allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / sound / isa / sb / emu8000.c
blob658179e86142582a58620d0f5fe4db0ea90605e2
1 /*
2 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3 * and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
4 * Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
6 * Routines for control of EMU8000 chip
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <sound/driver.h>
24 #include <linux/wait.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/ioport.h>
28 #include <linux/delay.h>
29 #include <sound/core.h>
30 #include <sound/emu8000.h>
31 #include <sound/emu8000_reg.h>
32 #include <asm/io.h>
33 #include <asm/uaccess.h>
34 #include <linux/init.h>
35 #include <sound/control.h>
36 #include <sound/initval.h>
39 * emu8000 register controls
43 * The following routines read and write registers on the emu8000. They
44 * should always be called via the EMU8000*READ/WRITE macros and never
45 * directly. The macros handle the port number and command word.
47 /* Write a word */
48 void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
50 unsigned long flags;
51 spin_lock_irqsave(&emu->reg_lock, flags);
52 if (reg != emu->last_reg) {
53 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
54 emu->last_reg = reg;
56 outw((unsigned short)val, port); /* Send data */
57 spin_unlock_irqrestore(&emu->reg_lock, flags);
60 /* Read a word */
61 unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
63 unsigned short res;
64 unsigned long flags;
65 spin_lock_irqsave(&emu->reg_lock, flags);
66 if (reg != emu->last_reg) {
67 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
68 emu->last_reg = reg;
70 res = inw(port); /* Read data */
71 spin_unlock_irqrestore(&emu->reg_lock, flags);
72 return res;
75 /* Write a double word */
76 void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
78 unsigned long flags;
79 spin_lock_irqsave(&emu->reg_lock, flags);
80 if (reg != emu->last_reg) {
81 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
82 emu->last_reg = reg;
84 outw((unsigned short)val, port); /* Send low word of data */
85 outw((unsigned short)(val>>16), port+2); /* Send high word of data */
86 spin_unlock_irqrestore(&emu->reg_lock, flags);
89 /* Read a double word */
90 unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
92 unsigned short low;
93 unsigned int res;
94 unsigned long flags;
95 spin_lock_irqsave(&emu->reg_lock, flags);
96 if (reg != emu->last_reg) {
97 outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
98 emu->last_reg = reg;
100 low = inw(port); /* Read low word of data */
101 res = low + (inw(port+2) << 16);
102 spin_unlock_irqrestore(&emu->reg_lock, flags);
103 return res;
107 * Set up / close a channel to be used for DMA.
109 /*exported*/ void
110 snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
112 unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
113 mode &= EMU8000_RAM_MODE_MASK;
114 if (mode == EMU8000_RAM_CLOSE) {
115 EMU8000_CCCA_WRITE(emu, ch, 0);
116 EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
117 return;
119 EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
120 EMU8000_VTFT_WRITE(emu, ch, 0);
121 EMU8000_CVCF_WRITE(emu, ch, 0);
122 EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
123 EMU8000_CPF_WRITE(emu, ch, 0x40000000);
124 EMU8000_PSST_WRITE(emu, ch, 0);
125 EMU8000_CSL_WRITE(emu, ch, 0);
126 if (mode == EMU8000_RAM_WRITE) /* DMA write */
127 EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
128 else /* DMA read */
129 EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
134 static void __devinit
135 snd_emu8000_read_wait(struct snd_emu8000 *emu)
137 while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
138 schedule_timeout_interruptible(1);
139 if (signal_pending(current))
140 break;
146 static void __devinit
147 snd_emu8000_write_wait(struct snd_emu8000 *emu)
149 while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
150 schedule_timeout_interruptible(1);
151 if (signal_pending(current))
152 break;
157 * detect a card at the given port
159 static int __devinit
160 snd_emu8000_detect(struct snd_emu8000 *emu)
162 /* Initialise */
163 EMU8000_HWCF1_WRITE(emu, 0x0059);
164 EMU8000_HWCF2_WRITE(emu, 0x0020);
165 EMU8000_HWCF3_WRITE(emu, 0x0000);
166 /* Check for a recognisable emu8000 */
168 if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
169 return -ENODEV;
171 if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
172 return -ENODEV;
173 if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
174 return -ENODEV;
176 snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
177 emu->port1);
178 return 0;
183 * intiailize audio channels
185 static void __devinit
186 init_audio(struct snd_emu8000 *emu)
188 int ch;
190 /* turn off envelope engines */
191 for (ch = 0; ch < EMU8000_CHANNELS; ch++)
192 EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
194 /* reset all other parameters to zero */
195 for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
196 EMU8000_ENVVOL_WRITE(emu, ch, 0);
197 EMU8000_ENVVAL_WRITE(emu, ch, 0);
198 EMU8000_DCYSUS_WRITE(emu, ch, 0);
199 EMU8000_ATKHLDV_WRITE(emu, ch, 0);
200 EMU8000_LFO1VAL_WRITE(emu, ch, 0);
201 EMU8000_ATKHLD_WRITE(emu, ch, 0);
202 EMU8000_LFO2VAL_WRITE(emu, ch, 0);
203 EMU8000_IP_WRITE(emu, ch, 0);
204 EMU8000_IFATN_WRITE(emu, ch, 0);
205 EMU8000_PEFE_WRITE(emu, ch, 0);
