allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / net / sunrpc / auth_gss / auth_gss.c
blob17d460f85f0efdf73370bfa42fa397ca76efd40c
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
4 * RPCSEC_GSS client authentication.
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 * $Id$
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/slab.h>
45 #include <linux/sched.h>
46 #include <linux/pagemap.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/auth.h>
49 #include <linux/sunrpc/auth_gss.h>
50 #include <linux/sunrpc/svcauth_gss.h>
51 #include <linux/sunrpc/gss_err.h>
52 #include <linux/workqueue.h>
53 #include <linux/sunrpc/rpc_pipe_fs.h>
54 #include <linux/sunrpc/gss_api.h>
55 #include <asm/uaccess.h>
57 static const struct rpc_authops authgss_ops;
59 static const struct rpc_credops gss_credops;
60 static const struct rpc_credops gss_nullops;
62 #ifdef RPC_DEBUG
63 # define RPCDBG_FACILITY RPCDBG_AUTH
64 #endif
66 #define NFS_NGROUPS 16
68 #define GSS_CRED_SLACK 1024 /* XXX: unused */
69 /* length of a krb5 verifier (48), plus data added before arguments when
70 * using integrity (two 4-byte integers): */
71 #define GSS_VERF_SLACK 100
73 /* XXX this define must match the gssd define
74 * as it is passed to gssd to signal the use of
75 * machine creds should be part of the shared rpc interface */
77 #define CA_RUN_AS_MACHINE 0x00000200
79 /* dump the buffer in `emacs-hexl' style */
80 #define isprint(c) ((c > 0x1f) && (c < 0x7f))
82 struct gss_auth {
83 struct kref kref;
84 struct rpc_auth rpc_auth;
85 struct gss_api_mech *mech;
86 enum rpc_gss_svc service;
87 struct rpc_clnt *client;
88 struct dentry *dentry;
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops;
94 static inline struct gss_cl_ctx *
95 gss_get_ctx(struct gss_cl_ctx *ctx)
97 atomic_inc(&ctx->count);
98 return ctx;
101 static inline void
102 gss_put_ctx(struct gss_cl_ctx *ctx)
104 if (atomic_dec_and_test(&ctx->count))
105 gss_free_ctx(ctx);
108 /* gss_cred_set_ctx:
109 * called by gss_upcall_callback and gss_create_upcall in order
110 * to set the gss context. The actual exchange of an old context
111 * and a new one is protected by the inode->i_lock.
113 static void
114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
116 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
117 struct gss_cl_ctx *old;
119 old = gss_cred->gc_ctx;
120 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
121 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
122 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
123 if (old)
124 gss_put_ctx(old);
127 static int
128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred)
130 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
131 int res = 0;
133 rcu_read_lock();
134 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx)
135 res = 1;
136 rcu_read_unlock();
137 return res;
140 static const void *
141 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
143 const void *q = (const void *)((const char *)p + len);
144 if (unlikely(q > end || q < p))
145 return ERR_PTR(-EFAULT);
146 memcpy(res, p, len);
147 return q;
150 static inline const void *
151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
153 const void *q;
154 unsigned int len;
156 p = simple_get_bytes(p, end, &len, sizeof(len));
157 if (IS_ERR(p))
158 return p;
159 q = (const void *)((const char *)p + len);
160 if (unlikely(q > end || q < p))
161 return ERR_PTR(-EFAULT);
162 dest->data = kmemdup(p, len, GFP_KERNEL);
163 if (unlikely(dest->data == NULL))
164 return ERR_PTR(-ENOMEM);
165 dest->len = len;
166 return q;
169 static struct gss_cl_ctx *
170 gss_cred_get_ctx(struct rpc_cred *cred)
172 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
173 struct gss_cl_ctx *ctx = NULL;
175 rcu_read_lock();
176 if (gss_cred->gc_ctx)
177 ctx = gss_get_ctx(gss_cred->gc_ctx);
178 rcu_read_unlock();
179 return ctx;
182 static struct gss_cl_ctx *
183 gss_alloc_context(void)
185 struct gss_cl_ctx *ctx;
187 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
188 if (ctx != NULL) {
189 ctx->gc_proc = RPC_GSS_PROC_DATA;
190 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
191 spin_lock_init(&ctx->gc_seq_lock);
192 atomic_set(&ctx->count,1);
194 return ctx;
197 #define GSSD_MIN_TIMEOUT (60 * 60)
198 static const void *
199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
201 const void *q;
202 unsigned int seclen;
203 unsigned int timeout;
