfo */
419 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
421 unsigned char is_aes32; /* indicates if card is AES32 */
423 int precise_ptr; /* use precise pointers, to be tested */
424 int monitor_outs; /* set up monitoring outs init flag */
426 u32 control_register; /* cached value */
427 u32 control2_register; /* cached value */
429 struct hdspm_midi midi[2];
430 struct tasklet_struct midi_tasklet;
432 size_t period_bytes;
433 unsigned char ss_channels; /* channels of card in single speed */
434 unsigned char ds_channels; /* Double Speed */
435 unsigned char qs_channels; /* Quad Speed */
437 unsigned char *playback_buffer; /* suitably aligned address */
438 unsigned char *capture_buffer; /* suitably aligned address */
440 pid_t capture_pid; /* process id which uses capture */
441 pid_t playback_pid; /* process id which uses capture */
442 int running; /* running status */
444 int last_external_sample_rate; /* samplerate mystic ... */
445 int last_internal_sample_rate;
446 int system_sample_rate;
448 char *channel_map; /* channel map for DS and Quadspeed */
450 int dev; /* Hardware vars... */
451 int irq;
452 unsigned long port;
453 void __iomem *iobase;
455 int irq_count; /* for debug */
457 struct snd_card *card; /* one card */
458 struct snd_pcm *pcm; /* has one pcm */
459 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */
460 struct pci_dev *pci; /* and an pci info */
462 /* Mixer vars */
463 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; /* fast alsa mixer */
464 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; /* but input to much, so not used */
465 struct hdspm_mixer *mixer; /* full mixer accessable over mixer ioctl or hwdep-device */
469 /* These tables map the ALSA channels 1..N to the channels that we
470 need to use in order to find the relevant channel buffer. RME
471 refer to this kind of mapping as between "the ADAT channel and
472 the DMA channel." We index it using the logical audio channel,
473 and the value is the DMA channel (i.e. channel buffer number)
474 where the data for that channel can be read/written from/to.
477 static char channel_map_madi_ss[HDSPM_MAX_CHANNELS] = {
478 0, 1, 2, 3, 4, 5, 6, 7,
479 8, 9, 10, 11, 12, 13, 14, 15,
480 16, 17, 18, 19, 20, 21, 22, 23,
481 24, 25, 26, 27, 28, 29, 30, 31,
482 32, 33, 34, 35, 36, 37, 38, 39,
483 40, 41, 42, 43, 44, 45, 46, 47,
484 48, 49, 50, 51, 52, 53, 54, 55,
485 56, 57, 58, 59, 60, 61, 62, 63
489 static struct pci_device_id snd_hdspm_ids[] __devinitdata = {
491 .vendor = PCI_VENDOR_ID_XILINX,
492 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
493 .subvendor = PCI_ANY_ID,
494 .subdevice = PCI_ANY_ID,
495 .class = 0,
496 .class_mask = 0,
497 .driver_data = 0},
498 {0,}
501 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
503 /* prototypes */
504 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
505 struct hdspm * hdspm);
506 static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
507 struct hdspm * hdspm);
509 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm);
510 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm);
511 static int hdspm_autosync_ref(struct hdspm * hdspm);
512 static int snd_hdspm_set_defaults(struct hdspm * hdspm);
513 static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf,
514 unsigned int reg, int channels);
516 static inline int HDSPM_bit2freq(int n)
518 static int bit2freq_tab[] = { 0, 32000, 44100, 48000, 64000, 88200,
519 96000, 128000, 176400, 192000 };
520 if (n < 1 || n > 9)
521 return 0;
522 return bit2freq_tab[n];
525 /* Write/read to/from HDSPM with Adresses in Bytes
526 not words but only 32Bit writes are allowed */
528 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
529 unsigned int val)
531 writel(val, hdspm->iobase + reg);
534 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
536 return readl(hdspm->iobase + reg);
539 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
540 mixer is write only on hardware so we have to cache him for read
541 each fader is a u32, but uses only the first 16 bit */
543 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
544 unsigned int in)
546 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
547 return 0;
549 return hdspm->mixer->ch[chan].in[in];
552 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
553 unsigned int pb)
555 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
556 return 0;
557 return hdspm->mixer->ch[chan].pb[pb];
560 static inline int hdspm_write_in_gain(struct hdspm * hdspm, unsigned int chan,
561 unsigned int in, unsigned short data)
563 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
564 return -1;
566 hdspm_write(hdspm,
567 HDSPM_MADI_mixerBase +
568 ((in + 128 * chan) * sizeof(u32)),
569 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
570 return 0;
573 static inline int hdspm_write_pb_gain(struct hdspm * hdspm, unsigned int chan,
574 unsigned int pb, unsigned short data)
576 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
577 return -1;
579 hdspm_write(hdspm,
580 HDSPM_MADI_mixerBase +
581 ((64 + pb + 128 * chan) * sizeof(u32)),
582 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
583 return 0;
587 /* enable DMA for specific channels, now available for DSP-MADI */
588 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
590 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
593 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
595 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
598 /* check if same process is writing and reading */
599 static inline int snd_hdspm_use_is_exclusive(struct hdspm * hdspm)
601 unsigned long flags;
602 int ret = 1;
604 spin_lock_irqsave(&hdspm->lock, flags);
605 if ((hdspm->playback_pid != hdspm->capture_pid) &&
606 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
607 ret = 0;
609 spin_unlock_irqrestore(&hdspm->lock, flags);
610 return ret;
613 /* check for external sample rate */
614 static inline int hdspm_external_sample_rate(struct hdspm * hdspm)
616 if (hdspm->is_aes32) {
617 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
618 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
619 unsigned int timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
621 int syncref = hdspm_autosync_ref(hdspm);
623 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
624 status & HDSPM_AES32_wcLock)
625 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
626 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
627 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
628 status2 & (HDSPM_LockAES >>
629 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
630 return HDSPM_bit2freq((timecode >>
631 (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
632 return 0;
633 } else {
634 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
635 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
636 unsigned int rate_bits;
637 int rate = 0;
639 /* if wordclock has synced freq and wordclock is valid */
640 if ((status2 & HDSPM_wcLock) != 0 &&
641 (status & HDSPM_SelSyncRef0) == 0) {
643 rate_bits = status2 & HDSPM_wcFreqMask;
645 switch (rate_bits) {
646 case HDSPM_wcFreq32:
647 rate = 32000;
648 break;
649 case HDSPM_wcFreq44_1:
650 rate = 44100;
651 break;
652 case HDSPM_wcFreq48:
653 rate = 48000;
654 break;
655 case HDSPM_wcFreq64:
656 rate = 64000;
657 break;
658 case HDSPM_wcFreq88_2:
659 rate = 88200;
660 break;
661 case HDSPM_wcFreq96:
662 rate = 96000;
663 break;
664 /* Quadspeed Bit missing ???? */
665 default:
666 rate = 0;
667 break;
671 /* if rate detected and Syncref is Word than have it, word has priority to MADI */
672 if (rate != 0 &&
673 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
674 return rate;
676 /* maby a madi input (which is taken if sel sync is madi) */
677 if (status & HDSPM_madiLock) {
678 rate_bits = status & HDSPM_madiFreqMask;
680 switch (rate_bits) {
681 case HDSPM_madiFreq32:
682 rate = 32000;
683 break;
684 case HDSPM_madiFreq44_1:
685 rate = 44100;
686 break;
687 case HDSPM_madiFreq48:
688 rate = 48000;
689 break;
690 case HDSPM_madiFreq64:
691 rate = 64000;
692 break;
693 case HDSPM_madiFreq88_2:
694 rate = 88200;
695 break;
696 case HDSPM_madiFreq96:
697 rate = 96000;
698 break;
699 case HDSPM_madiFreq128:
700 rate = 128000;
701 break;
702 case HDSPM_madiFreq176_4:
703 rate = 176400;
704 break;
705 case HDSPM_madiFreq192:
706 rate = 192000;
707 break;
708 default:
709 rate = 0;
710 break;
713 return rate;
717 /* Latency function */
718 static inline void hdspm_compute_period_size(struct hdspm * hdspm)
720 hdspm->period_bytes =
721 1 << ((hdspm_decode_latency(hdspm->control_register) + 8));
724 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm * hdspm)
726 int position;
728 position = hdspm_read(hdspm, HDSPM_statusRegister);
730 if (!hdspm->precise_ptr) {
731 return (position & HDSPM_BufferID) ? (hdspm->period_bytes /
732 4) : 0;
735 /* hwpointer comes in bytes and is 64Bytes accurate (by docu since PCI Burst)
736 i have experimented that it is at most 64 Byte to much for playing
737 so substraction of 64 byte should be ok for ALSA, but use it only
738 for application where you know what you do since if you come to
739 near with record pointer it can be a disaster */
741 position &= HDSPM_BufferPositionMask;
742 position = ((position - 64) % (2 * hdspm->period_bytes)) / 4;
744 return position;
748 static inline void hdspm_start_audio(struct hdspm * s)
750 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
751 hdspm_write(s, HDSPM_controlRegister, s->control_register);
754 static inline void hdspm_stop_audio(struct hdspm * s)
756 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
757 hdspm_write(s, HDSPM_controlRegister, s->control_register);
760 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
761 static inline void hdspm_silence_playback(struct hdspm * hdspm)
763 int i;
764 int n = hdspm->period_bytes;
765 void *buf = hdspm->playback_buffer;
767 if (buf == NULL)
768 return;
770 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
771 memset(buf, 0, n);
772 buf += HDSPM_CHANNEL_BUFFER_BYTES;
776 static int hdspm_set_interrupt_interval(struct hdspm * s, unsigned int frames)
778 int n;
780 spin_lock_irq(&s->lock);
782 frames >>= 7;
783 n = 0;
784 while (frames) {
785 n++;
786 frames >>= 1;
788 s->control_register &= ~HDSPM_LatencyMask;
789 s->control_register |= hdspm_encode_latency(n);
791 hdspm_write(s, HDSPM_controlRegister, s->control_register);
793 hdspm_compute_period_size(s);
795 spin_unlock_irq(&s->lock);
797 return 0;
800 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
802 u64 n;
803 u32 r;
805 if (rate >= 112000)
806 rate /= 4;
807 else if (rate >= 56000)
808 rate /= 2;
810 /* RME says n = 104857600000000, but in the windows MADI driver, I see:
811 // return 104857600000000 / rate; // 100 MHz
812 return 110100480000000 / rate; // 105 MHz
814 //n = 104857600000000ULL; /* = 2^20 * 10^8 */
815 n = 110100480000000ULL; /* Value checked for AES32 and MADI */
816 div64_32(&n, rate, &r);
817 /* n should be less than 2^32 for being written to FREQ register */
818 snd_assert((n >> 32) == 0);
819 hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
822 /* dummy set rate lets see what happens */
823 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
825 int reject_if_open = 0;
826 int current_rate;
827 int rate_bits;
828 int not_set = 0;
829 int is_single, is_double, is_quad;
831 /* ASSUMPTION: hdspm->lock is either set, or there is no need for
832 it (e.g. during module initialization).
835 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
837 /* SLAVE --- */
838 if (called_internally) {
840 /* request from ctl or card initialization
841 just make a warning an remember setting
842 for future master mode switching */
844 snd_printk
845 (KERN_WARNING "HDSPM: Warning: device is not running as a clock master.\n");
846 not_set = 1;
847 } else {
849 /* hw_param request while in AutoSync mode */
850 int external_freq =
851 hdspm_external_sample_rate(hdspm);
853 if ((hdspm_autosync_ref(hdspm) ==
854 HDSPM_AUTOSYNC_FROM_NONE)) {
856 snd_printk(KERN_WARNING "HDSPM: Detected no Externel Sync \n");
857 not_set = 1;
859 } else if (rate != external_freq) {
861 snd_printk
862 (KERN_WARNING "HDSPM: Warning: No AutoSync source for requested rate\n");
863 not_set = 1;
868 current_rate = hdspm->system_sample_rate;
870 /* Changing between Singe, Double and Quad speed is not
871 allowed if any substreams are open. This is because such a change
872 causes a shift in the location of the DMA buffers and a reduction
873 in the number of available buffers.
875 Note that a similar but essentially insoluble problem exists for
876 externally-driven rate changes. All we can do is to flag rate
877 changes in the read/write routines.