206 EMU8000_FMMOD_WRITE(emu, ch, 0);
207 EMU8000_TREMFRQ_WRITE(emu, ch, 0);
208 EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
209 EMU8000_PTRX_WRITE(emu, ch, 0);
210 EMU8000_VTFT_WRITE(emu, ch, 0);
211 EMU8000_PSST_WRITE(emu, ch, 0);
212 EMU8000_CSL_WRITE(emu, ch, 0);
213 EMU8000_CCCA_WRITE(emu, ch, 0);
216 for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
217 EMU8000_CPF_WRITE(emu, ch, 0);
218 EMU8000_CVCF_WRITE(emu, ch, 0);
224 * initialize DMA address
226 static void __devinit
227 init_dma(struct snd_emu8000 *emu)
229 EMU8000_SMALR_WRITE(emu, 0);
230 EMU8000_SMARR_WRITE(emu, 0);
231 EMU8000_SMALW_WRITE(emu, 0);
232 EMU8000_SMARW_WRITE(emu, 0);
236 * initialization arrays; from ADIP
238 static unsigned short init1[128] /*__devinitdata*/ = {
239 0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
240 0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
241 0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
242 0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
244 0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
245 0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
246 0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
247 0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
249 0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
250 0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
251 0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
252 0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
254 0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
255 0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
256 0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
257 0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
260 static unsigned short init2[128] /*__devinitdata*/ = {
261 0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
262 0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
263 0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
264 0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
266 0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
267 0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
268 0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
269 0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
271 0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
272 0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
273 0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
274 0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
276 0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
277 0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
278 0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
279 0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
282 static unsigned short init3[128] /*__devinitdata*/ = {
283 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
284 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
285 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
286 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
288 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
289 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
290 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
291 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
293 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
294 0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
295 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
296 0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
298 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
299 0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
300 0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
301 0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
304 static unsigned short init4[128] /*__devinitdata*/ = {
305 0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
306 0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
307 0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
308 0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
310 0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
311 0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
312 0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
313 0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
315 0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
316 0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
317 0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
318 0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
320 0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
321 0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
322 0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
323 0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
326 /* send an initialization array
327 * Taken from the oss driver, not obvious from the doc how this
328 * is meant to work
330 static void __devinit
331 send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
333 int i;
334 unsigned short *p;
336 p = data;
337 for (i = 0; i < size; i++, p++)
338 EMU8000_INIT1_WRITE(emu, i, *p);
339 for (i = 0; i < size; i++, p++)
340 EMU8000_INIT2_WRITE(emu, i, *p);
341 for (i = 0; i < size; i++, p++)
342 EMU8000_INIT3_WRITE(emu, i, *p);
343 for (i = 0; i < size; i++, p++)
344 EMU8000_INIT4_WRITE(emu, i, *p);
349 * Send initialization arrays to start up, this just follows the
350 * initialisation sequence in the adip.