204 u32 window_size;
205 int ret;
207 /* First unsigned int gives the lifetime (in seconds) of the cred */
208 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
209 if (IS_ERR(p))
210 goto err;
211 if (timeout == 0)
212 timeout = GSSD_MIN_TIMEOUT;
213 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
214 /* Sequence number window. Determines the maximum number of simultaneous requests */
215 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
216 if (IS_ERR(p))
217 goto err;
218 ctx->gc_win = window_size;
219 /* gssd signals an error by passing ctx->gc_win = 0: */
220 if (ctx->gc_win == 0) {
221 /* in which case, p points to an error code which we ignore */
222 p = ERR_PTR(-EACCES);
223 goto err;
225 /* copy the opaque wire context */
226 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
227 if (IS_ERR(p))
228 goto err;
229 /* import the opaque security context */
230 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
231 if (IS_ERR(p))
232 goto err;
233 q = (const void *)((const char *)p + seclen);
234 if (unlikely(q > end || q < p)) {
235 p = ERR_PTR(-EFAULT);
236 goto err;
238 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
239 if (ret < 0) {
240 p = ERR_PTR(ret);
241 goto err;
243 return q;
244 err:
245 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
246 return p;
250 struct gss_upcall_msg {
251 atomic_t count;
252 uid_t uid;
253 struct rpc_pipe_msg msg;
254 struct list_head list;
255 struct gss_auth *auth;
256 struct rpc_wait_queue rpc_waitqueue;
257 wait_queue_head_t waitqueue;
258 struct gss_cl_ctx *ctx;
261 static void
262 gss_release_msg(struct gss_upcall_msg *gss_msg)
264 if (!atomic_dec_and_test(&gss_msg->count))
265 return;
266 BUG_ON(!list_empty(&gss_msg->list));
267 if (gss_msg->ctx != NULL)
268 gss_put_ctx(gss_msg->ctx);
269 kfree(gss_msg);
272 static struct gss_upcall_msg *
273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
275 struct gss_upcall_msg *pos;
276 list_for_each_entry(pos, &rpci->in_downcall, list) {
277 if (pos->uid != uid)
278 continue;
279 atomic_inc(&pos->count);
280 dprintk("RPC: gss_find_upcall found msg %p\n", pos);
281 return pos;
283 dprintk("RPC: gss_find_upcall found nothing\n");
284 return NULL;
287 /* Try to add a upcall to the pipefs queue.
288 * If an upcall owned by our uid already exists, then we return a reference
289 * to that upcall instead of adding the new upcall.
291 static inline struct gss_upcall_msg *
292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
294 struct inode *inode = gss_auth->dentry->d_inode;
295 struct rpc_inode *rpci = RPC_I(inode);
296 struct gss_upcall_msg *old;
298 spin_lock(&inode->i_lock);
299 old = __gss_find_upcall(rpci, gss_msg->uid);
300 if (old == NULL) {
301 atomic_inc(&gss_msg->count);
302 list_add(&gss_msg->list, &rpci->in_downcall);
303 } else
304 gss_msg = old;
305 spin_unlock(&inode->i_lock);
306 return gss_msg;
309 static void
310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
312 list_del_init(&gss_msg->list);
313 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
314 wake_up_all(&gss_msg->waitqueue);
315 atomic_dec(&gss_msg->count);
318 static void
319 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
321 struct gss_auth *gss_auth = gss_msg->auth;
322 struct inode *inode = gss_auth->dentry->d_inode;
324 if (list_empty(&gss_msg->list))
325 return;
326 spin_lock(&inode->i_lock);
327 if (!list_empty(&gss_msg->list))
328 __gss_unhash_msg(gss_msg);
329 spin_unlock(&inode->i_lock);
332 static void
333 gss_upcall_callback(struct rpc_task *task)
335 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
336 struct gss_cred, gc_base);
337 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
338 struct inode *inode = gss_msg->auth->dentry->d_inode;
340 spin_lock(&inode->i_lock);
341 if (gss_msg->ctx)
342 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx));
343 else
344 task->tk_status = gss_msg->msg.errno;
345 gss_cred->gc_upcall = NULL;
346 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
347 spin_unlock(&inode->i_lock);
348 gss_release_msg(gss_msg);
351 static inline struct gss_upcall_msg *
352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid)
354 struct gss_upcall_msg *gss_msg;
356 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
357 if (gss_msg != NULL) {
358 INIT_LIST_HEAD(&gss_msg->list);
359 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