880 is_single = (current_rate <= 48000);
881 is_double = (current_rate > 48000 && current_rate <= 96000);
882 is_quad = (current_rate > 96000);
884 switch (rate) {
885 case 32000:
886 if (!is_single)
887 reject_if_open = 1;
888 rate_bits = HDSPM_Frequency32KHz;
889 break;
890 case 44100:
891 if (!is_single)
892 reject_if_open = 1;
893 rate_bits = HDSPM_Frequency44_1KHz;
894 break;
895 case 48000:
896 if (!is_single)
897 reject_if_open = 1;
898 rate_bits = HDSPM_Frequency48KHz;
899 break;
900 case 64000:
901 if (!is_double)
902 reject_if_open = 1;
903 rate_bits = HDSPM_Frequency64KHz;
904 break;
905 case 88200:
906 if (!is_double)
907 reject_if_open = 1;
908 rate_bits = HDSPM_Frequency88_2KHz;
909 break;
910 case 96000:
911 if (!is_double)
912 reject_if_open = 1;
913 rate_bits = HDSPM_Frequency96KHz;
914 break;
915 case 128000:
916 if (!is_quad)
917 reject_if_open = 1;
918 rate_bits = HDSPM_Frequency128KHz;
919 break;
920 case 176400:
921 if (!is_quad)
922 reject_if_open = 1;
923 rate_bits = HDSPM_Frequency176_4KHz;
924 break;
925 case 192000:
926 if (!is_quad)
927 reject_if_open = 1;
928 rate_bits = HDSPM_Frequency192KHz;
929 break;
930 default:
931 return -EINVAL;
934 if (reject_if_open
935 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
936 snd_printk
937 (KERN_ERR "HDSPM: cannot change between single- and double-speed mode (capture PID = %d, playback PID = %d)\n",
938 hdspm->capture_pid, hdspm->playback_pid);
939 return -EBUSY;
942 hdspm->control_register &= ~HDSPM_FrequencyMask;
943 hdspm->control_register |= rate_bits;
944 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
946 /* For AES32, need to set DDS value in FREQ register
947 For MADI, also apparently */
948 hdspm_set_dds_value(hdspm, rate);
950 if (hdspm->is_aes32 && rate != current_rate)
951 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
953 /* For AES32 and for MADI (at least rev 204), channel_map needs to
954 * always be channel_map_madi_ss, whatever the sample rate */
955 hdspm->channel_map = channel_map_madi_ss;
957 hdspm->system_sample_rate = rate;
959 if (not_set != 0)
960 return -1;
962 return 0;
965 /* mainly for init to 0 on load */
966 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
968 int i, j;
969 unsigned int gain =
970 (sgain > UNITY_GAIN) ? UNITY_GAIN : (sgain < 0) ? 0 : sgain;
972 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
973 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
974 hdspm_write_in_gain(hdspm, i, j, gain);
975 hdspm_write_pb_gain(hdspm, i, j, gain);
979 /*----------------------------------------------------------------------------
980 MIDI
981 ----------------------------------------------------------------------------*/
983 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, int id)
985 /* the hardware already does the relevant bit-mask with 0xff */
986 if (id)
987 return hdspm_read(hdspm, HDSPM_midiDataIn1);
988 else
989 return hdspm_read(hdspm, HDSPM_midiDataIn0);
992 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, int val)
994 /* the hardware already does the relevant bit-mask with 0xff */
995 if (id)
996 return hdspm_write(hdspm, HDSPM_midiDataOut1, val);
997 else
998 return hdspm_write(hdspm, HDSPM_midiDataOut0, val);
1001 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1003 if (id)
1004 return (hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff);
1005 else
1006 return (hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff);
1009 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1011 int fifo_bytes_used;
1013 if (id)
1014 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xff;
1015 else
1016 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xff;
1018 if (fifo_bytes_used < 128)
1019 return 128 - fifo_bytes_used;
1020 else
1021 return 0;
1024 static inline void snd_hdspm_flush_midi_input (struct hdspm *hdspm, int id)
1026 while (snd_hdspm_midi_input_available (hdspm, id))
1027 snd_hdspm_midi_read_byte (hdspm, id);
1030 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1032 unsigned long flags;
1033 int n_pending;
1034 int to_write;
1035 int i;
1036 unsigned char buf[128];
1038 /* Output is not interrupt driven */
1040 spin_lock_irqsave (&hmidi->lock, flags);
1041 if (hmidi->output) {
1042 if (!snd_rawmidi_transmit_empty (hmidi->output)) {
1043 if ((n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, hmidi->id)) > 0) {
1044 if (n_pending > (int)sizeof (buf))
1045 n_pending = sizeof (buf);
1047 if ((to_write = snd_rawmidi_transmit (hmidi->output, buf, n_pending)) > 0) {
1048 for (i = 0; i < to_write; ++i)
1049 snd_hdspm_midi_write_byte (hmidi->hdspm, hmidi->id, buf[i]);
1054 spin_unlock_irqrestore (&hmidi->lock, flags);
1055 return 0;
1058 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1060 unsigned char buf[128]; /* this buffer is designed to match the MIDI input FIFO size */
1061 unsigned long flags;
1062 int n_pending;
1063 int i;
1065 spin_lock_irqsave (&hmidi->lock, flags);
1066 if ((n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id)) > 0) {
1067 if (hmidi->input) {
1068 if (n_pending > (int)sizeof (buf)) {
1069 n_pending = sizeof (buf);
1071 for (i = 0; i < n_pending; ++i) {
1072 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, hmidi->id);
1074 if (n_pending) {
1075 snd_rawmidi_receive (hmidi->input, buf, n_pending);
1077 } else {
1078 /* flush the MIDI input FIFO */
1079 while (n_pending--) {
1080 snd_hdspm_midi_read_byte (hmidi->hdspm, hmidi->id);
1084 hmidi->pending = 0;
1085 if (hmidi->id) {
1086 hmidi->hdspm->control_register |= HDSPM_Midi1InterruptEnable;
1087 } else {
1088 hmidi->hdspm->control_register |= HDSPM_Midi0InterruptEnable;
1090 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, hmidi->hdspm->control_register);
1091 spin_unlock_irqrestore (&hmidi->lock, flags);
1092 return snd_hdspm_midi_output_write (hmidi);
1095 static void snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1097 struct hdspm *hdspm;
1098 struct hdspm_midi *hmidi;
1099 unsigned long flags;
1100 u32 ie;
1102 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1103 hdspm = hmidi->hdspm;
1104 ie = hmidi->id ? HDSPM_Midi1InterruptEnable : HDSPM_Midi0InterruptEnable;
1105 spin_lock_irqsave (&hdspm->lock, flags);
1106 if (up) {
1107 if (!(hdspm->control_register & ie)) {
1108 snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1109 hdspm->control_register |= ie;
1111 } else {
1112 hdspm->control_register &= ~ie;
1115 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1116 spin_unlock_irqrestore (&hdspm->lock, flags);
1119 static void snd_hdspm_midi_output_timer(unsigned long data)
1121 struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1122 unsigned long flags;
1124 snd_hdspm_midi_output_write(hmidi);
1125 spin_lock_irqsave (&hmidi->lock, flags);
1127 /* this does not bump hmidi->istimer, because the
1128 kernel automatically removed the timer when it
1129 expired, and we are now adding it back, thus
1130 leaving istimer wherever it was set before.
1133 if (hmidi->istimer) {
1134 hmidi->timer.expires = 1 + jiffies;
1135 add_timer(&hmidi->timer);
1138 spin_unlock_irqrestore (&hmidi->lock, flags);
1141 static void snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1143 struct hdspm_midi *hmidi;
1144 unsigned long flags;
1146 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1147 spin_lock_irqsave (&hmidi->lock, flags);
1148 if (up) {
1149 if (!hmidi->istimer) {
1150 init_timer(&hmidi->timer);
1151 hmidi->timer.function = snd_hdspm_midi_output_timer;
1152 hmidi->timer.data = (unsigned long) hmidi;
1153 hmidi->timer.expires = 1 + jiffies;
1154 add_timer(&hmidi->timer);
1155 hmidi->istimer++;
1157 } else {
1158 if (hmidi->istimer && --hmidi->istimer <= 0) {
1159 del_timer (&hmidi->timer);
1162 spin_unlock_irqrestore (&hmidi->lock, flags);
1163 if (up)
1164 snd_hdspm_midi_output_write(hmidi);
1167 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1169 struct hdspm_midi *hmidi;
1171 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1172 spin_lock_irq (&hmidi->lock);
1173 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1174 hmidi->input = substream;
1175 spin_unlock_irq (&hmidi->lock);
1177 return 0;
1180 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
1182 struct hdspm_midi *hmidi;
1184 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1185 spin_lock_irq (&hmidi->lock);
1186 hmidi->output = substream;
1187 spin_unlock_irq (&hmidi->lock);
1189 return 0;
1192 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
1194 struct hdspm_midi *hmidi;
1196 snd_hdspm_midi_input_trigger (substream, 0);
1198 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1199 spin_lock_irq (&hmidi->lock);
1200 hmidi->input = NULL;
1201 spin_unlock_irq (&hmidi->lock);
1203 return 0;
1206 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
1208 struct hdspm_midi *hmidi;
1210 snd_hdspm_midi_output_trigger (substream, 0);
1212 hmidi = (struct hdspm_midi *) substream->rmidi->private_data;
1213 spin_lock_irq (&hmidi->lock);
1214 hmidi->output = NULL;
1215 spin_unlock_irq (&hmidi->lock);
1217 return 0;
1220 static struct snd_rawmidi_ops snd_hdspm_midi_output =
1222 .open = snd_hdspm_midi_output_open,
1223 .close = snd_hdspm_midi_output_close,
1224 .trigger = snd_hdspm_midi_output_trigger,
1227 static struct snd_rawmidi_ops snd_hdspm_midi_input =
1229 .open = snd_hdspm_midi_input_open,
1230 .close = snd_hdspm_midi_input_close,
1231 .trigger = snd_hdspm_midi_input_trigger,
1234 static int __devinit snd_hdspm_create_midi (struct snd_card *card, struct hdspm *hdspm, int id)
1236 int err;
1237 char buf[32];
1239 hdspm->midi[id].id = id;
1240 hdspm->midi[id].rmidi = NULL;
1241 hdspm->midi[id].input = NULL;
1242 hdspm->midi[id].output = NULL;
1243 hdspm->midi[id].hdspm = hdspm;
1244 hdspm->midi[id].istimer = 0;
1245 hdspm->midi[id].pending = 0;
1246 spin_lock_init (&hdspm->midi[id].lock);
1248 sprintf (buf, "%s MIDI %d", card->shortname, id+1);
1249 if ((err = snd_rawmidi_new (card, buf, id, 1, 1, &hdspm->midi[id].rmidi)) < 0)
1250 return err;
1252 sprintf (hdspm->midi[id].rmidi->name, "%s MIDI %d", card->id, id+1);
1253 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1255 snd_rawmidi_set_ops (hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_hdspm_midi_output);
1256 snd_rawmidi_set_ops (hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_hdspm_midi_input);
1258 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
1259 SNDRV_RAWMIDI_INFO_INPUT |
1260 SNDRV_RAWMIDI_INFO_DUPLEX;
1262 return 0;
1266 static void hdspm_midi_tasklet(unsigned long arg)
1268 struct hdspm *hdspm = (struct hdspm *)arg;
1270 if (hdspm->midi[0].pending)
1271 snd_hdspm_midi_input_read (&hdspm->midi[0]);
1272 if (hdspm->midi[1].pending)
1273 snd_hdspm_midi_input_read (&hdspm->midi[1]);
1277 /*-----------------------------------------------------------------------------
1278 Status Interface
1279 ----------------------------------------------------------------------------*/
1281 /* get the system sample rate which is set */
1283 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
1284 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1285 .name = xname, \
1286 .index = xindex, \
1287 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1288 .info = snd_hdspm_info_system_sample_rate, \
1289 .get = snd_hdspm_get_system_sample_rate \
1292 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
1293 struct snd_ctl_elem_info *uinfo)
1295 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1296 uinfo->count = 1;
1297 return 0;
1300 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
1301 struct snd_ctl_elem_value *
1302 ucontrol)
1304 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1306 ucontrol->value.enumerated.item[0] = hdspm->system_sample_rate;
1307 return 0;
1310 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
1311 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1312 .name = xname, \
1313 .index = xindex, \
1314 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1315 .info = snd_hdspm_info_autosync_sample_rate, \
1316 .get = snd_hdspm_get_autosync_sample_rate \
1319 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
1320 struct snd_ctl_elem_info *uinfo)
1322 static char *texts[] = { "32000", "44100", "48000",
1323 "64000", "88200", "96000",
1324 "128000", "176400", "192000",
1325 "None"
1327 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1328 uinfo->count = 1;
1329 uinfo->value.enumerated.items = 10;
1330 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1331 uinfo->value.enumerated.item =
1332 uinfo->value.enumerated.items - 1;
1333 strcpy(uinfo->value.enumerated.name,
1334 texts[uinfo->value.enumerated.item]);
1335 return 0;
1338 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
1339 struct snd_ctl_elem_value *
1340 ucontrol)
1342 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1344 switch (hdspm_external_sample_rate(hdspm)) {
1345 case 32000:
1346 ucontrol->value.enumerated.item[0] = 0;
1347 break;
1348 case 44100:
1349 ucontrol->value.enumerated.item[0] = 1;
1350 break;
1351 case 48000:
1352 ucontrol->value.enumerated.item[0] = 2;
1353 break;
1354 case 64000:
1355 ucontrol->value.enumerated.item[0] = 3;
1356 break;
1357 case 88200:
1358 ucontrol->value.enumerated.item[0] = 4;
1359 break;
1360 case 96000:
1361 ucontrol->value.enumerated.item[0] = 5;
1362 break;
1363 case 128000:
1364 ucontrol->value.enumerated.item[0] = 6;
1365 break;
1366 case 176400:
1367 ucontrol->value.enumerated.item[0] = 7;
1368 break;
1369 case 192000:
1370 ucontrol->value.enumerated.item[0] = 8;
1371 break;
1373 default:
1374 ucontrol->value.enumerated.item[0] = 9;
1376 return 0;
1379 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
1380 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1381 .name = xname, \
1382 .index = xindex, \
1383 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1384 .info = snd_hdspm_info_system_clock_mode, \
1385 .get = snd_hdspm_get_system_clock_mode, \
1390 static int hdspm_system_clock_mode(struct hdspm * hdspm)
1392 /* Always reflect the hardware info, rme is never wrong !!!! */
1394 if (hdspm->control_register & HDSPM_ClockModeMaster)
1395 return 0;
1396 return 1;
1399 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
1400 struct snd_ctl_elem_info *uinfo)
1402 static char *texts[] = { "Master", "Slave" };
1404 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1405 uinfo->count = 1;
1406 uinfo->value.enumerated.items = 2;
1407 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1408 uinfo->value.enumerated.item =
1409 uinfo->value.enumerated.items - 1;
1410 strcpy(uinfo->value.enumerated.name,
1411 texts[uinfo->value.enumerated.item]);
1412 return 0;
1415 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
1416 struct snd_ctl_elem_value *ucontrol)
1418 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1420 ucontrol->value.enumerated.item[0] =
1421 hdspm_system_clock_mode(hdspm);
1422 return 0;
1425 #define HDSPM_CLOCK_SOURCE(xname, xindex) \
1426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1427 .name = xname, \
1428 .index = xindex, \
1429 .info = snd_hdspm_info_clock_source, \
1430 .get = snd_hdspm_get_clock_source, \
1431 .put = snd_hdspm_put_clock_source \
1434 static int hdspm_clock_source(struct hdspm * hdspm)
1436 if (hdspm->control_register & HDSPM_ClockModeMaster) {
1437 switch (hdspm->system_sample_rate) {
1438 case 32000:
1439 return 1;
1440 case 44100:
1441 return 2;
1442 case 48000:
1443 return 3;
1444 case 64000:
1445 return 4;
1446 case 88200:
1447 return 5;
1448 case 96000:
1449 return 6;
1450 case 128000:
1451 return 7;
1452 case 176400:
1453 return 8;
1454 case 192000:
1455 return 9;
1456 default:
1457 return 3;
1459 } else {
1460 return 0;
1464 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
1466 int rate;
1467 switch (mode) {
1469 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
1470 if (hdspm_external_sample_rate(hdspm) != 0) {
1471 hdspm->control_register &= ~HDSPM_ClockModeMaster;
1472 hdspm_write(hdspm, HDSPM_controlRegister,
1473 hdspm->control_register);
1474 return 0;
1476 return -1;
1477 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
1478 rate = 32000;
1479 break;
1480 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
1481 rate = 44100;
1482 break;
1483 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
1484 rate = 48000;
1485 break;
1486 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
1487 rate = 64000;
1488 break;
1489 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
1490 rate = 88200;
1491 break;
1492 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
1493 rate = 96000;
1494 break;
1495 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ:
1496 rate = 128000;
1497 break;
1498 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ:
1499 rate = 176400;
1500 break;
1501 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ:
1502 rate = 192000;
1503 break;
1505 default:
1506 rate = 44100;
1508 hdspm->control_register |= HDSPM_ClockModeMaster;
1509 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1510 hdspm_set_rate(hdspm, rate, 1);
1511 return 0;
1514 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
1515 struct snd_ctl_elem_info *uinfo)
1517 static char *texts[] = { "AutoSync",
1518 "Internal 32.0 kHz", "Internal 44.1 kHz",
1519 "Internal 48.0 kHz",
1520 "Internal 64.0 kHz", "Internal 88.2 kHz",
1521 "Internal 96.0 kHz",
1522 "Internal 128.0 kHz", "Internal 176.4 kHz",
1523 "Internal 192.0 kHz"
1526 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1527 uinfo->count = 1;
1528 uinfo->value.enumerated.items = 10;
1530 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1531 uinfo->value.enumerated.item =
1532 uinfo->value.enumerated.items - 1;
1534 strcpy(uinfo->value.enumerated.name,
1535 texts[uinfo->value.enumerated.item]);
1537 return 0;
1540 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
1541 struct snd_ctl_elem_value *ucontrol)
1543 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1545 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
1546 return 0;
1549 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
1550 struct snd_ctl_elem_value *ucontrol)
1552 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1553 int change;
1554 int val;
1556 if (!snd_hdspm_use_is_exclusive(hdspm))
1557 return -EBUSY;
1558 val = ucontrol->value.enumerated.item[0];
1559 if (val < 0)
1560 val = 0;
1561 if (val > 6)
1562 val = 6;
1563 spin_lock_irq(&hdspm->lock);
1564 if (val != hdspm_clock_source(hdspm))
1565 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
1566 else
1567 change = 0;
1568 spin_unlock_irq(&hdspm->lock);
1569 return change;
1572 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
1573 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1574 .name = xname, \
1575 .index = xindex, \
1576 .info = snd_hdspm_info_pref_sync_ref, \
1577 .get = snd_hdspm_get_pref_sync_ref, \
1578 .put = snd_hdspm_put_pref_sync_ref \
1581 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
1583 /* Notice that this looks at the requested sync source,
1584 not the one actually in use.