352 static void __devinit
353 init_arrays(struct snd_emu8000 *emu)
355 send_array(emu, init1, ARRAY_SIZE(init1)/4);
357 msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
358 send_array(emu, init2, ARRAY_SIZE(init2)/4);
359 send_array(emu, init3, ARRAY_SIZE(init3)/4);
361 EMU8000_HWCF4_WRITE(emu, 0);
362 EMU8000_HWCF5_WRITE(emu, 0x83);
363 EMU8000_HWCF6_WRITE(emu, 0x8000);
365 send_array(emu, init4, ARRAY_SIZE(init4)/4);
369 #define UNIQUE_ID1 0xa5b9
370 #define UNIQUE_ID2 0x9d53
373 * Size the onboard memory.
374 * This is written so as not to need arbitary delays after the write. It
375 * seems that the only way to do this is to use the one channel and keep
376 * reallocating between read and write.
378 static void __devinit
379 size_dram(struct snd_emu8000 *emu)
381 int i, size;
383 if (emu->dram_checked)
384 return;
386 size = 0;
388 /* write out a magic number */
389 snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
390 snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
391 EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
392 EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
393 snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
395 while (size < EMU8000_MAX_DRAM) {
397 size += 512 * 1024; /* increment 512kbytes */
399 /* Write a unique data on the test address.
400 * if the address is out of range, the data is written on
401 * 0x200000(=EMU8000_DRAM_OFFSET). Then the id word is
402 * changed by this data.
404 /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
405 EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
406 EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
407 snd_emu8000_write_wait(emu);
410 * read the data on the just written DRAM address
411 * if not the same then we have reached the end of ram.
413 /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
414 EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
415 /*snd_emu8000_read_wait(emu);*/
416 EMU8000_SMLD_READ(emu); /* discard stale data */
417 if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
418 break; /* we must have wrapped around */
420 snd_emu8000_read_wait(emu);
423 * If it is the same it could be that the address just
424 * wraps back to the beginning; so check to see if the
425 * initial value has been overwritten.
427 EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
428 EMU8000_SMLD_READ(emu); /* discard stale data */
429 if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
430 break; /* we must have wrapped around */
431 snd_emu8000_read_wait(emu);
434 /* wait until FULL bit in SMAxW register is false */
435 for (i = 0; i < 10000; i++) {
436 if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
437 break;
438 schedule_timeout_interruptible(1);
439 if (signal_pending(current))
440 break;
442 snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
443 snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
445 snd_printdd("EMU8000 [0x%lx]: %d Kb on-board memory detected\n",
446 emu->port1, size/1024);
448 emu->mem_size = size;
449 emu->dram_checked = 1;
454 * Initiailise the FM section. You have to do this to use sample RAM
455 * and therefore lose 2 voices.
457 /*exported*/ void
458 snd_emu8000_init_fm(struct snd_emu8000 *emu)
460 unsigned long flags;
462 /* Initialize the last two channels for DRAM refresh and producing
463 the reverb and chorus effects for Yamaha OPL-3 synthesizer */
465 /* 31: FM left channel, 0xffffe0-0xffffe8 */
466 EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
467 EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
468 EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
469 EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
470 EMU8000_CPF_WRITE(emu, 30, 0);
471 EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
473 /* 32: FM right channel, 0xfffff0-0xfffff8 */
474 EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
475 EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
476 EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
477 EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
478 EMU8000_CPF_WRITE(emu, 31, 0x8000);
479 EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
481 snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
483 spin_lock_irqsave(&emu->reg_lock, flags);
484 while (!(inw(EMU8000_PTR(emu)) & 0x1000))
486 while ((inw(EMU8000_PTR(emu)) & 0x1000))
488 spin_unlock_irqrestore(&emu->reg_lock, flags);
489 snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
490 /* this is really odd part.. */
491 outb(0x3C, EMU8000_PTR(emu));
492 outb(0, EMU8000_DATA1(emu));
494 /* skew volume & cutoff */
495 EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
496 EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
501 * The main initialization routine.