360 init_waitqueue_head(&gss_msg->waitqueue);
361 atomic_set(&gss_msg->count, 1);
362 gss_msg->msg.data = &gss_msg->uid;
363 gss_msg->msg.len = sizeof(gss_msg->uid);
364 gss_msg->uid = uid;
365 gss_msg->auth = gss_auth;
367 return gss_msg;
370 static struct gss_upcall_msg *
371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
373 struct gss_upcall_msg *gss_new, *gss_msg;
375 gss_new = gss_alloc_msg(gss_auth, cred->cr_uid);
376 if (gss_new == NULL)
377 return ERR_PTR(-ENOMEM);
378 gss_msg = gss_add_msg(gss_auth, gss_new);
379 if (gss_msg == gss_new) {
380 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg);
381 if (res) {
382 gss_unhash_msg(gss_new);
383 gss_msg = ERR_PTR(res);
385 } else
386 gss_release_msg(gss_new);
387 return gss_msg;
390 static inline int
391 gss_refresh_upcall(struct rpc_task *task)
393 struct rpc_cred *cred = task->tk_msg.rpc_cred;
394 struct gss_auth *gss_auth = container_of(cred->cr_auth,
395 struct gss_auth, rpc_auth);
396 struct gss_cred *gss_cred = container_of(cred,
397 struct gss_cred, gc_base);
398 struct gss_upcall_msg *gss_msg;
399 struct inode *inode = gss_auth->dentry->d_inode;
400 int err = 0;
402 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
403 cred->cr_uid);
404 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
405 if (IS_ERR(gss_msg)) {
406 err = PTR_ERR(gss_msg);
407 goto out;
409 spin_lock(&inode->i_lock);
410 if (gss_cred->gc_upcall != NULL)
411 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL);
412 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
413 task->tk_timeout = 0;
414 gss_cred->gc_upcall = gss_msg;
415 /* gss_upcall_callback will release the reference to gss_upcall_msg */
416 atomic_inc(&gss_msg->count);
417 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL);
418 } else
419 err = gss_msg->msg.errno;
420 spin_unlock(&inode->i_lock);
421 gss_release_msg(gss_msg);
422 out:
423 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
424 task->tk_pid, cred->cr_uid, err);
425 return err;
428 static inline int
429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
431 struct inode *inode = gss_auth->dentry->d_inode;
432 struct rpc_cred *cred = &gss_cred->gc_base;
433 struct gss_upcall_msg *gss_msg;
434 DEFINE_WAIT(wait);
435 int err = 0;
437 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
438 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
439 if (IS_ERR(gss_msg)) {
440 err = PTR_ERR(gss_msg);
441 goto out;
443 for (;;) {
444 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
445 spin_lock(&inode->i_lock);
446 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
447 break;
449 spin_unlock(&inode->i_lock);
450 if (signalled()) {
451 err = -ERESTARTSYS;
452 goto out_intr;
454 schedule();
456 if (gss_msg->ctx)
457 gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx));
458 else
459 err = gss_msg->msg.errno;
460 spin_unlock(&inode->i_lock);
461 out_intr:
462 finish_wait(&gss_msg->waitqueue, &wait);
463 gss_release_msg(gss_msg);
464 out:
465 dprintk("RPC: gss_create_upcall for uid %u result %d\n",
466 cred->cr_uid, err);
467 return err;
470 static ssize_t
471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
472 char __user *dst, size_t buflen)
474 char *data = (char *)msg->data + msg->copied;
475 ssize_t mlen = msg->len;
476 ssize_t left;
478 if (mlen > buflen)
479 mlen = buflen;
480 left = copy_to_user(dst, data, mlen);
481 if (left < 0) {
482 msg->errno = left;
483 return left;
485 mlen -= left;
486 msg->copied += mlen;
487 msg->errno = 0;
488 return mlen;
491 #define MSG_BUF_MAXSIZE 1024
493 static ssize_t
494 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
496 const void *p, *end;
497 void *buf;
498 struct rpc_clnt *clnt;
499 struct gss_upcall_msg *gss_msg;
500 struct inode *inode = filp->f_path.dentry->d_inode;
501 struct gss_cl_ctx *ctx;
502 uid_t uid;
503 ssize_t err = -EFBIG;
505 if (mlen > MSG_BUF_MAXSIZE)
506 goto out;
507 err = -ENOMEM;
508 buf = kmalloc(mlen, GFP_KERNEL);
509 if (!buf)
510 goto out;
512 clnt = RPC_I(inode)->private;
513 err = -EFAULT;
514 if (copy_from_user(buf, src, mlen))
515 goto err;
517 end = (const void *)((char *)buf + mlen);
518 p = simple_get_bytes(buf, end, &uid, sizeof(uid));
519 if (IS_ERR(p)) {
520 err = PTR_ERR(p);
521 goto err;
524 err = -ENOMEM;
525 ctx = gss_alloc_context();
526 if (ctx == NULL)
527 goto err;
529 err = -ENOENT;
530 /* Find a matching upcall */
531 spin_lock(&inode->i_lock);