1586 if (hdspm->is_aes32) {
1587 switch (hdspm->control_register & HDSPM_SyncRefMask) {
1588 /* number gives AES index, except for 0 which
1589 corresponds to WordClock */
1590 case 0: return 0;
1591 case HDSPM_SyncRef0: return 1;
1592 case HDSPM_SyncRef1: return 2;
1593 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3;
1594 case HDSPM_SyncRef2: return 4;
1595 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5;
1596 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6;
1597 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: return 7;
1598 case HDSPM_SyncRef3: return 8;
1600 } else {
1601 switch (hdspm->control_register & HDSPM_SyncRefMask) {
1602 case HDSPM_SyncRef_Word:
1603 return HDSPM_SYNC_FROM_WORD;
1604 case HDSPM_SyncRef_MADI:
1605 return HDSPM_SYNC_FROM_MADI;
1609 return HDSPM_SYNC_FROM_WORD;
1612 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
1614 hdspm->control_register &= ~HDSPM_SyncRefMask;
1616 if (hdspm->is_aes32) {
1617 switch (pref) {
1618 case 0:
1619 hdspm->control_register |= 0;
1620 break;
1621 case 1:
1622 hdspm->control_register |= HDSPM_SyncRef0;
1623 break;
1624 case 2:
1625 hdspm->control_register |= HDSPM_SyncRef1;
1626 break;
1627 case 3:
1628 hdspm->control_register |= HDSPM_SyncRef1+HDSPM_SyncRef0;
1629 break;
1630 case 4:
1631 hdspm->control_register |= HDSPM_SyncRef2;
1632 break;
1633 case 5:
1634 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef0;
1635 break;
1636 case 6:
1637 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1;
1638 break;
1639 case 7:
1640 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
1641 break;
1642 case 8:
1643 hdspm->control_register |= HDSPM_SyncRef3;
1644 break;
1645 default:
1646 return -1;
1648 } else {
1649 switch (pref) {
1650 case HDSPM_SYNC_FROM_MADI:
1651 hdspm->control_register |= HDSPM_SyncRef_MADI;
1652 break;
1653 case HDSPM_SYNC_FROM_WORD:
1654 hdspm->control_register |= HDSPM_SyncRef_Word;
1655 break;
1656 default:
1657 return -1;
1660 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1661 return 0;
1664 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
1665 struct snd_ctl_elem_info *uinfo)
1667 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1669 if (hdspm->is_aes32) {
1670 static char *texts[] = { "Word", "AES1", "AES2", "AES3",
1671 "AES4", "AES5", "AES6", "AES7", "AES8" };
1673 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1674 uinfo->count = 1;
1676 uinfo->value.enumerated.items = 9;
1678 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1679 uinfo->value.enumerated.item =
1680 uinfo->value.enumerated.items - 1;
1681 strcpy(uinfo->value.enumerated.name,
1682 texts[uinfo->value.enumerated.item]);
1683 } else {
1684 static char *texts[] = { "Word", "MADI" };
1686 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1687 uinfo->count = 1;
1689 uinfo->value.enumerated.items = 2;
1691 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1692 uinfo->value.enumerated.item =
1693 uinfo->value.enumerated.items - 1;
1694 strcpy(uinfo->value.enumerated.name,
1695 texts[uinfo->value.enumerated.item]);
1697 return 0;
1700 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
1701 struct snd_ctl_elem_value *ucontrol)
1703 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1705 ucontrol->value.enumerated.item[0] = hdspm_pref_sync_ref(hdspm);
1706 return 0;
1709 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
1710 struct snd_ctl_elem_value *ucontrol)
1712 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1713 int change, max;
1714 unsigned int val;
1716 max = hdspm->is_aes32 ? 9 : 2;
1718 if (!snd_hdspm_use_is_exclusive(hdspm))
1719 return -EBUSY;
1721 val = ucontrol->value.enumerated.item[0] % max;
1723 spin_lock_irq(&hdspm->lock);
1724 change = (int) val != hdspm_pref_sync_ref(hdspm);
1725 hdspm_set_pref_sync_ref(hdspm, val);
1726 spin_unlock_irq(&hdspm->lock);
1727 return change;
1730 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
1731 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1732 .name = xname, \
1733 .index = xindex, \
1734 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1735 .info = snd_hdspm_info_autosync_ref, \
1736 .get = snd_hdspm_get_autosync_ref, \
1739 static int hdspm_autosync_ref(struct hdspm * hdspm)
1741 if (hdspm->is_aes32) {
1742 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
1743 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
1744 if (syncref == 0)
1745 return HDSPM_AES32_AUTOSYNC_FROM_WORD;
1746 if (syncref <= 8)
1747 return syncref;
1748 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
1749 } else {
1750 /* This looks at the autosync selected sync reference */
1751 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1753 switch (status2 & HDSPM_SelSyncRefMask) {
1754 case HDSPM_SelSyncRef_WORD:
1755 return HDSPM_AUTOSYNC_FROM_WORD;
1756 case HDSPM_SelSyncRef_MADI:
1757 return HDSPM_AUTOSYNC_FROM_MADI;
1758 case HDSPM_SelSyncRef_NVALID:
1759 return HDSPM_AUTOSYNC_FROM_NONE;
1760 default:
1761 return 0;
1764 return 0;
1768 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
1769 struct snd_ctl_elem_info *uinfo)
1771 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1773 if (hdspm->is_aes32) {
1774 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
1775 "AES4", "AES5", "AES6", "AES7", "AES8", "None"};
1777 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1778 uinfo->count = 1;
1779 uinfo->value.enumerated.items = 10;
1780 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1781 uinfo->value.enumerated.item =
1782 uinfo->value.enumerated.items - 1;
1783 strcpy(uinfo->value.enumerated.name,
1784 texts[uinfo->value.enumerated.item]);
1786 else
1788 static char *texts[] = { "WordClock", "MADI", "None" };
1790 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1791 uinfo->count = 1;
1792 uinfo->value.enumerated.items = 3;
1793 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
1794 uinfo->value.enumerated.item =
1795 uinfo->value.enumerated.items - 1;
1796 strcpy(uinfo->value.enumerated.name,
1797 texts[uinfo->value.enumerated.item]);
1799 return 0;
1802 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
1803 struct snd_ctl_elem_value *ucontrol)
1805 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1807 ucontrol->value.enumerated.item[0] = hdspm_pref_sync_ref(hdspm);
1808 return 0;
1811 #define HDSPM_LINE_OUT(xname, xindex) \
1812 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1813 .name = xname, \
1814 .index = xindex, \
1815 .info = snd_hdspm_info_line_out, \
1816 .get = snd_hdspm_get_line_out, \
1817 .put = snd_hdspm_put_line_out \
1820 static int hdspm_line_out(struct hdspm * hdspm)
1822 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
1826 static int hdspm_set_line_output(struct hdspm * hdspm, int out)
1828 if (out)
1829 hdspm->control_register |= HDSPM_LineOut;
1830 else
1831 hdspm->control_register &= ~HDSPM_LineOut;
1832 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1834 return 0;
1837 static int snd_hdspm_info_line_out(struct snd_kcontrol *kcontrol,
1838 struct snd_ctl_elem_info *uinfo)
1840 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1841 uinfo->count = 1;
1842 uinfo->value.integer.min = 0;
1843 uinfo->value.integer.max = 1;
1844 return 0;
1847 static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
1848 struct snd_ctl_elem_value *ucontrol)
1850 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1852 spin_lock_irq(&hdspm->lock);
1853 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
1854 spin_unlock_irq(&hdspm->lock);
1855 return 0;
1858 static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
1859 struct snd_ctl_elem_value *ucontrol)
1861 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1862 int change;
1863 unsigned int val;
1865 if (!snd_hdspm_use_is_exclusive(hdspm))
1866 return -EBUSY;
1867 val = ucontrol->value.integer.value[0] & 1;
1868 spin_lock_irq(&hdspm->lock);
1869 change = (int) val != hdspm_line_out(hdspm);
1870 hdspm_set_line_output(hdspm, val);
1871 spin_unlock_irq(&hdspm->lock);
1872 return change;
1875 #define HDSPM_TX_64(xname, xindex) \
1876 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1877 .name = xname, \
1878 .index = xindex, \
1879 .info = snd_hdspm_info_tx_64, \
1880 .get = snd_hdspm_get_tx_64, \
1881 .put = snd_hdspm_put_tx_64 \
1884 static int hdspm_tx_64(struct hdspm * hdspm)
1886 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
1889 static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
1891 if (out)
1892 hdspm->control_register |= HDSPM_TX_64ch;
1893 else
1894 hdspm->control_register &= ~HDSPM_TX_64ch;
1895 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1897 return 0;
1900 static int snd_hdspm_info_tx_64(struct snd_kcontrol *kcontrol,
1901 struct snd_ctl_elem_info *uinfo)
1903 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1904 uinfo->count = 1;
1905 uinfo->value.integer.min = 0;
1906 uinfo->value.integer.max = 1;
1907 return 0;
1910 static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
1911 struct snd_ctl_elem_value *ucontrol)
1913 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1915 spin_lock_irq(&hdspm->lock);
1916 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
1917 spin_unlock_irq(&hdspm->lock);
1918 return 0;
1921 static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
1922 struct snd_ctl_elem_value *ucontrol)
1924 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1925 int change;
1926 unsigned int val;
1928 if (!snd_hdspm_use_is_exclusive(hdspm))
1929 return -EBUSY;
1930 val = ucontrol->value.integer.value[0] & 1;
1931 spin_lock_irq(&hdspm->lock);
1932 change = (int) val != hdspm_tx_64(hdspm);
1933 hdspm_set_tx_64(hdspm, val);
1934 spin_unlock_irq(&hdspm->lock);
1935 return change;
1938 #define HDSPM_C_TMS(xname, xindex) \
1939 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1940 .name = xname, \
1941 .index = xindex, \
1942 .info = snd_hdspm_info_c_tms, \
1943 .get = snd_hdspm_get_c_tms, \
1944 .put = snd_hdspm_put_c_tms \
1947 static int hdspm_c_tms(struct hdspm * hdspm)
1949 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
1952 static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
1954 if (out)
1955 hdspm->control_register |= HDSPM_clr_tms;
1956 else
1957 hdspm->control_register &= ~HDSPM_clr_tms;
1958 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1960 return 0;
1963 static int snd_hdspm_info_c_tms(struct snd_kcontrol *kcontrol,
1964 struct snd_ctl_elem_info *uinfo)
1966 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1967 uinfo->count = 1;
1968 uinfo->value.integer.min = 0;
1969 uinfo->value.integer.max = 1;
1970 return 0;
1973 static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
1974 struct snd_ctl_elem_value *ucontrol)
1976 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1978 spin_lock_irq(&hdspm->lock);
1979 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
1980 spin_unlock_irq(&hdspm->lock);
1981 return 0;
1984 static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
1985 struct snd_ctl_elem_value *ucontrol)
1987 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1988 int change;
1989 unsigned int val;
1991 if (!snd_hdspm_use_is_exclusive(hdspm))
1992 return -EBUSY;
1993 val = ucontrol->value.integer.value[0] & 1;
1994 spin_lock_irq(&hdspm->lock);
1995 change = (int) val != hdspm_c_tms(hdspm);
1996 hdspm_set_c_tms(hdspm, val);
1997 spin_unlock_irq(&hdspm->lock);
1998 return change;
2001 #define HDSPM_SAFE_MODE(xname, xindex) \
2002 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2003 .name = xname, \
2004 .index = xindex, \
2005 .info = snd_hdspm_info_safe_mode, \
2006 .get = snd_hdspm_get_safe_mode, \
2007 .put = snd_hdspm_put_safe_mode \
2010 static int hdspm_safe_mode(struct hdspm * hdspm)
2012 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
2015 static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
2017 if (out)
2018 hdspm->control_register |= HDSPM_AutoInp;
2019 else
2020 hdspm->control_register &= ~HDSPM_AutoInp;
2021 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2023 return 0;
2026 static int snd_hdspm_info_safe_mode(struct snd_kcontrol *kcontrol,
2027 struct snd_ctl_elem_info *uinfo)
2029 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2030 uinfo->count = 1;
2031 uinfo->value.integer.min = 0;
2032 uinfo->value.integer.max = 1;
2033 return 0;
2036 static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
2037 struct snd_ctl_elem_value *ucontrol)
2039 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2041 spin_lock_irq(&hdspm->lock);
2042 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
2043 spin_unlock_irq(&hdspm->lock);
2044 return 0;
2047 static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
2048 struct snd_ctl_elem_value *ucontrol)
2050 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2051 int change;
2052 unsigned int val;
2054 if (!snd_hdspm_use_is_exclusive(hdspm))
2055 return -EBUSY;
2056 val = ucontrol->value.integer.value[0] & 1;
2057 spin_lock_irq(&hdspm->lock);
2058 change = (int) val != hdspm_safe_mode(hdspm);
2059 hdspm_set_safe_mode(hdspm, val);
2060 spin_unlock_irq(&hdspm->lock);
2061 return change;
2064 #define HDSPM_EMPHASIS(xname, xindex) \
2065 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2066 .name = xname, \
2067 .index = xindex, \
2068 .info = snd_hdspm_info_emphasis, \
2069 .get = snd_hdspm_get_emphasis, \
2070 .put = snd_hdspm_put_emphasis \
2073 static int hdspm_emphasis(struct hdspm * hdspm)
2075 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
2078 static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
2080 if (emp)
2081 hdspm->control_register |= HDSPM_Emphasis;
2082 else
2083 hdspm->control_register &= ~HDSPM_Emphasis;
2084 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2086 return 0;
2089 static int snd_hdspm_info_emphasis(struct snd_kcontrol *kcontrol,