503 static void __devinit
504 snd_emu8000_init_hw(struct snd_emu8000 *emu)
506 int i;
508 emu->last_reg = 0xffff; /* reset the last register index */
510 /* initialize hardware configuration */
511 EMU8000_HWCF1_WRITE(emu, 0x0059);
512 EMU8000_HWCF2_WRITE(emu, 0x0020);
514 /* disable audio; this seems to reduce a clicking noise a bit.. */
515 EMU8000_HWCF3_WRITE(emu, 0);
517 /* initialize audio channels */
518 init_audio(emu);
520 /* initialize DMA */
521 init_dma(emu);
523 /* initialize init arrays */
524 init_arrays(emu);
527 * Initialize the FM section of the AWE32, this is needed
528 * for DRAM refresh as well
530 snd_emu8000_init_fm(emu);
532 /* terminate all voices */
533 for (i = 0; i < EMU8000_DRAM_VOICES; i++)
534 EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
536 /* check DRAM memory size */
537 size_dram(emu);
539 /* enable audio */
540 EMU8000_HWCF3_WRITE(emu, 0x4);
542 /* set equzlier, chorus and reverb modes */
543 snd_emu8000_update_equalizer(emu);
544 snd_emu8000_update_chorus_mode(emu);
545 snd_emu8000_update_reverb_mode(emu);
549 /*----------------------------------------------------------------
550 * Bass/Treble Equalizer
551 *----------------------------------------------------------------*/
553 static unsigned short bass_parm[12][3] = {
554 {0xD26A, 0xD36A, 0x0000}, /* -12 dB */
555 {0xD25B, 0xD35B, 0x0000}, /* -8 */
556 {0xD24C, 0xD34C, 0x0000}, /* -6 */
557 {0xD23D, 0xD33D, 0x0000}, /* -4 */
558 {0xD21F, 0xD31F, 0x0000}, /* -2 */
559 {0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
560 {0xC219, 0xC319, 0x0001}, /* +2 */
561 {0xC22A, 0xC32A, 0x0001}, /* +4 */
562 {0xC24C, 0xC34C, 0x0001}, /* +6 */
563 {0xC26E, 0xC36E, 0x0001}, /* +8 */
564 {0xC248, 0xC384, 0x0002}, /* +10 */
565 {0xC26A, 0xC36A, 0x0002}, /* +12 dB */
568 static unsigned short treble_parm[12][9] = {
569 {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
570 {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
571 {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
572 {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
573 {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
574 {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
575 {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
576 {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
577 {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
578 {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
579 {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
580 {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002} /* +12 dB */
585 * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
587 /*exported*/ void
588 snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
590 unsigned short w;
591 int bass = emu->bass_level;
592 int treble = emu->treble_level;
594 if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
595 return;
596 EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
597 EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
598 EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
599 EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
600 EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
601 EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
602 EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
603 EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
604 EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
605 EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
606 w = bass_parm[bass][2] + treble_parm[treble][8];
607 EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
608 EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
612 /*----------------------------------------------------------------
613 * Chorus mode control
614 *----------------------------------------------------------------*/
617 * chorus mode parameters
619 #define SNDRV_EMU8000_CHORUS_1 0
620 #define SNDRV_EMU8000_CHORUS_2 1
621 #define SNDRV_EMU8000_CHORUS_3 2
622 #define SNDRV_EMU8000_CHORUS_4 3
623 #define SNDRV_EMU8000_CHORUS_FEEDBACK 4
624 #define SNDRV_EMU8000_CHORUS_FLANGER 5
625 #define SNDRV_EMU8000_CHORUS_SHORTDELAY 6
626 #define SNDRV_EMU8000_CHORUS_SHORTDELAY2 7
627 #define SNDRV_EMU8000_CHORUS_PREDEFINED 8
628 /* user can define chorus modes up to 32 */
629 #define SNDRV_EMU8000_CHORUS_NUMBERS 32
631 struct soundfont_chorus_fx {
632 unsigned short feedback; /* feedback level (0xE600-0xE6FF) */
633 unsigned short delay_offset; /* delay (0-0x0DA3) [1/44100 sec] */
634 unsigned short lfo_depth; /* LFO depth (0xBC00-0xBCFF) */
635 unsigned int delay; /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
636 unsigned int lfo_freq; /* LFO freq LFO freq (0-0xFFFFFFFF) */
639 /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
640 static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
641 static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
642 {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
643 {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