532 gss_msg = __gss_find_upcall(RPC_I(inode), uid);
533 if (gss_msg == NULL) {
534 spin_unlock(&inode->i_lock);
535 goto err_put_ctx;
537 list_del_init(&gss_msg->list);
538 spin_unlock(&inode->i_lock);
540 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
541 if (IS_ERR(p)) {
542 err = PTR_ERR(p);
543 gss_msg->msg.errno = (err == -EACCES) ? -EACCES : -EAGAIN;
544 goto err_release_msg;
546 gss_msg->ctx = gss_get_ctx(ctx);
547 err = mlen;
549 err_release_msg:
550 spin_lock(&inode->i_lock);
551 __gss_unhash_msg(gss_msg);
552 spin_unlock(&inode->i_lock);
553 gss_release_msg(gss_msg);
554 err_put_ctx:
555 gss_put_ctx(ctx);
556 err:
557 kfree(buf);
558 out:
559 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err);
560 return err;
563 static void
564 gss_pipe_release(struct inode *inode)
566 struct rpc_inode *rpci = RPC_I(inode);
567 struct gss_upcall_msg *gss_msg;
569 spin_lock(&inode->i_lock);
570 while (!list_empty(&rpci->in_downcall)) {
572 gss_msg = list_entry(rpci->in_downcall.next,
573 struct gss_upcall_msg, list);
574 gss_msg->msg.errno = -EPIPE;
575 atomic_inc(&gss_msg->count);
576 __gss_unhash_msg(gss_msg);
577 spin_unlock(&inode->i_lock);
578 gss_release_msg(gss_msg);
579 spin_lock(&inode->i_lock);
581 spin_unlock(&inode->i_lock);
584 static void
585 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
587 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
588 static unsigned long ratelimit;
590 if (msg->errno < 0) {
591 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
592 gss_msg);
593 atomic_inc(&gss_msg->count);
594 gss_unhash_msg(gss_msg);
595 if (msg->errno == -ETIMEDOUT) {
596 unsigned long now = jiffies;
597 if (time_after(now, ratelimit)) {
598 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
599 "Please check user daemon is running!\n");
600 ratelimit = now + 15*HZ;
603 gss_release_msg(gss_msg);
608 * NOTE: we have the opportunity to use different
609 * parameters based on the input flavor (which must be a pseudoflavor)
611 static struct rpc_auth *
612 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
614 struct gss_auth *gss_auth;
615 struct rpc_auth * auth;
616 int err = -ENOMEM; /* XXX? */
618 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
620 if (!try_module_get(THIS_MODULE))
621 return ERR_PTR(err);
622 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
623 goto out_dec;
624 gss_auth->client = clnt;
625 err = -EINVAL;
626 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
627 if (!gss_auth->mech) {
628 printk(KERN_WARNING "%s: Pseudoflavor %d not found!",
629 __FUNCTION__, flavor);
630 goto err_free;
632 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
633 if (gss_auth->service == 0)
634 goto err_put_mech;
635 auth = &gss_auth->rpc_auth;
636 auth->au_cslack = GSS_CRED_SLACK >> 2;
637 auth->au_rslack = GSS_VERF_SLACK >> 2;
638 auth->au_ops = &authgss_ops;
639 auth->au_flavor = flavor;
640 atomic_set(&auth->au_count, 1);
641 kref_init(&gss_auth->kref);
643 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name,
644 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
645 if (IS_ERR(gss_auth->dentry)) {
646 err = PTR_ERR(gss_auth->dentry);
647 goto err_put_mech;
650 err = rpcauth_init_credcache(auth);
651 if (err)
652 goto err_unlink_pipe;
654 return auth;
655 err_unlink_pipe:
656 rpc_unlink(gss_auth->dentry);
657 err_put_mech:
658 gss_mech_put(gss_auth->mech);
659 err_free:
660 kfree(gss_auth);
661 out_dec:
662 module_put(THIS_MODULE);
663 return ERR_PTR(err);
666 static void
667 gss_free(struct gss_auth *gss_auth)
669 rpc_unlink(gss_auth->dentry);
670 gss_auth->dentry = NULL;
671 gss_mech_put(gss_auth->mech);
673 kfree(gss_auth);
674 module_put(THIS_MODULE);
677 static void
678 gss_free_callback(struct kref *kref)
680 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
682 gss_free(gss_auth);
685 static void
686 gss_destroy(struct rpc_auth *auth)
688 struct gss_auth *gss_auth;
690 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
691 auth, auth->au_flavor);
693 rpcauth_destroy_credcache(auth);
695 gss_auth = container_of(auth, struct gss_auth, rpc_auth);
696 kref_put(&gss_auth->kref, gss_free_callback);
700 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
701 * to the server with the GSS control procedure field set to
702 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
703 * all RPCSEC_GSS state associated with that context.