2090 struct snd_ctl_elem_info *uinfo)
2092 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2093 uinfo->count = 1;
2094 uinfo->value.integer.min = 0;
2095 uinfo->value.integer.max = 1;
2096 return 0;
2099 static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
2100 struct snd_ctl_elem_value *ucontrol)
2102 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2104 spin_lock_irq(&hdspm->lock);
2105 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
2106 spin_unlock_irq(&hdspm->lock);
2107 return 0;
2110 static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
2111 struct snd_ctl_elem_value *ucontrol)
2113 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2114 int change;
2115 unsigned int val;
2117 if (!snd_hdspm_use_is_exclusive(hdspm))
2118 return -EBUSY;
2119 val = ucontrol->value.integer.value[0] & 1;
2120 spin_lock_irq(&hdspm->lock);
2121 change = (int) val != hdspm_emphasis(hdspm);
2122 hdspm_set_emphasis(hdspm, val);
2123 spin_unlock_irq(&hdspm->lock);
2124 return change;
2127 #define HDSPM_DOLBY(xname, xindex) \
2128 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2129 .name = xname, \
2130 .index = xindex, \
2131 .info = snd_hdspm_info_dolby, \
2132 .get = snd_hdspm_get_dolby, \
2133 .put = snd_hdspm_put_dolby \
2136 static int hdspm_dolby(struct hdspm * hdspm)
2138 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
2141 static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
2143 if (dol)
2144 hdspm->control_register |= HDSPM_Dolby;
2145 else
2146 hdspm->control_register &= ~HDSPM_Dolby;
2147 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2149 return 0;
2152 static int snd_hdspm_info_dolby(struct snd_kcontrol *kcontrol,
2153 struct snd_ctl_elem_info *uinfo)
2155 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2156 uinfo->count = 1;
2157 uinfo->value.integer.min = 0;
2158 uinfo->value.integer.max = 1;
2159 return 0;
2162 static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
2163 struct snd_ctl_elem_value *ucontrol)
2165 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2167 spin_lock_irq(&hdspm->lock);
2168 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
2169 spin_unlock_irq(&hdspm->lock);
2170 return 0;
2173 static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
2174 struct snd_ctl_elem_value *ucontrol)
2176 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2177 int change;
2178 unsigned int val;
2180 if (!snd_hdspm_use_is_exclusive(hdspm))
2181 return -EBUSY;
2182 val = ucontrol->value.integer.value[0] & 1;
2183 spin_lock_irq(&hdspm->lock);
2184 change = (int) val != hdspm_dolby(hdspm);
2185 hdspm_set_dolby(hdspm, val);
2186 spin_unlock_irq(&hdspm->lock);
2187 return change;
2190 #define HDSPM_PROFESSIONAL(xname, xindex) \
2191 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2192 .name = xname, \
2193 .index = xindex, \
2194 .info = snd_hdspm_info_professional, \
2195 .get = snd_hdspm_get_professional, \
2196 .put = snd_hdspm_put_professional \
2199 static int hdspm_professional(struct hdspm * hdspm)
2201 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
2204 static int hdspm_set_professional(struct hdspm * hdspm, int dol)
2206 if (dol)
2207 hdspm->control_register |= HDSPM_Professional;
2208 else
2209 hdspm->control_register &= ~HDSPM_Professional;
2210 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2212 return 0;
2215 static int snd_hdspm_info_professional(struct snd_kcontrol *kcontrol,
2216 struct snd_ctl_elem_info *uinfo)
2218 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2219 uinfo->count = 1;
2220 uinfo->value.integer.min = 0;
2221 uinfo->value.integer.max = 1;
2222 return 0;
2225 static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
2226 struct snd_ctl_elem_value *ucontrol)
2228 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2230 spin_lock_irq(&hdspm->lock);
2231 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
2232 spin_unlock_irq(&hdspm->lock);
2233 return 0;
2236 static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
2237 struct snd_ctl_elem_value *ucontrol)
2239 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2240 int change;
2241 unsigned int val;
2243 if (!snd_hdspm_use_is_exclusive(hdspm))
2244 return -EBUSY;
2245 val = ucontrol->value.integer.value[0] & 1;
2246 spin_lock_irq(&hdspm->lock);
2247 change = (int) val != hdspm_professional(hdspm);
2248 hdspm_set_professional(hdspm, val);
2249 spin_unlock_irq(&hdspm->lock);
2250 return change;
2253 #define HDSPM_INPUT_SELECT(xname, xindex) \
2254 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2255 .name = xname, \
2256 .index = xindex, \
2257 .info = snd_hdspm_info_input_select, \
2258 .get = snd_hdspm_get_input_select, \
2259 .put = snd_hdspm_put_input_select \
2262 static int hdspm_input_select(struct hdspm * hdspm)
2264 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
2267 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
2269 if (out)
2270 hdspm->control_register |= HDSPM_InputSelect0;
2271 else
2272 hdspm->control_register &= ~HDSPM_InputSelect0;
2273 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2275 return 0;
2278 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
2279 struct snd_ctl_elem_info *uinfo)
2281 static char *texts[] = { "optical", "coaxial" };
2283 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2284 uinfo->count = 1;
2285 uinfo->value.enumerated.items = 2;
2287 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2288 uinfo->value.enumerated.item =
2289 uinfo->value.enumerated.items - 1;
2290 strcpy(uinfo->value.enumerated.name,
2291 texts[uinfo->value.enumerated.item]);
2293 return 0;
2296 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
2297 struct snd_ctl_elem_value *ucontrol)
2299 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2301 spin_lock_irq(&hdspm->lock);
2302 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
2303 spin_unlock_irq(&hdspm->lock);
2304 return 0;
2307 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
2308 struct snd_ctl_elem_value *ucontrol)
2310 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2311 int change;
2312 unsigned int val;
2314 if (!snd_hdspm_use_is_exclusive(hdspm))
2315 return -EBUSY;
2316 val = ucontrol->value.integer.value[0] & 1;
2317 spin_lock_irq(&hdspm->lock);
2318 change = (int) val != hdspm_input_select(hdspm);
2319 hdspm_set_input_select(hdspm, val);
2320 spin_unlock_irq(&hdspm->lock);
2321 return change;
2324 #define HDSPM_DS_WIRE(xname, xindex) \
2325 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2326 .name = xname, \
2327 .index = xindex, \
2328 .info = snd_hdspm_info_ds_wire, \
2329 .get = snd_hdspm_get_ds_wire, \
2330 .put = snd_hdspm_put_ds_wire \
2333 static int hdspm_ds_wire(struct hdspm * hdspm)
2335 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
2338 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
2340 if (ds)
2341 hdspm->control_register |= HDSPM_DS_DoubleWire;
2342 else
2343 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
2344 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2346 return 0;
2349 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
2350 struct snd_ctl_elem_info *uinfo)
2352 static char *texts[] = { "Single", "Double" };
2354 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2355 uinfo->count = 1;
2356 uinfo->value.enumerated.items = 2;
2358 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2359 uinfo->value.enumerated.item =
2360 uinfo->value.enumerated.items - 1;
2361 strcpy(uinfo->value.enumerated.name,
2362 texts[uinfo->value.enumerated.item]);
2364 return 0;
2367 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
2368 struct snd_ctl_elem_value *ucontrol)
2370 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2372 spin_lock_irq(&hdspm->lock);
2373 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
2374 spin_unlock_irq(&hdspm->lock);
2375 return 0;
2378 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
2379 struct snd_ctl_elem_value *ucontrol)
2381 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2382 int change;
2383 unsigned int val;
2385 if (!snd_hdspm_use_is_exclusive(hdspm))
2386 return -EBUSY;
2387 val = ucontrol->value.integer.value[0] & 1;
2388 spin_lock_irq(&hdspm->lock);
2389 change = (int) val != hdspm_ds_wire(hdspm);
2390 hdspm_set_ds_wire(hdspm, val);
2391 spin_unlock_irq(&hdspm->lock);
2392 return change;
2395 #define HDSPM_QS_WIRE(xname, xindex) \
2396 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2397 .name = xname, \
2398 .index = xindex, \
2399 .info = snd_hdspm_info_qs_wire, \
2400 .get = snd_hdspm_get_qs_wire, \
2401 .put = snd_hdspm_put_qs_wire \
2404 static int hdspm_qs_wire(struct hdspm * hdspm)
2406 if (hdspm->control_register & HDSPM_QS_DoubleWire)
2407 return 1;
2408 if (hdspm->control_register & HDSPM_QS_QuadWire)
2409 return 2;
2410 return 0;
2413 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
2415 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
2416 switch (mode) {
2417 case 0:
2418 break;
2419 case 1:
2420 hdspm->control_register |= HDSPM_QS_DoubleWire;
2421 break;
2422 case 2:
2423 hdspm->control_register |= HDSPM_QS_QuadWire;
2424 break;
2426 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2428 return 0;
2431 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
2432 struct snd_ctl_elem_info *uinfo)
2434 static char *texts[] = { "Single", "Double", "Quad" };
2436 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2437 uinfo->count = 1;
2438 uinfo->value.enumerated.items = 3;
2440 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2441 uinfo->value.enumerated.item =
2442 uinfo->value.enumerated.items - 1;
2443 strcpy(uinfo->value.enumerated.name,
2444 texts[uinfo->value.enumerated.item]);
2446 return 0;
2449 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
2450 struct snd_ctl_elem_value *ucontrol)
2452 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2454 spin_lock_irq(&hdspm->lock);
2455 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
2456 spin_unlock_irq(&hdspm->lock);
2457 return 0;
2460 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
2461 struct snd_ctl_elem_value *ucontrol)
2463 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2464 int change;
2465 int val;
2467 if (!snd_hdspm_use_is_exclusive(hdspm))
2468 return -EBUSY;
2469 val = ucontrol->value.integer.value[0];
2470 if (val < 0)
2471 val = 0;
2472 if (val > 2)
2473 val = 2;
2474 spin_lock_irq(&hdspm->lock);
2475 change = (int) val != hdspm_qs_wire(hdspm);
2476 hdspm_set_qs_wire(hdspm, val);
2477 spin_unlock_irq(&hdspm->lock);
2478 return change;
2481 /* Simple Mixer
2482 deprecated since to much faders ???
2483 MIXER interface says output (source, destination, value)
2484 where source > MAX_channels are playback channels
2485 on MADICARD
2486 - playback mixer matrix: [channelout+64] [output] [value]
2487 - input(thru) mixer matrix: [channelin] [output] [value]
2488 (better do 2 kontrols for seperation ?)
2491 #define HDSPM_MIXER(xname, xindex) \
2492 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
2493 .name = xname, \
2494 .index = xindex, \
2495 .device = 0, \
2496 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
2497 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2498 .info = snd_hdspm_info_mixer, \
2499 .get = snd_hdspm_get_mixer, \
2500 .put = snd_hdspm_put_mixer \
2503 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
2504 struct snd_ctl_elem_info *uinfo)
2506 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2507 uinfo->count = 3;
2508 uinfo->value.integer.min = 0;
2509 uinfo->value.integer.max = 65535;
2510 uinfo->value.integer.step = 1;
2511 return 0;
2514 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
2515 struct snd_ctl_elem_value *ucontrol)
2517 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2518 int source;
2519 int destination;
2521 source = ucontrol->value.integer.value[0];
2522 if (source < 0)
2523 source = 0;
2524 else if (source >= 2 * HDSPM_MAX_CHANNELS)
2525 source = 2 * HDSPM_MAX_CHANNELS - 1;
2527 destination = ucontrol->value.integer.value[1];
2528 if (destination < 0)
2529 destination = 0;
2530 else if (destination >= HDSPM_MAX_CHANNELS)
2531 destination = HDSPM_MAX_CHANNELS - 1;
2533 spin_lock_irq(&hdspm->lock);
2534 if (source >= HDSPM_MAX_CHANNELS)
2535 ucontrol->value.integer.value[2] =
2536 hdspm_read_pb_gain(hdspm, destination,
2537 source - HDSPM_MAX_CHANNELS);
2538 else
2539 ucontrol->value.integer.value[2] =
2540 hdspm_read_in_gain(hdspm, destination, source);
2542 spin_unlock_irq(&hdspm->lock);
2544 return 0;
2547 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
2548 struct snd_ctl_elem_value *ucontrol)
2550 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2551 int change;
2552 int source;
2553 int destination;
2554 int gain;
2556 if (!snd_hdspm_use_is_exclusive(hdspm))
2557 return -EBUSY;
2559 source = ucontrol->value.integer.value[0];
2560 destination = ucontrol->value.integer.value[1];
2562 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
2563 return -1;
2564 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
2565 return -1;
2567 gain = ucontrol->value.integer.value[2];
2569 spin_lock_irq(&hdspm->lock);
2571 if (source >= HDSPM_MAX_CHANNELS)
2572 change = gain != hdspm_read_pb_gain(hdspm, destination,
2573 source -
2574 HDSPM_MAX_CHANNELS);
2575 else
2576 change =
2577 gain != hdspm_read_in_gain(hdspm, destination, source);
2579 if (change) {
2580 if (source >= HDSPM_MAX_CHANNELS)
2581 hdspm_write_pb_gain(hdspm, destination,
2582 source - HDSPM_MAX_CHANNELS,
2583 gain);
2584 else
2585 hdspm_write_in_gain(hdspm, destination, source,
2586 gain);
2588 spin_unlock_irq(&hdspm->lock);
2590 return change;
2593 /* The simple mixer control(s) provide gain control for the
2594 basic 1:1 mappings of playback streams to output
2595 streams.