644 {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
645 {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
646 {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
647 {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
648 {0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
649 {0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
652 /*exported*/ int
653 snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
655 struct soundfont_chorus_fx rec;
656 if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
657 snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
658 return -EINVAL;
660 if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
661 return -EFAULT;
662 chorus_parm[mode] = rec;
663 chorus_defined[mode] = 1;
664 return 0;
667 /*exported*/ void
668 snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
670 int effect = emu->chorus_mode;
671 if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
672 (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
673 return;
674 EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
675 EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
676 EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
677 EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
678 EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
679 EMU8000_HWCF6_WRITE(emu, 0x8000);
680 EMU8000_HWCF7_WRITE(emu, 0x0000);
683 /*----------------------------------------------------------------
684 * Reverb mode control
685 *----------------------------------------------------------------*/
688 * reverb mode parameters
690 #define SNDRV_EMU8000_REVERB_ROOM1 0
691 #define SNDRV_EMU8000_REVERB_ROOM2 1
692 #define SNDRV_EMU8000_REVERB_ROOM3 2
693 #define SNDRV_EMU8000_REVERB_HALL1 3
694 #define SNDRV_EMU8000_REVERB_HALL2 4
695 #define SNDRV_EMU8000_REVERB_PLATE 5
696 #define SNDRV_EMU8000_REVERB_DELAY 6
697 #define SNDRV_EMU8000_REVERB_PANNINGDELAY 7
698 #define SNDRV_EMU8000_REVERB_PREDEFINED 8
699 /* user can define reverb modes up to 32 */
700 #define SNDRV_EMU8000_REVERB_NUMBERS 32
702 struct soundfont_reverb_fx {
703 unsigned short parms[28];
706 /* reverb mode settings; write the following 28 data of 16 bit length
707 * on the corresponding ports in the reverb_cmds array
709 static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
710 static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
711 {{ /* room 1 */
712 0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
713 0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
714 0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
715 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
717 {{ /* room 2 */
718 0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
719 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
720 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
721 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
723 {{ /* room 3 */
724 0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
725 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
726 0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
727 0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
729 {{ /* hall 1 */
730 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
731 0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
732 0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
733 0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
735 {{ /* hall 2 */
736 0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
737 0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
738 0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
739 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
741 {{ /* plate */
742 0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
743 0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
744 0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
745 0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
747 {{ /* delay */
748 0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
749 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
750 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
751 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
753 {{ /* panning delay */
754 0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
755 0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
756 0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
757 0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
761 enum { DATA1, DATA2 };
762 #define AWE_INIT1(c) EMU8000_CMD(2,c), DATA1
763 #define AWE_INIT2(c) EMU8000_CMD(2,c), DATA2
764 #define AWE_INIT3(c) EMU8000_CMD(3,c), DATA1
765 #define AWE_INIT4(c) EMU8000_CMD(3,c), DATA2
767 static struct reverb_cmd_pair {
768 unsigned short cmd, port;
769 } reverb_cmds[28] = {
770 {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
771 {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
772 {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
773 {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
774 {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