705 static int
706 gss_destroying_context(struct rpc_cred *cred)
708 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
709 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
710 struct rpc_task *task;
712 if (gss_cred->gc_ctx == NULL ||
713 gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY)
714 return 0;
716 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
717 cred->cr_ops = &gss_nullops;
719 /* Take a reference to ensure the cred will be destroyed either
720 * by the RPC call or by the put_rpccred() below */
721 get_rpccred(cred);
723 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC);
724 if (!IS_ERR(task))
725 rpc_put_task(task);
727 put_rpccred(cred);
728 return 1;
731 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
732 * to create a new cred or context, so they check that things have been
733 * allocated before freeing them. */
734 static void
735 gss_do_free_ctx(struct gss_cl_ctx *ctx)
737 dprintk("RPC: gss_free_ctx\n");
739 if (ctx->gc_gss_ctx)
740 gss_delete_sec_context(&ctx->gc_gss_ctx);
742 kfree(ctx->gc_wire_ctx.data);
743 kfree(ctx);
746 static void
747 gss_free_ctx_callback(struct rcu_head *head)
749 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
750 gss_do_free_ctx(ctx);
753 static void
754 gss_free_ctx(struct gss_cl_ctx *ctx)
756 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
759 static void
760 gss_free_cred(struct gss_cred *gss_cred)
762 dprintk("RPC: gss_free_cred %p\n", gss_cred);
763 kfree(gss_cred);
766 static void
767 gss_free_cred_callback(struct rcu_head *head)
769 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
770 gss_free_cred(gss_cred);
773 static void
774 gss_destroy_cred(struct rpc_cred *cred)
776 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
777 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
778 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
780 if (gss_destroying_context(cred))
781 return;
782 rcu_assign_pointer(gss_cred->gc_ctx, NULL);
783 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
784 if (ctx)
785 gss_put_ctx(ctx);
786 kref_put(&gss_auth->kref, gss_free_callback);
790 * Lookup RPCSEC_GSS cred for the current process
792 static struct rpc_cred *
793 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
795 return rpcauth_lookup_credcache(auth, acred, flags);
798 static struct rpc_cred *
799 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
801 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
802 struct gss_cred *cred = NULL;
803 int err = -ENOMEM;
805 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
806 acred->uid, auth->au_flavor);
808 if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL)))
809 goto out_err;
811 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
813 * Note: in order to force a call to call_refresh(), we deliberately
814 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
816 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
817 cred->gc_service = gss_auth->service;
818 kref_get(&gss_auth->kref);
819 return &cred->gc_base;
821 out_err:
822 dprintk("RPC: gss_create_cred failed with error %d\n", err);
823 return ERR_PTR(err);
826 static int
827 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
829 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
830 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
831 int err;
833 do {
834 err = gss_create_upcall(gss_auth, gss_cred);
835 } while (err == -EAGAIN);
836 return err;
839 static int
840 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
842 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
845 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then
846 * we don't really care if the credential has expired or not,
847 * since the caller should be prepared to reinitialise it.
849 if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
850 goto out;
851 /* Don't match with creds that have expired. */
852 if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
853 return 0;
854 out:
855 return (rc->cr_uid == acred->uid);
859 * Marshal credentials.
860 * Maybe we should keep a cached credential for performance reasons.