2598 #define HDSPM_PLAYBACK_MIXER \
2599 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2600 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
2601 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2602 .info = snd_hdspm_info_playback_mixer, \
2603 .get = snd_hdspm_get_playback_mixer, \
2604 .put = snd_hdspm_put_playback_mixer \
2607 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
2608 struct snd_ctl_elem_info *uinfo)
2610 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2611 uinfo->count = 1;
2612 uinfo->value.integer.min = 0;
2613 uinfo->value.integer.max = 65536;
2614 uinfo->value.integer.step = 1;
2615 return 0;
2618 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
2619 struct snd_ctl_elem_value *ucontrol)
2621 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2622 int channel;
2623 int mapped_channel;
2625 channel = ucontrol->id.index - 1;
2627 snd_assert(channel >= 0
2628 || channel < HDSPM_MAX_CHANNELS, return -EINVAL);
2630 if ((mapped_channel = hdspm->channel_map[channel]) < 0)
2631 return -EINVAL;
2633 spin_lock_irq(&hdspm->lock);
2634 ucontrol->value.integer.value[0] =
2635 hdspm_read_pb_gain(hdspm, mapped_channel, mapped_channel);
2636 spin_unlock_irq(&hdspm->lock);
2638 /* snd_printdd("get pb mixer index %d, channel %d, mapped_channel %d, value %d\n",
2639 ucontrol->id.index, channel, mapped_channel, ucontrol->value.integer.value[0]);
2642 return 0;
2645 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
2646 struct snd_ctl_elem_value *ucontrol)
2648 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2649 int change;
2650 int channel;
2651 int mapped_channel;
2652 int gain;
2654 if (!snd_hdspm_use_is_exclusive(hdspm))
2655 return -EBUSY;
2657 channel = ucontrol->id.index - 1;
2659 snd_assert(channel >= 0
2660 || channel < HDSPM_MAX_CHANNELS, return -EINVAL);
2662 if ((mapped_channel = hdspm->channel_map[channel]) < 0)
2663 return -EINVAL;
2665 gain = ucontrol->value.integer.value[0];
2667 spin_lock_irq(&hdspm->lock);
2668 change =
2669 gain != hdspm_read_pb_gain(hdspm, mapped_channel,
2670 mapped_channel);
2671 if (change)
2672 hdspm_write_pb_gain(hdspm, mapped_channel, mapped_channel,
2673 gain);
2674 spin_unlock_irq(&hdspm->lock);
2675 return change;
2678 #define HDSPM_WC_SYNC_CHECK(xname, xindex) \
2679 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2680 .name = xname, \
2681 .index = xindex, \
2682 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2683 .info = snd_hdspm_info_sync_check, \
2684 .get = snd_hdspm_get_wc_sync_check \
2687 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
2688 struct snd_ctl_elem_info *uinfo)
2690 static char *texts[] = { "No Lock", "Lock", "Sync" };
2691 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2692 uinfo->count = 1;
2693 uinfo->value.enumerated.items = 3;
2694 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2695 uinfo->value.enumerated.item =
2696 uinfo->value.enumerated.items - 1;
2697 strcpy(uinfo->value.enumerated.name,
2698 texts[uinfo->value.enumerated.item]);
2699 return 0;
2702 static int hdspm_wc_sync_check(struct hdspm * hdspm)
2704 if (hdspm->is_aes32) {
2705 int status = hdspm_read(hdspm, HDSPM_statusRegister);
2706 if (status & HDSPM_AES32_wcLock) {
2707 /* I don't know how to differenciate sync from lock.
2708 Doing as if sync for now */
2709 return 2;
2711 return 0;
2712 } else {
2713 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2714 if (status2 & HDSPM_wcLock) {
2715 if (status2 & HDSPM_wcSync)
2716 return 2;
2717 else
2718 return 1;
2720 return 0;
2724 static int snd_hdspm_get_wc_sync_check(struct snd_kcontrol *kcontrol,
2725 struct snd_ctl_elem_value *ucontrol)
2727 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2729 ucontrol->value.enumerated.item[0] = hdspm_wc_sync_check(hdspm);
2730 return 0;
2734 #define HDSPM_MADI_SYNC_CHECK(xname, xindex) \
2735 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2736 .name = xname, \
2737 .index = xindex, \
2738 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2739 .info = snd_hdspm_info_sync_check, \
2740 .get = snd_hdspm_get_madisync_sync_check \
2743 static int hdspm_madisync_sync_check(struct hdspm * hdspm)
2745 int status = hdspm_read(hdspm, HDSPM_statusRegister);
2746 if (status & HDSPM_madiLock) {
2747 if (status & HDSPM_madiSync)
2748 return 2;
2749 else
2750 return 1;
2752 return 0;
2755 static int snd_hdspm_get_madisync_sync_check(struct snd_kcontrol *kcontrol,
2756 struct snd_ctl_elem_value *
2757 ucontrol)
2759 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2761 ucontrol->value.enumerated.item[0] =
2762 hdspm_madisync_sync_check(hdspm);
2763 return 0;
2767 #define HDSPM_AES_SYNC_CHECK(xname, xindex) \
2768 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2769 .name = xname, \
2770 .index = xindex, \
2771 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2772 .info = snd_hdspm_info_sync_check, \
2773 .get = snd_hdspm_get_aes_sync_check \
2776 static int hdspm_aes_sync_check(struct hdspm * hdspm, int idx)
2778 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2779 if (status2 & (HDSPM_LockAES >> idx)) {
2780 /* I don't know how to differenciate sync from lock.
2781 Doing as if sync for now */
2782 return 2;
2784 return 0;
2787 static int snd_hdspm_get_aes_sync_check(struct snd_kcontrol *kcontrol,
2788 struct snd_ctl_elem_value *ucontrol)
2790 int offset;
2791 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2793 offset = ucontrol->id.index - 1;
2794 if (offset < 0 || offset >= 8)
2795 return -EINVAL;
2797 ucontrol->value.enumerated.item[0] =
2798 hdspm_aes_sync_check(hdspm, offset);
2799 return 0;
2803 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
2805 HDSPM_MIXER("Mixer", 0),
2806 /* 'Sample Clock Source' complies with the alsa control naming scheme */
2807 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0),
2809 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
2810 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
2811 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
2812 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
2813 /* 'External Rate' complies with the alsa control naming scheme */
2814 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
2815 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0),
2816 HDSPM_MADI_SYNC_CHECK("MADI Sync Lock Status", 0),
2817 HDSPM_LINE_OUT("Line Out", 0),
2818 HDSPM_TX_64("TX 64 channels mode", 0),
2819 HDSPM_C_TMS("Clear Track Marker", 0),
2820 HDSPM_SAFE_MODE("Safe Mode", 0),
2821 HDSPM_INPUT_SELECT("Input Select", 0),
2824 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
2826 HDSPM_MIXER("Mixer", 0),
2827 /* 'Sample Clock Source' complies with the alsa control naming scheme */
2828 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0),
2830 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
2831 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
2832 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
2833 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
2834 /* 'External Rate' complies with the alsa control naming scheme */
2835 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
2836 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0),
2837 /* HDSPM_AES_SYNC_CHECK("AES Lock Status", 0),*/ /* created in snd_hdspm_create_controls() */
2838 HDSPM_LINE_OUT("Line Out", 0),
2839 HDSPM_EMPHASIS("Emphasis", 0),
2840 HDSPM_DOLBY("Non Audio", 0),
2841 HDSPM_PROFESSIONAL("Professional", 0),
2842 HDSPM_C_TMS("Clear Track Marker", 0),
2843 HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
2844 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
2847 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
2850 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
2852 int i;
2854 for (i = hdspm->ds_channels; i < hdspm->ss_channels; ++i) {
2855 if (hdspm->system_sample_rate > 48000) {
2856 hdspm->playback_mixer_ctls[i]->vd[0].access =
2857 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
2858 SNDRV_CTL_ELEM_ACCESS_READ |
2859 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
2860 } else {
2861 hdspm->playback_mixer_ctls[i]->vd[0].access =
2862 SNDRV_CTL_ELEM_ACCESS_READWRITE |
2863 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
2865 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
2866 SNDRV_CTL_EVENT_MASK_INFO,
2867 &hdspm->playback_mixer_ctls[i]->id);
2870 return 0;
2874 static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm)
2876 unsigned int idx, limit;
2877 int err;
2878 struct snd_kcontrol *kctl;
2880 /* add control list first */
2881 if (hdspm->is_aes32) {
2882 struct snd_kcontrol_new aes_sync_ctl =
2883 HDSPM_AES_SYNC_CHECK("AES Lock Status", 0);
2885 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_aes32);
2886 idx++) {
2887 err = snd_ctl_add(card,
2888 snd_ctl_new1(&snd_hdspm_controls_aes32[idx],
2889 hdspm));
2890 if (err < 0)
2891 return err;
2893 for (idx = 1; idx <= 8; idx++) {
2894 aes_sync_ctl.index = idx;
2895 err = snd_ctl_add(card,
2896 snd_ctl_new1(&aes_sync_ctl, hdspm));
2897 if (err < 0)
2898 return err;
2900 } else {
2901 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_madi);
2902 idx++) {
2903 err = snd_ctl_add(card,
2904 snd_ctl_new1(&snd_hdspm_controls_madi[idx],
2905 hdspm));
2906 if (err < 0)
2907 return err;
2911 /* Channel playback mixer as default control
2912 Note: the whole matrix would be 128*HDSPM_MIXER_CHANNELS Faders, thats too big for any alsamixer
2913 they are accesible via special IOCTL on hwdep
2914 and the mixer 2dimensional mixer control */
2916 snd_hdspm_playback_mixer.name = "Chn";
2917 limit = HDSPM_MAX_CHANNELS;
2919 /* The index values are one greater than the channel ID so that alsamixer
2920 will display them correctly. We want to use the index for fast lookup
2921 of the relevant channel, but if we use it at all, most ALSA software
2922 does the wrong thing with it ...
2925 for (idx = 0; idx < limit; ++idx) {
2926 snd_hdspm_playback_mixer.index = idx + 1;
2927 if ((err = snd_ctl_add(card,
2928 kctl =
2929 snd_ctl_new1
2930 (&snd_hdspm_playback_mixer,
2931 hdspm)))) {
2932 return err;
2934 hdspm->playback_mixer_ctls[idx] = kctl;
2937 return 0;
2940 /*------------------------------------------------------------
2941 /proc interface
2942 ------------------------------------------------------------*/
2944 static void
2945 snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
2946 struct snd_info_buffer *buffer)
2948 struct hdspm *hdspm = (struct hdspm *) entry->private_data;
2949 unsigned int status;
2950 unsigned int status2;
2951 char *pref_sync_ref;
2952 char *autosync_ref;
2953 char *system_clock_mode;
2954 char *clock_source;
2955 char *insel;
2956 char *syncref;
2957 int x, x2;
2959 status = hdspm_read(hdspm, HDSPM_statusRegister);
2960 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2962 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
2963 hdspm->card_name, hdspm->card->number + 1,
2964 hdspm->firmware_rev,
2965 (status2 & HDSPM_version0) |
2966 (status2 & HDSPM_version1) | (status2 &
2967 HDSPM_version2));
2969 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
2970 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
2972 snd_iprintf(buffer, "--- System ---\n");
2974 snd_iprintf(buffer,
2975 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
2976 status & HDSPM_audioIRQPending,
2977 (status & HDSPM_midi0IRQPending) ? 1 : 0,
2978 (status & HDSPM_midi1IRQPending) ? 1 : 0,
2979 hdspm->irq_count);
2980 snd_iprintf(buffer,
2981 "HW pointer: id = %d, rawptr = %d (%d->%d) estimated= %ld (bytes)\n",
2982 ((status & HDSPM_BufferID) ? 1 : 0),
2983 (status & HDSPM_BufferPositionMask),
2984 (status & HDSPM_BufferPositionMask) % (2 *
2985 (int)hdspm->
2986 period_bytes),
2987 ((status & HDSPM_BufferPositionMask) -
2988 64) % (2 * (int)hdspm->period_bytes),
2989 (long) hdspm_hw_pointer(hdspm) * 4);
2991 snd_iprintf(buffer,
2992 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
2993 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
2994 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
2995 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
2996 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
2997 snd_iprintf(buffer,
2998 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, status2=0x%x\n",
2999 hdspm->control_register, hdspm->control2_register,
3000 status, status2);
3002 snd_iprintf(buffer, "--- Settings ---\n");
3004 x = 1 << (6 +
3005 hdspm_decode_latency(hdspm->
3006 control_register &
3007 HDSPM_LatencyMask));
3009 snd_iprintf(buffer,
3010 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
3011 x, (unsigned long) hdspm->period_bytes);
3013 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n",
3014 (hdspm->
3015 control_register & HDSPM_LineOut) ? "on " : "off",
3016 (hdspm->precise_ptr) ? "on" : "off");
3018 switch (hdspm->control_register & HDSPM_InputMask) {
3019 case HDSPM_InputOptical:
3020 insel = "Optical";
3021 break;
3022 case HDSPM_InputCoaxial:
3023 insel = "Coaxial";
3024 break;
3025 default:
3026 insel = "Unkown";
3029 switch (hdspm->control_register & HDSPM_SyncRefMask) {
3030 case HDSPM_SyncRef_Word:
3031 syncref = "WordClock";
3032 break;
3033 case HDSPM_SyncRef_MADI:
3034 syncref = "MADI";
3035 break;
3036 default:
3037 syncref = "Unkown";
3039 snd_iprintf(buffer, "Inputsel = %s, SyncRef = %s\n", insel,
3040 syncref);
3042 snd_iprintf(buffer,
3043 "ClearTrackMarker = %s, Transmit in %s Channel Mode, Auto Input %s\n",
3044 (hdspm->
3045 control_register & HDSPM_clr_tms) ? "on" : "off",
3046 (hdspm->
3047 control_register & HDSPM_TX_64ch) ? "64" : "56",
3048 (hdspm->
3049 control_register & HDSPM_AutoInp) ? "on" : "off");
3051 switch (hdspm_clock_source(hdspm)) {
3052 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
3053 clock_source = "AutoSync";
3054 break;
3055 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
3056 clock_source = "Internal 32 kHz";
3057 break;
3058 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
3059 clock_source = "Internal 44.1 kHz";
3060 break;
3061 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
3062 clock_source = "Internal 48 kHz";
3063 break;
3064 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
3065 clock_source = "Internal 64 kHz";
3066 break;
3067 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
3068 clock_source = "Internal 88.2 kHz";
3069 break;
3070 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
3071 clock_source = "Internal 96 kHz";
3072 break;
3073 default:
3074 clock_source = "Error";
3076 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
3077 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
3078 system_clock_mode = "Slave";
3079 else
3080 system_clock_mode = "Master";
3081 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
3083 switch (hdspm_pref_sync_ref(hdspm)) {
3084 case HDSPM_SYNC_FROM_WORD:
3085 pref_sync_ref = "Word Clock";
3086 break;
3087 case HDSPM_SYNC_FROM_MADI:
3088 pref_sync_ref = "MADI Sync";
3089 break;
3090 default:
3091 pref_sync_ref = "XXXX Clock";
3092 break;
3094 snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
3095 pref_sync_ref);
3097 snd_iprintf(buffer, "System Clock Frequency: %d\n",
3098 hdspm->system_sample_rate);
3101 snd_iprintf(buffer, "--- Status:\n");
3103 x = status & HDSPM_madiSync;
3104 x2 = status2 & HDSPM_wcSync;
3106 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
3107 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
3108 "NoLock",
3109 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
3110 "NoLock");
3112 switch (hdspm_autosync_ref(hdspm)) {
3113 case HDSPM_AUTOSYNC_FROM_WORD:
3114 autosync_ref = "Word Clock";
3115 break;
3116 case HDSPM_AUTOSYNC_FROM_MADI:
3117 autosync_ref = "MADI Sync";
3118 break;
3119 case HDSPM_AUTOSYNC_FROM_NONE:
3120 autosync_ref = "Input not valid";
3121 break;
3122 default:
3123 autosync_ref = "---";
3124 break;
3126 snd_iprintf(buffer,
3127 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
3128 autosync_ref, hdspm_external_sample_rate(hdspm),
3129 (status & HDSPM_madiFreqMask) >> 22,
3130 (status2 & HDSPM_wcFreqMask) >> 5);
3132 snd_iprintf(buffer, "Input: %s, Mode=%s\n",
3133 (status & HDSPM_AB_int) ? "Coax" : "Optical",
3134 (status & HDSPM_RX_64ch) ? "64 channels" :
3135 "56 channels");
3137 snd_iprintf(buffer, "\n");
3140 static void
3141 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
3142 struct snd_info_buffer *buffer)
3144 struct hdspm *hdspm = (struct hdspm *) entry->private_data;
3145 unsigned int status;
3146 unsigned int status2;
3147 unsigned int timecode;
3148 int pref_syncref;
3149 char *autosync_ref;
3150 char *system_clock_mode;
3151 char *clock_source;
3152 int x;
3154 status = hdspm_read(hdspm, HDSPM_statusRegister);
3155 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3156 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
3158 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
3159 hdspm->card_name, hdspm->card->number + 1,
3160 hdspm->firmware_rev);
3162 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
3163 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
3165 snd_iprintf(buffer, "--- System ---\n");
3167 snd_iprintf(buffer,
3168 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
3169 status & HDSPM_audioIRQPending,
3170 (status & HDSPM_midi0IRQPending) ? 1 : 0,
3171 (status & HDSPM_midi1IRQPending) ? 1 : 0,
3172 hdspm->irq_count);
3173 snd_iprintf(buffer,
3174 "HW pointer: id = %d, rawptr = %d (%d->%d) estimated= %ld (bytes)\n",
3175 ((status & HDSPM_BufferID) ? 1 : 0),
3176 (status & HDSPM_BufferPositionMask),
3177 (status & HDSPM_BufferPositionMask) % (2 *
3178 (int)hdspm->
3179 period_bytes),
3180 ((status & HDSPM_BufferPositionMask) -
3181 64) % (2 * (int)hdspm->period_bytes),
3182 (long) hdspm_hw_pointer(hdspm) * 4);
3184 snd_iprintf(buffer,
3185 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
3186 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
3187 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
3188 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
3189 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
3190 snd_iprintf(buffer,
3191 "Register: ctrl1=0x%x, status1=0x%x, status2=0x%x, timecode=0x%x\n",
3192 hdspm->control_register,
3193 status, status2, timecode);
3195 snd_iprintf(buffer, "--- Settings ---\n");
3197 x = 1 << (6 +
3198 hdspm_decode_latency(hdspm->
3199 control_register &
3200 HDSPM_LatencyMask));
3202 snd_iprintf(buffer,
3203 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
3204 x, (unsigned long) hdspm->period_bytes);
3206 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n",
3207 (hdspm->
3208 control_register & HDSPM_LineOut) ? "on " : "off",
3209 (hdspm->precise_ptr) ? "on" : "off");
3211 snd_iprintf(buffer,
3212 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
3213 (hdspm->
3214 control_register & HDSPM_clr_tms) ? "on" : "off",
3215 (hdspm->
3216 control_register & HDSPM_Emphasis) ? "on" : "off",
3217 (hdspm->
3218 control_register & HDSPM_Dolby) ? "on" : "off");
3220 switch (hdspm_clock_source(hdspm)) {
3221 case HDSPM_CLOCK_SOURCE_AUTOSYNC:
3222 clock_source = "AutoSync";
3223 break;
3224 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ:
3225 clock_source = "Internal 32 kHz";
3226 break;
3227 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ:
3228 clock_source = "Internal 44.1 kHz";
3229 break;
3230 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ:
3231 clock_source = "Internal 48 kHz";
3232 break;
3233 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ:
3234 clock_source = "Internal 64 kHz";
3235 break;
3236 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ:
3237 clock_source = "Internal 88.2 kHz";
3238 break;
3239 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ:
3240 clock_source = "Internal 96 kHz";
3241 break;
3242 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ:
3243 clock_source = "Internal 128 kHz";
3244 break;
3245 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ:
3246 clock_source = "Internal 176.4 kHz";
3247 break;
3248 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ:
3249 clock_source = "Internal 192 kHz";
3250 break;
3251 default:
3252 clock_source = "Error";
3254 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source);
3255 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
3256 system_clock_mode = "Slave";
3257 else
3258 system_clock_mode = "Master";
3259 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode);
3261 pref_syncref = hdspm_pref_sync_ref(hdspm);
3262 if (pref_syncref == 0)
3263 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
3264 else
3265 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
3266 pref_syncref);
3268 snd_iprintf(buffer, "System Clock Frequency: %d\n",
3269 hdspm->system_sample_rate);
3271 snd_iprintf(buffer, "Double speed: %s\n",
3272 hdspm->control_register & HDSPM_DS_DoubleWire?
3273 "Double wire" : "Single wire");
3274 snd_iprintf(buffer, "Quad speed: %s\n",
3275 hdspm->control_register & HDSPM_QS_DoubleWire?
3276 "Double wire" :
3277 hdspm->control_register & HDSPM_QS_QuadWire?
3278 "Quad wire" : "Single wire");
3280 snd_iprintf(buffer, "--- Status:\n");
3282 snd_iprintf(buffer, "Word: %s Frequency: %d\n",
3283 (status & HDSPM_AES32_wcLock)? "Sync " : "No Lock",
3284 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
3286 for (x = 0; x < 8; x++) {
3287 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
3288 x+1,
3289 (status2 & (HDSPM_LockAES >> x))? "Sync ": "No Lock",
3290 HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
3293 switch (hdspm_autosync_ref(hdspm)) {
3294 case HDSPM_AES32_AUTOSYNC_FROM_NONE: autosync_ref="None"; break;
3295 case HDSPM_AES32_AUTOSYNC_FROM_WORD: autosync_ref="Word Clock"; break;
3296 case HDSPM_AES32_AUTOSYNC_FROM_AES1: autosync_ref="AES1"; break;
3297 case HDSPM_AES32_AUTOSYNC_FROM_AES2: autosync_ref="AES2"; break;
3298 case HDSPM_AES32_AUTOSYNC_FROM_AES3: autosync_ref="AES3"; break;
3299 case HDSPM_AES32_AUTOSYNC_FROM_AES4: autosync_ref="AES4"; break;
3300 case HDSPM_AES32_AUTOSYNC_FROM_AES5: autosync_ref="AES5"; break;
3301 case HDSPM_AES32_AUTOSYNC_FROM_AES6: autosync_ref="AES6"; break;
3302 case HDSPM_AES32_AUTOSYNC_FROM_AES7: autosync_ref="AES7"; break;
3303 case HDSPM_AES32_AUTOSYNC_FROM_AES8: autosync_ref="AES8"; break;
3304 default: autosync_ref = "---"; break;
3306 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
3308 snd_iprintf(buffer, "\n");
3311 #ifdef CONFIG_SND_DEBUG
3312 static void
3313 snd_hdspm_proc_read_debug(struct snd_info_entry * entry,
3314 struct snd_info_buffer *buffer)
3316 struct hdspm *hdspm = (struct hdspm *)entry->private_data;
3318 int j,i;
3320 for (i = 0; i < 256 /* 1024*64 */; i += j)
3322 snd_iprintf(buffer, "0x%08X: ", i);
3323 for (j = 0; j < 16; j += 4)
3324 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
3325 snd_iprintf(buffer, "\n");
3328 #endif
3332 static void __devinit snd_hdspm_proc_init(struct hdspm * hdspm)
3334 struct snd_info_entry *entry;
3336 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry))
3337 snd_info_set_text_ops(entry, hdspm,
3338 hdspm->is_aes32 ?
3339 snd_hdspm_proc_read_aes32 :
3340 snd_hdspm_proc_read_madi);
3341 #ifdef CONFIG_SND_DEBUG
3342 /* debug file to read all hdspm registers */
3343 if (!snd_card_proc_new(hdspm->card, "debug", &entry))
3344 snd_info_set_text_ops(entry, hdspm,
3345 snd_hdspm_proc_read_debug);
3346 #endif
3349 /*------------------------------------------------------------
3350 hdspm intitialize
3351 ------------------------------------------------------------*/
3353 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
3355 unsigned int i;
3357 /* ASSUMPTION: hdspm->lock is either held, or there is no need to
3358 hold it (e.g. during module initalization).
3361 /* set defaults: */
3363 if (hdspm->is_aes32)
3364 hdspm->control_register = HDSPM_ClockModeMaster | /* Master Cloack Mode on */
3365 hdspm_encode_latency(7) | /* latency maximum = 8192 samples */
3366 HDSPM_SyncRef0 | /* AES1 is syncclock */
3367 HDSPM_LineOut | /* Analog output in */
3368 HDSPM_Professional; /* Professional mode */
3369 else
3370 hdspm->control_register = HDSPM_ClockModeMaster | /* Master Cloack Mode on */
3371 hdspm_encode_latency(7) | /* latency maximum = 8192 samples */
3372 HDSPM_InputCoaxial | /* Input Coax not Optical */
3373 HDSPM_SyncRef_MADI | /* Madi is syncclock */
3374 HDSPM_LineOut | /* Analog output in */
3375 HDSPM_TX_64ch | /* transmit in 64ch mode */
3376 HDSPM_AutoInp; /* AutoInput chossing (takeover) */
3378 /* ! HDSPM_Frequency0|HDSPM_Frequency1 = 44.1khz */
3379 /* ! HDSPM_DoubleSpeed HDSPM_QuadSpeed = normal speed */
3380 /* ! HDSPM_clr_tms = do not clear bits in track marks */
3382 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3384 if (!hdspm->is_aes32) {
3385 /* No control2 register for AES32 */
3386 #ifdef SNDRV_BIG_ENDIAN
3387 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
3388 #else
3389 hdspm->control2_register = 0;
3390 #endif
3392 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
3394 hdspm_compute_period_size(hdspm);
3396 /* silence everything */
3398 all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
3400 if (line_outs_monitor[hdspm->dev]) {
3402 snd_printk(KERN_INFO "HDSPM: sending all playback streams to line outs.\n");
3404 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) {
3405 if (hdspm_write_pb_gain(hdspm, i, i, UNITY_GAIN))
3406 return -EIO;
3410 /* set a default rate so that the channel map is set up. */
3411 hdspm->channel_map = channel_map_madi_ss;
3412 hdspm_set_rate(hdspm, 44100, 1);
3414 return 0;
3418 /*------------------------------------------------------------
3419 interupt
3420 ------------------------------------------------------------*/
3422 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
3424 struct hdspm *hdspm = (struct hdspm *) dev_id;
3425 unsigned int status;
3426 int audio;
3427 int midi0;
3428 int midi1;
3429 unsigned int midi0status;
3430 unsigned int midi1status;
3431 int schedule = 0;
3433 status = hdspm_read(hdspm, HDSPM_statusRegister);
3435 audio = status & HDSPM_audioIRQPending;
3436 midi0 = status & HDSPM_midi0IRQPending;
3437 midi1 = status & HDSPM_midi1IRQPending;
3439 if (!audio && !midi0 && !midi1)
3440 return IRQ_NONE;
3442 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
3443 hdspm->irq_count++;
3445 midi0status = hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff;
3446 midi1status = hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff;
3448 if (audio) {
3450 if (hdspm->capture_substream)
3451 snd_pcm_period_elapsed(hdspm->pcm->
3452 streams
3453 [SNDRV_PCM_STREAM_CAPTURE].
3454 substream);
3456 if (hdspm->playback_substream)
3457 snd_pcm_period_elapsed(hdspm->pcm->
3458 streams
3459 [SNDRV_PCM_STREAM_PLAYBACK].
3460 substream);
3463 if (midi0 && midi0status) {
3464 /* we disable interrupts for this input until processing is done */
3465 hdspm->control_register &= ~HDSPM_Midi0InterruptEnable;
3466 hdspm_write(hdspm, HDSPM_controlRegister,
3467 hdspm->control_register);
3468 hdspm->midi[0].pending = 1;
3469 schedule = 1;
3471 if (midi1 && midi1status) {
3472 /* we disable interrupts for this input until processing is done */
3473 hdspm->control_register &= ~HDSPM_Midi1InterruptEnable;
3474 hdspm_write(hdspm, HDSPM_controlRegister,
3475 hdspm->control_register);
3476 hdspm->midi[1].pending = 1;
3477 schedule = 1;
3479 if (schedule)
3480 tasklet_hi_schedule(&hdspm->midi_tasklet);
3481 return IRQ_HANDLED;
3484 /*------------------------------------------------------------
3485 pcm interface
3486 ------------------------------------------------------------*/
3489 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream *
3490 substream)
3492 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3493 return hdspm_hw_pointer(hdspm);
3496 static char *hdspm_channel_buffer_location(struct hdspm * hdspm,
3497 int stream, int channel)
3499 int mapped_channel;
3501 snd_assert(channel >= 0
3502 || channel < HDSPM_MAX_CHANNELS, return NULL);
3504 if ((mapped_channel = hdspm->channel_map[channel]) < 0)
3505 return NULL;
3507 if (stream == SNDRV_PCM_STREAM_CAPTURE) {
3508 return hdspm->capture_buffer +
3509 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
3510 } else {
3511 return hdspm->playback_buffer +
3512 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
3517 /* dont know why need it ??? */
3518 static int snd_hdspm_playback_copy(struct snd_pcm_substream *substream,
3519 int channel, snd_pcm_uframes_t pos,
3520 void __user *src, snd_pcm_uframes_t count)
3522 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3523 char *channel_buf;
3525 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4,
3526 return -EINVAL);
3528 channel_buf = hdspm_channel_buffer_location(hdspm,
3529 substream->pstr->
3530 stream, channel);
3532 snd_assert(channel_buf != NULL, return -EIO);
3534 return copy_from_user(channel_buf + pos * 4, src, count * 4);
3537 static int snd_hdspm_capture_copy(struct snd_pcm_substream *substream,
3538 int channel, snd_pcm_uframes_t pos,
3539 void __user *dst, snd_pcm_uframes_t count)
3541 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3542 char *channel_buf;
3544 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4,
3545 return -EINVAL);
3547 channel_buf = hdspm_channel_buffer_location(hdspm,
3548 substream->pstr->
3549 stream, channel);
3550 snd_assert(channel_buf != NULL, return -EIO);
3551 return copy_to_user(dst, channel_buf + pos * 4, count * 4);
3554 static int snd_hdspm_hw_silence(struct snd_pcm_substream *substream,
3555 int channel, snd_pcm_uframes_t pos,
3556 snd_pcm_uframes_t count)
3558 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3559 char *channel_buf;
3561 channel_buf =
3562 hdspm_channel_buffer_location(hdspm, substream->pstr->stream,
3563 channel);
3564 snd_assert(channel_buf != NULL, return -EIO);
3565 memset(channel_buf + pos * 4, 0, count * 4);
3566 return 0;
3569 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
3571 struct snd_pcm_runtime *runtime = substream->runtime;
3572 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3573 struct snd_pcm_substream *other;
3575 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3576 other = hdspm->capture_substream;
3577 else
3578 other = hdspm->playback_substream;
3580 if (hdspm->running)
3581 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
3582 else
3583 runtime->status->hw_ptr = 0;
3584 if (other) {
3585 struct snd_pcm_substream *s;
3586 struct snd_pcm_runtime *oruntime = other->runtime;
3587 snd_pcm_group_for_each_entry(s, substream) {
3588 if (s == other) {
3589 oruntime->status->hw_ptr =
3590 runtime->status->hw_ptr;
3591 break;
3595 return 0;
3598 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
3599 struct snd_pcm_hw_params *params)
3601 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3602 int err;
3603 int i;
3604 pid_t this_pid;
3605 pid_t other_pid;
3606 struct snd_sg_buf *sgbuf;
3609 spin_lock_irq(&hdspm->lock);
3611 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3612 this_pid = hdspm->playback_pid;
3613 other_pid = hdspm->capture_pid;
3614 } else {
3615 this_pid = hdspm->capture_pid;
3616 other_pid = hdspm->playback_pid;
3619 if ((other_pid > 0) && (this_pid != other_pid)) {
3621 /* The other stream is open, and not by the same
3622 task as this one. Make sure that the parameters
3623 that matter are the same.