775 {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
776 {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
779 /*exported*/ int
780 snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
782 struct soundfont_reverb_fx rec;
784 if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
785 snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
786 return -EINVAL;
788 if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
789 return -EFAULT;
790 reverb_parm[mode] = rec;
791 reverb_defined[mode] = 1;
792 return 0;
795 /*exported*/ void
796 snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
798 int effect = emu->reverb_mode;
799 int i;
801 if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
802 (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
803 return;
804 for (i = 0; i < 28; i++) {
805 int port;
806 if (reverb_cmds[i].port == DATA1)
807 port = EMU8000_DATA1(emu);
808 else
809 port = EMU8000_DATA2(emu);
810 snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
815 /*----------------------------------------------------------------
816 * mixer interface
817 *----------------------------------------------------------------*/
820 * bass/treble
822 static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
824 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
825 uinfo->count = 1;
826 uinfo->value.integer.min = 0;
827 uinfo->value.integer.max = 11;
828 return 0;
831 static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
833 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
835 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
836 return 0;
839 static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
841 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
842 unsigned long flags;
843 int change;
844 unsigned short val1;
846 val1 = ucontrol->value.integer.value[0] % 12;
847 spin_lock_irqsave(&emu->control_lock, flags);
848 if (kcontrol->private_value) {
849 change = val1 != emu->treble_level;
850 emu->treble_level = val1;
851 } else {
852 change = val1 != emu->bass_level;
853 emu->bass_level = val1;
855 spin_unlock_irqrestore(&emu->control_lock, flags);
856 snd_emu8000_update_equalizer(emu);
857 return change;
860 static struct snd_kcontrol_new mixer_bass_control =
862 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
863 .name = "Synth Tone Control - Bass",
864 .info = mixer_bass_treble_info,
865 .get = mixer_bass_treble_get,
866 .put = mixer_bass_treble_put,
867 .private_value = 0,
870 static struct snd_kcontrol_new mixer_treble_control =
872 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
873 .name = "Synth Tone Control - Treble",
874 .info = mixer_bass_treble_info,
875 .get = mixer_bass_treble_get,
876 .put = mixer_bass_treble_put,
877 .private_value = 1,
881 * chorus/reverb mode
883 static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
885 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
886 uinfo->count = 1;
887 uinfo->value.integer.min = 0;
888 uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
889 return 0;
892 static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
894 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
896 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
897 return 0;
900 static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
902 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
903 unsigned long flags;
904 int change;
905 unsigned short val1;
907 spin_lock_irqsave(&emu->control_lock, flags);
908 if (kcontrol->private_value) {
909 val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
910 change = val1 != emu->chorus_mode;
911 emu->chorus_mode = val1;
912 } else {
913 val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
914 change = val1 != emu->reverb_mode;
915 emu->reverb_mode = val1;
917 spin_unlock_irqrestore(&emu->control_lock, flags);
918 if (change) {
919 if (kcontrol->private_value)
920 snd_emu8000_update_chorus_mode(emu);
921 else
922 snd_emu8000_update_reverb_mode(emu);
924 return change;
927 static struct snd_kcontrol_new mixer_chorus_mode_control =
929 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
930 .name = "Chorus Mode",
931 .info = mixer_chorus_reverb_info,
932 .get = mixer_chorus_reverb_get,
933 .put = mixer_chorus_reverb_put,
934 .private_value = 1,
937 static struct snd_kcontrol_new mixer_reverb_mode_control =
939 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
940 .name = "Reverb Mode",
941 .info = mixer_chorus_reverb_info,
942 .get = mixer_chorus_reverb_get,
943 .put = mixer_chorus_reverb_put,
944 .private_value = 0,
948 * FM OPL3 chorus/reverb depth
950 static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
952 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
953 uinfo->count = 1;
954 uinfo->value.integer.min = 0;
955 uinfo->value.integer.max = 255;
956 return 0;
959 static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
961 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
963 ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