862 static __be32 *
863 gss_marshal(struct rpc_task *task, __be32 *p)
865 struct rpc_cred *cred = task->tk_msg.rpc_cred;
866 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
867 gc_base);
868 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
869 __be32 *cred_len;
870 struct rpc_rqst *req = task->tk_rqstp;
871 u32 maj_stat = 0;
872 struct xdr_netobj mic;
873 struct kvec iov;
874 struct xdr_buf verf_buf;
876 dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
878 *p++ = htonl(RPC_AUTH_GSS);
879 cred_len = p++;
881 spin_lock(&ctx->gc_seq_lock);
882 req->rq_seqno = ctx->gc_seq++;
883 spin_unlock(&ctx->gc_seq_lock);
885 *p++ = htonl((u32) RPC_GSS_VERSION);
886 *p++ = htonl((u32) ctx->gc_proc);
887 *p++ = htonl((u32) req->rq_seqno);
888 *p++ = htonl((u32) gss_cred->gc_service);
889 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
890 *cred_len = htonl((p - (cred_len + 1)) << 2);
892 /* We compute the checksum for the verifier over the xdr-encoded bytes
893 * starting with the xid and ending at the end of the credential: */
894 iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
895 req->rq_snd_buf.head[0].iov_base);
896 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
897 xdr_buf_from_iov(&iov, &verf_buf);
899 /* set verifier flavor*/
900 *p++ = htonl(RPC_AUTH_GSS);
902 mic.data = (u8 *)(p + 1);
903 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
904 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
905 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
906 } else if (maj_stat != 0) {
907 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
908 goto out_put_ctx;
910 p = xdr_encode_opaque(p, NULL, mic.len);
911 gss_put_ctx(ctx);
912 return p;
913 out_put_ctx:
914 gss_put_ctx(ctx);
915 return NULL;
919 * Refresh credentials. XXX - finish
921 static int
922 gss_refresh(struct rpc_task *task)
925 if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred))
926 return gss_refresh_upcall(task);
927 return 0;
930 /* Dummy refresh routine: used only when destroying the context */
931 static int
932 gss_refresh_null(struct rpc_task *task)
934 return -EACCES;
937 static __be32 *
938 gss_validate(struct rpc_task *task, __be32 *p)
940 struct rpc_cred *cred = task->tk_msg.rpc_cred;
941 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
942 __be32 seq;
943 struct kvec iov;
944 struct xdr_buf verf_buf;
945 struct xdr_netobj mic;
946 u32 flav,len;
947 u32 maj_stat;
949 dprintk("RPC: %5u gss_validate\n", task->tk_pid);
951 flav = ntohl(*p++);
952 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
953 goto out_bad;
954 if (flav != RPC_AUTH_GSS)
955 goto out_bad;
956 seq = htonl(task->tk_rqstp->rq_seqno);
957 iov.iov_base = &seq;
958 iov.iov_len = sizeof(seq);
959 xdr_buf_from_iov(&iov, &verf_buf);
960 mic.data = (u8 *)p;
961 mic.len = len;
963 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
964 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
965 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
966 if (maj_stat) {
967 dprintk("RPC: %5u gss_validate: gss_verify_mic returned"
968 "error 0x%08x\n", task->tk_pid, maj_stat);
969 goto out_bad;
971 /* We leave it to unwrap to calculate au_rslack. For now we just
972 * calculate the length of the verifier: */
973 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
974 gss_put_ctx(ctx);
975 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
976 task->tk_pid);
977 return p + XDR_QUADLEN(len);
978 out_bad:
979 gss_put_ctx(ctx);
980 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
981 return NULL;
984 static inline int
985 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
986 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
988 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
989 struct xdr_buf integ_buf;
990 __be32 *integ_len = NULL;
991 struct xdr_netobj mic;
992 u32 offset;
993 __be32 *q;
994 struct kvec *iov;
995 u32 maj_stat = 0;
996 int status = -EIO;
998 integ_len = p++;
999 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1000 *p++ = htonl(rqstp->rq_seqno);
1002 status = encode(rqstp, p, obj);
1003 if (status)
1004 return status;
1006 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1007 offset, snd_buf->len - offset))
1008 return status;
1009 *integ_len = htonl(integ_buf.len);
1011 /* guess whether we're in the head or the tail: */