3626 if (params_rate(params) != hdspm->system_sample_rate) {
3627 spin_unlock_irq(&hdspm->lock);
3628 _snd_pcm_hw_param_setempty(params,
3629 SNDRV_PCM_HW_PARAM_RATE);
3630 return -EBUSY;
3633 if (params_period_size(params) != hdspm->period_bytes / 4) {
3634 spin_unlock_irq(&hdspm->lock);
3635 _snd_pcm_hw_param_setempty(params,
3636 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
3637 return -EBUSY;
3641 /* We're fine. */
3642 spin_unlock_irq(&hdspm->lock);
3644 /* how to make sure that the rate matches an externally-set one ? */
3646 spin_lock_irq(&hdspm->lock);
3647 if ((err = hdspm_set_rate(hdspm, params_rate(params), 0)) < 0) {
3648 spin_unlock_irq(&hdspm->lock);
3649 _snd_pcm_hw_param_setempty(params,
3650 SNDRV_PCM_HW_PARAM_RATE);
3651 return err;
3653 spin_unlock_irq(&hdspm->lock);
3655 if ((err =
3656 hdspm_set_interrupt_interval(hdspm,
3657 params_period_size(params))) <
3658 0) {
3659 _snd_pcm_hw_param_setempty(params,
3660 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
3661 return err;
3664 /* Memory allocation, takashi's method, dont know if we should spinlock */
3665 /* malloc all buffer even if not enabled to get sure */
3666 /* Update for MADI rev 204: we need to allocate for all channels,
3667 * otherwise it doesn't work at 96kHz */
3668 err =
3669 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
3670 if (err < 0)
3671 return err;
3673 sgbuf = snd_pcm_substream_sgbuf(substream);
3675 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3677 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferOut,
3678 params_channels(params));
3680 for (i = 0; i < params_channels(params); ++i)
3681 snd_hdspm_enable_out(hdspm, i, 1);
3683 hdspm->playback_buffer =
3684 (unsigned char *) substream->runtime->dma_area;
3685 snd_printdd("Allocated sample buffer for playback at %p\n",
3686 hdspm->playback_buffer);
3687 } else {
3688 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferIn,
3689 params_channels(params));
3691 for (i = 0; i < params_channels(params); ++i)
3692 snd_hdspm_enable_in(hdspm, i, 1);
3694 hdspm->capture_buffer =
3695 (unsigned char *) substream->runtime->dma_area;
3696 snd_printdd("Allocated sample buffer for capture at %p\n",
3697 hdspm->capture_buffer);
3700 snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
3701 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
3702 "playback" : "capture",
3703 snd_pcm_sgbuf_get_addr(sgbuf, 0));
3706 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
3707 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
3708 "playback" : "capture",
3709 params_rate(params), params_channels(params),
3710 params_buffer_size(params));
3712 return 0;
3715 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
3717 int i;
3718 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3720 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
3722 /* params_channels(params) should be enough,
3723 but to get sure in case of error */
3724 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
3725 snd_hdspm_enable_out(hdspm, i, 0);
3727 hdspm->playback_buffer = NULL;
3728 } else {
3729 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
3730 snd_hdspm_enable_in(hdspm, i, 0);
3732 hdspm->capture_buffer = NULL;
3736 snd_pcm_lib_free_pages(substream);
3738 return 0;
3741 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
3742 struct snd_pcm_channel_info * info)
3744 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3745 int mapped_channel;
3747 snd_assert(info->channel < HDSPM_MAX_CHANNELS, return -EINVAL);
3749 if ((mapped_channel = hdspm->channel_map[info->channel]) < 0)
3750 return -EINVAL;
3752 info->offset = mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES;
3753 info->first = 0;
3754 info->step = 32;
3755 return 0;
3758 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
3759 unsigned int cmd, void *arg)
3761 switch (cmd) {
3762 case SNDRV_PCM_IOCTL1_RESET:
3764 return snd_hdspm_reset(substream);
3767 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
3769 struct snd_pcm_channel_info *info = arg;
3770 return snd_hdspm_channel_info(substream, info);
3772 default:
3773 break;
3776 return snd_pcm_lib_ioctl(substream, cmd, arg);
3779 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
3781 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3782 struct snd_pcm_substream *other;
3783 int running;
3785 spin_lock(&hdspm->lock);
3786 running = hdspm->running;
3787 switch (cmd) {
3788 case SNDRV_PCM_TRIGGER_START:
3789 running |= 1 << substream->stream;
3790 break;
3791 case SNDRV_PCM_TRIGGER_STOP:
3792 running &= ~(1 << substream->stream);
3793 break;
3794 default:
3795 snd_BUG();
3796 spin_unlock(&hdspm->lock);
3797 return -EINVAL;
3799 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3800 other = hdspm->capture_substream;
3801 else
3802 other = hdspm->playback_substream;
3804 if (other) {
3805 struct snd_pcm_substream *s;
3806 snd_pcm_group_for_each_entry(s, substream) {
3807 if (s == other) {
3808 snd_pcm_trigger_done(s, substream);
3809 if (cmd == SNDRV_PCM_TRIGGER_START)
3810 running |= 1 << s->stream;
3811 else
3812 running &= ~(1 << s->stream);
3813 goto _ok;
3816 if (cmd == SNDRV_PCM_TRIGGER_START) {
3817 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
3818 && substream->stream ==
3819 SNDRV_PCM_STREAM_CAPTURE)
3820 hdspm_silence_playback(hdspm);
3821 } else {
3822 if (running &&
3823 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
3824 hdspm_silence_playback(hdspm);
3826 } else {
3827 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
3828 hdspm_silence_playback(hdspm);
3830 _ok:
3831 snd_pcm_trigger_done(substream, substream);
3832 if (!hdspm->running && running)
3833 hdspm_start_audio(hdspm);
3834 else if (hdspm->running && !running)
3835 hdspm_stop_audio(hdspm);
3836 hdspm->running = running;
3837 spin_unlock(&hdspm->lock);
3839 return 0;
3842 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
3844 return 0;
3847 static unsigned int period_sizes[] =
3848 { 64, 128, 256, 512, 1024, 2048, 4096, 8192 };
3850 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
3851 .info = (SNDRV_PCM_INFO_MMAP |
3852 SNDRV_PCM_INFO_MMAP_VALID |
3853 SNDRV_PCM_INFO_NONINTERLEAVED |
3854 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
3855 .formats = SNDRV_PCM_FMTBIT_S32_LE,
3856 .rates = (SNDRV_PCM_RATE_32000 |
3857 SNDRV_PCM_RATE_44100 |
3858 SNDRV_PCM_RATE_48000 |
3859 SNDRV_PCM_RATE_64000 |
3860 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
3861 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
3862 .rate_min = 32000,
3863 .rate_max = 192000,
3864 .channels_min = 1,
3865 .channels_max = HDSPM_MAX_CHANNELS,
3866 .buffer_bytes_max =
3867 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
3868 .period_bytes_min = (64 * 4),
3869 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
3870 .periods_min = 2,
3871 .periods_max = 2,
3872 .fifo_size = 0
3875 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
3876 .info = (SNDRV_PCM_INFO_MMAP |
3877 SNDRV_PCM_INFO_MMAP_VALID |
3878 SNDRV_PCM_INFO_NONINTERLEAVED |
3879 SNDRV_PCM_INFO_SYNC_START),
3880 .formats = SNDRV_PCM_FMTBIT_S32_LE,
3881 .rates = (SNDRV_PCM_RATE_32000 |
3882 SNDRV_PCM_RATE_44100 |
3883 SNDRV_PCM_RATE_48000 |
3884 SNDRV_PCM_RATE_64000 |
3885 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
3886 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
3887 .rate_min = 32000,
3888 .rate_max = 192000,
3889 .channels_min = 1,
3890 .channels_max = HDSPM_MAX_CHANNELS,
3891 .buffer_bytes_max =
3892 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
3893 .period_bytes_min = (64 * 4),
3894 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
3895 .periods_min = 2,
3896 .periods_max = 2,
3897 .fifo_size = 0
3900 static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes = {
3901 .count = ARRAY_SIZE(period_sizes),
3902 .list = period_sizes,
3903 .mask = 0
3907 static int snd_hdspm_hw_rule_channels_rate(struct snd_pcm_hw_params *params,
3908 struct snd_pcm_hw_rule * rule)
3910 struct hdspm *hdspm = rule->private;
3911 struct snd_interval *c =
3912 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
3913 struct snd_interval *r =
3914 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
3916 if (r->min > 48000 && r->max <= 96000) {
3917 struct snd_interval t = {
3918 .min = hdspm->ds_channels,
3919 .max = hdspm->ds_channels,
3920 .integer = 1,
3922 return snd_interval_refine(c, &t);
3923 } else if (r->max < 64000) {
3924 struct snd_interval t = {
3925 .min = hdspm->ss_channels,
3926 .max = hdspm->ss_channels,
3927 .integer = 1,
3929 return snd_interval_refine(c, &t);
3931 return 0;
3934 static int snd_hdspm_hw_rule_rate_channels(struct snd_pcm_hw_params *params,
3935 struct snd_pcm_hw_rule * rule)
3937 struct hdspm *hdspm = rule->private;
3938 struct snd_interval *c =
3939 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
3940 struct snd_interval *r =
3941 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
3943 if (c->min >= hdspm->ss_channels) {
3944 struct snd_interval t = {
3945 .min = 32000,
3946 .max = 48000,
3947 .integer = 1,
3949 return snd_interval_refine(r, &t);
3950 } else if (c->max <= hdspm->ds_channels) {
3951 struct snd_interval t = {
3952 .min = 64000,
3953 .max = 96000,
3954 .integer = 1,
3957 return snd_interval_refine(r, &t);
3959 return 0;
3962 static int snd_hdspm_hw_rule_channels(struct snd_pcm_hw_params *params,
3963 struct snd_pcm_hw_rule *rule)
3965 unsigned int list[3];
3966 struct hdspm *hdspm = rule->private;
3967 struct snd_interval *c = hw_param_interval(params,
3968 SNDRV_PCM_HW_PARAM_CHANNELS);
3969 if (hdspm->is_aes32) {
3970 list[0] = hdspm->qs_channels;
3971 list[1] = hdspm->ds_channels;
3972 list[2] = hdspm->ss_channels;
3973 return snd_interval_list(c, 3, list, 0);
3974 } else {
3975 list[0] = hdspm->ds_channels;
3976 list[1] = hdspm->ss_channels;
3977 return snd_interval_list(c, 2, list, 0);
3982 static unsigned int hdspm_aes32_sample_rates[] = { 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 };
3984 static struct snd_pcm_hw_constraint_list hdspm_hw_constraints_aes32_sample_rates = {
3985 .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
3986 .list = hdspm_aes32_sample_rates,
3987 .mask = 0
3990 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
3992 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
3993 struct snd_pcm_runtime *runtime = substream->runtime;
3995 spin_lock_irq(&hdspm->lock);
3997 snd_pcm_set_sync(substream);
3999 runtime->hw = snd_hdspm_playback_subinfo;
4001 if (hdspm->capture_substream == NULL)
4002 hdspm_stop_audio(hdspm);
4004 hdspm->playback_pid = current->pid;
4005 hdspm->playback_substream = substream;
4007 spin_unlock_irq(&hdspm->lock);
4009 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
4011 snd_pcm_hw_constraint_list(runtime, 0,
4012 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
4013 &hw_constraints_period_sizes);
4015 if (hdspm->is_aes32) {
4016 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4017 &hdspm_hw_constraints_aes32_sample_rates);
4018 } else {
4019 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4020 snd_hdspm_hw_rule_channels, hdspm,
4021 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4022 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4023 snd_hdspm_hw_rule_channels_rate, hdspm,
4024 SNDRV_PCM_HW_PARAM_RATE, -1);
4026 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4027 snd_hdspm_hw_rule_rate_channels, hdspm,
4028 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4030 return 0;
4033 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
4035 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
4037 spin_lock_irq(&hdspm->lock);
4039 hdspm->playback_pid = -1;
4040 hdspm->playback_substream = NULL;
4042 spin_unlock_irq(&hdspm->lock);
4044 return 0;
4048 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
4050 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
4051 struct snd_pcm_runtime *runtime = substream->runtime;
4053 spin_lock_irq(&hdspm->lock);
4054 snd_pcm_set_sync(substream);
4055 runtime->hw = snd_hdspm_capture_subinfo;
4057 if (hdspm->playback_substream == NULL)
4058 hdspm_stop_audio(hdspm);
4060 hdspm->capture_pid = current->pid;
4061 hdspm->capture_substream = substream;
4063 spin_unlock_irq(&hdspm->lock);
4065 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
4066 snd_pcm_hw_constraint_list(runtime, 0,
4067 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
4068 &hw_constraints_period_sizes);
4069 if (hdspm->is_aes32) {
4070 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4071 &hdspm_hw_constraints_aes32_sample_rates);
4072 } else {
4073 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4074 snd_hdspm_hw_rule_channels, hdspm,
4075 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4076 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