964 return 0;
967 static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
969 struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
970 unsigned long flags;
971 int change;
972 unsigned short val1;
974 val1 = ucontrol->value.integer.value[0] % 256;
975 spin_lock_irqsave(&emu->control_lock, flags);
976 if (kcontrol->private_value) {
977 change = val1 != emu->fm_chorus_depth;
978 emu->fm_chorus_depth = val1;
979 } else {
980 change = val1 != emu->fm_reverb_depth;
981 emu->fm_reverb_depth = val1;
983 spin_unlock_irqrestore(&emu->control_lock, flags);
984 if (change)
985 snd_emu8000_init_fm(emu);
986 return change;
989 static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
991 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
992 .name = "FM Chorus Depth",
993 .info = mixer_fm_depth_info,
994 .get = mixer_fm_depth_get,
995 .put = mixer_fm_depth_put,
996 .private_value = 1,
999 static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
1001 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1002 .name = "FM Reverb Depth",
1003 .info = mixer_fm_depth_info,
1004 .get = mixer_fm_depth_get,
1005 .put = mixer_fm_depth_put,
1006 .private_value = 0,
1010 static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1011 &mixer_bass_control,
1012 &mixer_treble_control,
1013 &mixer_chorus_mode_control,
1014 &mixer_reverb_mode_control,
1015 &mixer_fm_chorus_depth_control,
1016 &mixer_fm_reverb_depth_control,
1020 * create and attach mixer elements for WaveTable treble/bass controls
1022 static int __devinit
1023 snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1025 int i, err = 0;
1027 snd_assert(emu != NULL && card != NULL, return -EINVAL);
1029 spin_lock_init(&emu->control_lock);
1031 memset(emu->controls, 0, sizeof(emu->controls));
1032 for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1033 if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
1034 goto __error;
1036 return 0;
1038 __error:
1039 for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1040 down_write(&card->controls_rwsem);
1041 if (emu->controls[i])
1042 snd_ctl_remove(card, emu->controls[i]);
1043 up_write(&card->controls_rwsem);
1045 return err;
1050 * free resources
1052 static int snd_emu8000_free(struct snd_emu8000 *hw)
1054 release_and_free_resource(hw->res_port1);
1055 release_and_free_resource(hw->res_port2);
1056 release_and_free_resource(hw->res_port3);
1057 kfree(hw);
1058 return 0;
1063 static int snd_emu8000_dev_free(struct snd_device *device)
1065 struct snd_emu8000 *hw = device->device_data;
1066 return snd_emu8000_free(hw);
1070 * initialize and register emu8000 synth device.
1072 int __devinit
1073 snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1074 struct snd_seq_device **awe_ret)
1076 struct snd_seq_device *awe;
1077 struct snd_emu8000 *hw;
1078 int err;
1079 static struct snd_device_ops ops = {
1080 .dev_free = snd_emu8000_dev_free,
1083 if (awe_ret)
1084 *awe_ret = NULL;
1086 if (seq_ports <= 0)
1087 return 0;
1089 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
1090 if (hw == NULL)
1091 return -ENOMEM;
1092 spin_lock_init(&hw->reg_lock);
1093 hw->index = index;
1094 hw->port1 = port;
1095 hw->port2 = port + 0x400;
1096 hw->port3 = port + 0x800;
1097 if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
1098 !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
1099 !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
1100 snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
1101 snd_emu8000_free(hw);
1102 return -EBUSY;
1104 hw->mem_size = 0;
1105 hw->card = card;
1106 hw->seq_ports = seq_ports;
1107 hw->bass_level = 5;
1108 hw->treble_level = 9;
1109 hw->chorus_mode = 2;
1110 hw->reverb_mode = 4;
1111 hw->fm_chorus_depth = 0;
1112 hw->fm_reverb_depth = 0;
1114 if (snd_emu8000_detect(hw) < 0) {
1115 snd_emu8000_free(hw);
1116 return -ENODEV;
1119 snd_emu8000_init_hw(hw);
1120 if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
1121 snd_emu8000_free(hw);
1122 return err;
1125 if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
1126 snd_emu8000_free(hw);
1127 return err;
1129 #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
1130 if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1131 sizeof(struct snd_emu8000*), &awe) >= 0) {
1132 strcpy(awe->name, "EMU-8000");
1133 *(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1135 #else
1136 awe = NULL;
1137 #endif
1138 if (awe_ret)
1139 *awe_ret = awe;
1141 return 0;
1146 * exported stuff
1149 EXPORT_SYMBOL(snd_emu8000_poke);
1150 EXPORT_SYMBOL(snd_emu8000_peek);
1151 EXPORT_SYMBOL(snd_emu8000_poke_dw);
1152 EXPORT_SYMBOL(snd_emu8000_peek_dw);
1153 EXPORT_SYMBOL(snd_emu8000_dma_chan);
1154 EXPORT_SYMBOL(snd_emu8000_init_fm);
1155 EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1156 EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1157 EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1158 EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1159 EXPORT_SYMBOL(snd_emu8000_update_equalizer);