1012 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1013 iov = snd_buf->tail;
1014 else
1015 iov = snd_buf->head;
1016 p = iov->iov_base + iov->iov_len;
1017 mic.data = (u8 *)(p + 1);
1019 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1020 status = -EIO; /* XXX? */
1021 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1022 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1023 else if (maj_stat)
1024 return status;
1025 q = xdr_encode_opaque(p, NULL, mic.len);
1027 offset = (u8 *)q - (u8 *)p;
1028 iov->iov_len += offset;
1029 snd_buf->len += offset;
1030 return 0;
1033 static void
1034 priv_release_snd_buf(struct rpc_rqst *rqstp)
1036 int i;
1038 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1039 __free_page(rqstp->rq_enc_pages[i]);
1040 kfree(rqstp->rq_enc_pages);
1043 static int
1044 alloc_enc_pages(struct rpc_rqst *rqstp)
1046 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1047 int first, last, i;
1049 if (snd_buf->page_len == 0) {
1050 rqstp->rq_enc_pages_num = 0;
1051 return 0;
1054 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1055 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1056 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1057 rqstp->rq_enc_pages
1058 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1059 GFP_NOFS);
1060 if (!rqstp->rq_enc_pages)
1061 goto out;
1062 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1063 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1064 if (rqstp->rq_enc_pages[i] == NULL)
1065 goto out_free;
1067 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1068 return 0;
1069 out_free:
1070 for (i--; i >= 0; i--) {
1071 __free_page(rqstp->rq_enc_pages[i]);
1073 out:
1074 return -EAGAIN;
1077 static inline int
1078 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1079 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1081 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1082 u32 offset;
1083 u32 maj_stat;
1084 int status;
1085 __be32 *opaque_len;
1086 struct page **inpages;
1087 int first;
1088 int pad;
1089 struct kvec *iov;
1090 char *tmp;
1092 opaque_len = p++;
1093 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1094 *p++ = htonl(rqstp->rq_seqno);
1096 status = encode(rqstp, p, obj);
1097 if (status)
1098 return status;
1100 status = alloc_enc_pages(rqstp);
1101 if (status)
1102 return status;
1103 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1104 inpages = snd_buf->pages + first;
1105 snd_buf->pages = rqstp->rq_enc_pages;
1106 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1107 /* Give the tail its own page, in case we need extra space in the
1108 * head when wrapping: */
1109 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1110 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1111 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1112 snd_buf->tail[0].iov_base = tmp;
1114 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1115 /* RPC_SLACK_SPACE should prevent this ever happening: */
1116 BUG_ON(snd_buf->len > snd_buf->buflen);
1117 status = -EIO;
1118 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1119 * done anyway, so it's safe to put the request on the wire: */
1120 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1121 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1122 else if (maj_stat)
1123 return status;
1125 *opaque_len = htonl(snd_buf->len - offset);
1126 /* guess whether we're in the head or the tail: */
1127 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1128 iov = snd_buf->tail;
1129 else
1130 iov = snd_buf->head;
1131 p = iov->iov_base + iov->iov_len;
1132 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1133 memset(p, 0, pad);
1134 iov->iov_len += pad;
1135 snd_buf->len += pad;
1137 return 0;
1140 static int
1141 gss_wrap_req(struct rpc_task *task,
1142 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1144 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1145 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1146 gc_base);
1147 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1148 int status = -EIO;
1150 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1151 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1152 /* The spec seems a little ambiguous here, but I think that not
1153 * wrapping context destruction requests makes the most sense.