4077 snd_hdspm_hw_rule_channels_rate, hdspm,
4078 SNDRV_PCM_HW_PARAM_RATE, -1);
4080 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
4081 snd_hdspm_hw_rule_rate_channels, hdspm,
4082 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
4084 return 0;
4087 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
4089 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
4091 spin_lock_irq(&hdspm->lock);
4093 hdspm->capture_pid = -1;
4094 hdspm->capture_substream = NULL;
4096 spin_unlock_irq(&hdspm->lock);
4097 return 0;
4100 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep * hw, struct file *file)
4102 /* we have nothing to initialize but the call is required */
4103 return 0;
4107 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep * hw, struct file *file,
4108 unsigned int cmd, unsigned long arg)
4110 struct hdspm *hdspm = (struct hdspm *) hw->private_data;
4111 struct hdspm_mixer_ioctl mixer;
4112 struct hdspm_config_info info;
4113 struct hdspm_version hdspm_version;
4114 struct hdspm_peak_rms_ioctl rms;
4116 switch (cmd) {
4119 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
4120 if (copy_from_user(&rms, (void __user *)arg, sizeof(rms)))
4121 return -EFAULT;
4122 /* maybe there is a chance to memorymap in future so dont touch just copy */
4123 if(copy_to_user_fromio((void __user *)rms.peak,
4124 hdspm->iobase+HDSPM_MADI_peakrmsbase,
4125 sizeof(struct hdspm_peak_rms)) != 0 )
4126 return -EFAULT;
4128 break;
4131 case SNDRV_HDSPM_IOCTL_GET_CONFIG_INFO:
4133 spin_lock_irq(&hdspm->lock);
4134 info.pref_sync_ref =
4135 (unsigned char) hdspm_pref_sync_ref(hdspm);
4136 info.wordclock_sync_check =
4137 (unsigned char) hdspm_wc_sync_check(hdspm);
4139 info.system_sample_rate = hdspm->system_sample_rate;
4140 info.autosync_sample_rate =
4141 hdspm_external_sample_rate(hdspm);
4142 info.system_clock_mode =
4143 (unsigned char) hdspm_system_clock_mode(hdspm);
4144 info.clock_source =
4145 (unsigned char) hdspm_clock_source(hdspm);
4146 info.autosync_ref =
4147 (unsigned char) hdspm_autosync_ref(hdspm);
4148 info.line_out = (unsigned char) hdspm_line_out(hdspm);
4149 info.passthru = 0;
4150 spin_unlock_irq(&hdspm->lock);
4151 if (copy_to_user((void __user *) arg, &info, sizeof(info)))
4152 return -EFAULT;
4153 break;
4155 case SNDRV_HDSPM_IOCTL_GET_VERSION:
4156 hdspm_version.firmware_rev = hdspm->firmware_rev;
4157 if (copy_to_user((void __user *) arg, &hdspm_version,
4158 sizeof(hdspm_version)))
4159 return -EFAULT;
4160 break;
4162 case SNDRV_HDSPM_IOCTL_GET_MIXER:
4163 if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer)))
4164 return -EFAULT;
4165 if (copy_to_user
4166 ((void __user *)mixer.mixer, hdspm->mixer, sizeof(struct hdspm_mixer)))
4167 return -EFAULT;
4168 break;
4170 default:
4171 return -EINVAL;
4173 return 0;
4176 static struct snd_pcm_ops snd_hdspm_playback_ops = {
4177 .open = snd_hdspm_playback_open,
4178 .close = snd_hdspm_playback_release,
4179 .ioctl = snd_hdspm_ioctl,
4180 .hw_params = snd_hdspm_hw_params,
4181 .hw_free = snd_hdspm_hw_free,
4182 .prepare = snd_hdspm_prepare,
4183 .trigger = snd_hdspm_trigger,
4184 .pointer = snd_hdspm_hw_pointer,
4185 .copy = snd_hdspm_playback_copy,
4186 .silence = snd_hdspm_hw_silence,
4187 .page = snd_pcm_sgbuf_ops_page,
4190 static struct snd_pcm_ops snd_hdspm_capture_ops = {
4191 .open = snd_hdspm_capture_open,
4192 .close = snd_hdspm_capture_release,
4193 .ioctl = snd_hdspm_ioctl,
4194 .hw_params = snd_hdspm_hw_params,
4195 .hw_free = snd_hdspm_hw_free,
4196 .prepare = snd_hdspm_prepare,
4197 .trigger = snd_hdspm_trigger,
4198 .pointer = snd_hdspm_hw_pointer,
4199 .copy = snd_hdspm_capture_copy,
4200 .page = snd_pcm_sgbuf_ops_page,
4203 static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
4204 struct hdspm * hdspm)
4206 struct snd_hwdep *hw;
4207 int err;
4209 if ((err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw)) < 0)
4210 return err;
4212 hdspm->hwdep = hw;
4213 hw->private_data = hdspm;
4214 strcpy(hw->name, "HDSPM hwdep interface");
4216 hw->ops.open = snd_hdspm_hwdep_dummy_op;
4217 hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
4218 hw->ops.release = snd_hdspm_hwdep_dummy_op;
4220 return 0;
4224 /*------------------------------------------------------------
4225 memory interface
4226 ------------------------------------------------------------*/
4227 static int __devinit snd_hdspm_preallocate_memory(struct hdspm * hdspm)
4229 int err;
4230 struct snd_pcm *pcm;
4231 size_t wanted;
4233 pcm = hdspm->pcm;
4235 /* wanted = HDSPM_DMA_AREA_BYTES + 4096;*/ /* dont know why, but it works */
4236 wanted = HDSPM_DMA_AREA_BYTES;
4238 if ((err =
4239 snd_pcm_lib_preallocate_pages_for_all(pcm,
4240 SNDRV_DMA_TYPE_DEV_SG,
4241 snd_dma_pci_data(hdspm->pci),
4242 wanted,
4243 wanted)) < 0) {
4244 snd_printdd("Could not preallocate %zd Bytes\n", wanted);
4246 return err;
4247 } else
4248 snd_printdd(" Preallocated %zd Bytes\n", wanted);
4250 return 0;
4253 static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf,
4254 unsigned int reg, int channels)
4256 int i;
4257 for (i = 0; i < (channels * 16); i++)
4258 hdspm_write(hdspm, reg + 4 * i,
4259 snd_pcm_sgbuf_get_addr(sgbuf,
4260 (size_t) 4096 * i));
4263 /* ------------- ALSA Devices ---------------------------- */
4264 static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
4265 struct hdspm * hdspm)
4267 struct snd_pcm *pcm;
4268 int err;
4270 if ((err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm)) < 0)
4271 return err;
4273 hdspm->pcm = pcm;
4274 pcm->private_data = hdspm;
4275 strcpy(pcm->name, hdspm->card_name);
4277 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
4278 &snd_hdspm_playback_ops);
4279 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
4280 &snd_hdspm_capture_ops);
4282 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
4284 if ((err = snd_hdspm_preallocate_memory(hdspm)) < 0)
4285 return err;
4287 return 0;
4290 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
4292 snd_hdspm_flush_midi_input(hdspm, 0);
4293 snd_hdspm_flush_midi_input(hdspm, 1);
4296 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
4297 struct hdspm * hdspm)
4299 int err;
4301 snd_printdd("Create card...\n");
4302 if ((err = snd_hdspm_create_pcm(card, hdspm)) < 0)
4303 return err;
4305 if ((err = snd_hdspm_create_midi(card, hdspm, 0)) < 0)
4306 return err;
4308 if ((err = snd_hdspm_create_midi(card, hdspm, 1)) < 0)
4309 return err;
4311 if ((err = snd_hdspm_create_controls(card, hdspm)) < 0)
4312 return err;
4314 if ((err = snd_hdspm_create_hwdep(card, hdspm)) < 0)
4315 return err;
4317 snd_printdd("proc init...\n");
4318 snd_hdspm_proc_init(hdspm);
4320 hdspm->system_sample_rate = -1;
4321 hdspm->last_external_sample_rate = -1;
4322 hdspm->last_internal_sample_rate = -1;
4323 hdspm->playback_pid = -1;
4324 hdspm->capture_pid = -1;
4325 hdspm->capture_substream = NULL;
4326 hdspm->playback_substream = NULL;
4328 snd_printdd("Set defaults...\n");
4329 if ((err = snd_hdspm_set_defaults(hdspm)) < 0)
4330 return err;
4332 snd_printdd("Update mixer controls...\n");
4333 hdspm_update_simple_mixer_controls(hdspm);
4335 snd_printdd("Initializeing complete ???\n");
4337 if ((err = snd_card_register(card)) < 0) {
4338 snd_printk(KERN_ERR "HDSPM: error registering card\n");
4339 return err;
4342 snd_printdd("... yes now\n");
4344 return 0;
4347 static int __devinit snd_hdspm_create(struct snd_card *card, struct hdspm * hdspm,
4348 int precise_ptr, int enable_monitor)
4350 struct pci_dev *pci = hdspm->pci;
4351 int err;
4352 int i;
4354 unsigned long io_extent;
4356 hdspm->irq = -1;
4357 hdspm->irq_count = 0;
4359 hdspm->midi[0].rmidi = NULL;
4360 hdspm->midi[1].rmidi = NULL;
4361 hdspm->midi[0].input = NULL;
4362 hdspm->midi[1].input = NULL;
4363 hdspm->midi[0].output = NULL;
4364 hdspm->midi[1].output = NULL;
4365 spin_lock_init(&hdspm->midi[0].lock);
4366 spin_lock_init(&hdspm->midi[1].lock);
4367 hdspm->iobase = NULL;
4368 hdspm->control_register = 0;
4369 hdspm->control2_register = 0;
4371 hdspm->playback_buffer = NULL;
4372 hdspm->capture_buffer = NULL;
4374 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
4375 hdspm->playback_mixer_ctls[i] = NULL;
4376 hdspm->mixer = NULL;
4378 hdspm->card = card;
4380 spin_lock_init(&hdspm->lock);
4382 tasklet_init(&hdspm->midi_tasklet,
4383 hdspm_midi_tasklet, (unsigned long) hdspm);
4385 pci_read_config_word(hdspm->pci,
4386 PCI_CLASS_REVISION, &hdspm->firmware_rev);
4388 hdspm->is_aes32 = (hdspm->firmware_rev >= HDSPM_AESREVISION);
4390 strcpy(card->mixername, "Xilinx FPGA");
4391 if (hdspm->is_aes32) {
4392 strcpy(card->driver, "HDSPAES32");
4393 hdspm->card_name = "RME HDSPM AES32";
4394 } else {
4395 strcpy(card->driver, "HDSPM");
4396 hdspm->card_name = "RME HDSPM MADI";
4399 if ((err = pci_enable_device(pci)) < 0)
4400 return err;
4402 pci_set_master(hdspm->pci);
4404 if ((err = pci_request_regions(pci, "hdspm")) < 0)
4405 return err;
4407 hdspm->port = pci_resource_start(pci, 0);
4408 io_extent = pci_resource_len(pci, 0);
4410 snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
4411 hdspm->port, hdspm->port + io_extent - 1);
4414 if ((hdspm->iobase = ioremap_nocache(hdspm->port, io_extent)) == NULL) {
4415 snd_printk(KERN_ERR "HDSPM: unable to remap region 0x%lx-0x%lx\n",
4416 hdspm->port, hdspm->port + io_extent - 1);
4417 return -EBUSY;
4419 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
4420 (unsigned long)hdspm->iobase, hdspm->port,
4421 hdspm->port + io_extent - 1);
4423 if (request_irq(pci->irq, snd_hdspm_interrupt,
4424 IRQF_SHARED, "hdspm", hdspm)) {
4425 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
4426 return -EBUSY;
4429 snd_printdd("use IRQ %d\n", pci->irq);
4431 hdspm->irq = pci->irq;
4432 hdspm->precise_ptr = precise_ptr;
4434 hdspm->monitor_outs = enable_monitor;
4436 snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
4437 sizeof(struct hdspm_mixer));
4438 if ((hdspm->mixer = kmalloc(sizeof(struct hdspm_mixer), GFP_KERNEL))
4439 == NULL) {
4440 snd_printk(KERN_ERR "HDSPM: unable to kmalloc Mixer memory of %d Bytes\n",
4441 (int)sizeof(struct hdspm_mixer));
4442 return err;
4445 hdspm->ss_channels = MADI_SS_CHANNELS;
4446 hdspm->ds_channels = MADI_DS_CHANNELS;
4447 hdspm->qs_channels = MADI_QS_CHANNELS;
4449 snd_printdd("create alsa devices.\n");
4450 if ((err = snd_hdspm_create_alsa_devices(card, hdspm)) < 0)
4451 return err;
4453 snd_hdspm_initialize_midi_flush(hdspm);
4455 return 0;
4458 static int snd_hdspm_free(struct hdspm * hdspm)
4461 if (hdspm->port) {
4463 /* stop th audio, and cancel all interrupts */
4464 hdspm->control_register &=
4465 ~(HDSPM_Start | HDSPM_AudioInterruptEnable
4466 | HDSPM_Midi0InterruptEnable |
4467 HDSPM_Midi1InterruptEnable);
4468 hdspm_write(hdspm, HDSPM_controlRegister,
4469 hdspm->control_register);
4472 if (hdspm->irq >= 0)
4473 free_irq(hdspm->irq, (void *) hdspm);
4476 kfree(hdspm->mixer);
4478 if (hdspm->iobase)
4479 iounmap(hdspm->iobase);
4481 if (hdspm->port)
4482 pci_release_regions(hdspm->pci);
4484 pci_disable_device(hdspm->pci);
4485 return 0;
4488 static void snd_hdspm_card_free(struct snd_card *card)
4490 struct hdspm *hdspm = (struct hdspm *) card->private_data;
4492 if (hdspm)
4493 snd_hdspm_free(hdspm);
4496 static int __devinit snd_hdspm_probe(struct pci_dev *pci,
4497 const struct pci_device_id *pci_id)
4499 static int dev;
4500 struct hdspm *hdspm;
4501 struct snd_card *card;
4502 int err;
4504 if (dev >= SNDRV_CARDS)
4505 return -ENODEV;
4506 if (!enable[dev]) {
4507 dev++;
4508 return -ENOENT;
4511 if (!(card = snd_card_new(index[dev], id[dev],
4512 THIS_MODULE, sizeof(struct hdspm))))
4513 return -ENOMEM;
4515 hdspm = (struct hdspm *) card->private_data;
4516 card->private_free = snd_hdspm_card_free;
4517 hdspm->dev = dev;
4518 hdspm->pci = pci;
4520 snd_card_set_dev(card, &pci->dev);
4522 if ((err =
4523 snd_hdspm_create(card, hdspm, precise_ptr[dev],
4524 enable_monitor[dev])) < 0) {
4525 snd_card_free(card);
4526 return err;
4529 strcpy(card->shortname, "HDSPM MADI");
4530 sprintf(card->longname, "%s at 0x%lx, irq %d", hdspm->card_name,
4531 hdspm->port, hdspm->irq);
4533 if ((err = snd_card_register(card)) < 0) {
4534 snd_card_free(card);
4535 return err;
4538 pci_set_drvdata(pci, card);
4540 dev++;
4541 return 0;
4544 static void __devexit snd_hdspm_remove(struct pci_dev *pci)
4546 snd_card_free(pci_get_drvdata(pci));
4547 pci_set_drvdata(pci, NULL);
4550 static struct pci_driver driver = {
4551 .name = "RME Hammerfall DSP MADI",
4552 .id_table = snd_hdspm_ids,
4553 .probe = snd_hdspm_probe,
4554 .remove = __devexit_p(snd_hdspm_remove),
4558 static int __init alsa_card_hdspm_init(void)
4560 return pci_register_driver(&driver);
4563 static void __exit alsa_card_hdspm_exit(void)
4565 pci_unregister_driver(&driver);
4568 module_init(alsa_card_hdspm_init)
4569 module_exit(alsa_card_hdspm_exit)