1155 status = encode(rqstp, p, obj);
1156 goto out;
1158 switch (gss_cred->gc_service) {
1159 case RPC_GSS_SVC_NONE:
1160 status = encode(rqstp, p, obj);
1161 break;
1162 case RPC_GSS_SVC_INTEGRITY:
1163 status = gss_wrap_req_integ(cred, ctx, encode,
1164 rqstp, p, obj);
1165 break;
1166 case RPC_GSS_SVC_PRIVACY:
1167 status = gss_wrap_req_priv(cred, ctx, encode,
1168 rqstp, p, obj);
1169 break;
1171 out:
1172 gss_put_ctx(ctx);
1173 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1174 return status;
1177 static inline int
1178 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1179 struct rpc_rqst *rqstp, __be32 **p)
1181 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1182 struct xdr_buf integ_buf;
1183 struct xdr_netobj mic;
1184 u32 data_offset, mic_offset;
1185 u32 integ_len;
1186 u32 maj_stat;
1187 int status = -EIO;
1189 integ_len = ntohl(*(*p)++);
1190 if (integ_len & 3)
1191 return status;
1192 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1193 mic_offset = integ_len + data_offset;
1194 if (mic_offset > rcv_buf->len)
1195 return status;
1196 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1197 return status;
1199 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1200 mic_offset - data_offset))
1201 return status;
1203 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1204 return status;
1206 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1207 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1208 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1209 if (maj_stat != GSS_S_COMPLETE)
1210 return status;
1211 return 0;
1214 static inline int
1215 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1216 struct rpc_rqst *rqstp, __be32 **p)
1218 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1219 u32 offset;
1220 u32 opaque_len;
1221 u32 maj_stat;
1222 int status = -EIO;
1224 opaque_len = ntohl(*(*p)++);
1225 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1226 if (offset + opaque_len > rcv_buf->len)
1227 return status;
1228 /* remove padding: */
1229 rcv_buf->len = offset + opaque_len;
1231 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1232 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1233 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1234 if (maj_stat != GSS_S_COMPLETE)
1235 return status;
1236 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1237 return status;
1239 return 0;
1243 static int
1244 gss_unwrap_resp(struct rpc_task *task,
1245 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1247 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1248 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1249 gc_base);
1250 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1251 __be32 *savedp = p;
1252 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1253 int savedlen = head->iov_len;
1254 int status = -EIO;
1256 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1257 goto out_decode;
1258 switch (gss_cred->gc_service) {
1259 case RPC_GSS_SVC_NONE:
1260 break;
1261 case RPC_GSS_SVC_INTEGRITY:
1262 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1263 if (status)
1264 goto out;
1265 break;
1266 case RPC_GSS_SVC_PRIVACY:
1267 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1268 if (status)
1269 goto out;
1270 break;
1272 /* take into account extra slack for integrity and privacy cases: */
1273 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1274 + (savedlen - head->iov_len);
1275 out_decode:
1276 status = decode(rqstp, p, obj);
1277 out:
1278 gss_put_ctx(ctx);
1279 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1280 status);
1281 return status;
1284 static const struct rpc_authops authgss_ops = {
1285 .owner = THIS_MODULE,
1286 .au_flavor = RPC_AUTH_GSS,
1287 #ifdef RPC_DEBUG
1288 .au_name = "RPCSEC_GSS",
1289 #endif
1290 .create = gss_create,
1291 .destroy = gss_destroy,
1292 .lookup_cred = gss_lookup_cred,
1293 .crcreate = gss_create_cred
1296 static const struct rpc_credops gss_credops = {
1297 .cr_name = "AUTH_GSS",
1298 .crdestroy = gss_destroy_cred,
1299 .cr_init = gss_cred_init,
1300 .crmatch = gss_match,
1301 .crmarshal = gss_marshal,
1302 .crrefresh = gss_refresh,
1303 .crvalidate = gss_validate,
1304 .crwrap_req = gss_wrap_req,
1305 .crunwrap_resp = gss_unwrap_resp,
1308 static const struct rpc_credops gss_nullops = {
1309 .cr_name = "AUTH_GSS",
1310 .crdestroy = gss_destroy_cred,
1311 .crmatch = gss_match,
1312 .crmarshal = gss_marshal,
1313 .crrefresh = gss_refresh_null,
1314 .crvalidate = gss_validate,
1315 .crwrap_req = gss_wrap_req,
1316 .crunwrap_resp = gss_unwrap_resp,
1319 static struct rpc_pipe_ops gss_upcall_ops = {
1320 .upcall = gss_pipe_upcall,
1321 .downcall = gss_pipe_downcall,
1322 .destroy_msg = gss_pipe_destroy_msg,
1323 .release_pipe = gss_pipe_release,
1327 * Initialize RPCSEC_GSS module
1329 static int __init init_rpcsec_gss(void)
1331 int err = 0;
1333 err = rpcauth_register(&authgss_ops);
1334 if (err)
1335 goto out;
1336 err = gss_svc_init();
1337 if (err)
1338 goto out_unregister;
1339 return 0;
1340 out_unregister:
1341 rpcauth_unregister(&authgss_ops);
1342 out:
1343 return err;
1346 static void __exit exit_rpcsec_gss(void)
1348 gss_svc_shutdown();
1349 rpcauth_unregister(&authgss_ops);
1352 MODULE_LICENSE("GPL");
1353 module_init(init_rpcsec_gss)
1354 module_exit(exit_rpcsec_gss)