allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / mm / mempolicy.c
blobc0397de35eb84531c4549b6c4f27e022d752e727
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd;
141 enum zone_type k;
143 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 max++; /* space for zlcache_ptr (see mmzone.h) */
145 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
146 if (!zl)
147 return ERR_PTR(-ENOMEM);
148 zl->zlcache_ptr = NULL;
149 num = 0;
150 /* First put in the highest zones from all nodes, then all the next
151 lower zones etc. Avoid empty zones because the memory allocator
152 doesn't like them. If you implement node hot removal you
153 have to fix that. */
154 k = policy_zone;
155 while (1) {
156 for_each_node_mask(nd, *nodes) {
157 struct zone *z = &NODE_DATA(nd)->node_zones[k];
158 if (z->present_pages > 0)
159 zl->zones[num++] = z;
161 if (k == 0)
162 break;
163 k--;
165 if (num == 0) {
166 kfree(zl);
167 return ERR_PTR(-EINVAL);
169 zl->zones[num] = NULL;
170 return zl;
173 /* Create a new policy */
174 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
176 struct mempolicy *policy;
178 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
179 if (mode == MPOL_DEFAULT)
180 return NULL;
181 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
182 if (!policy)
183 return ERR_PTR(-ENOMEM);
184 atomic_set(&policy->refcnt, 1);
185 switch (mode) {
186 case MPOL_INTERLEAVE:
187 policy->v.nodes = *nodes;
188 if (nodes_weight(*nodes) == 0) {
189 kmem_cache_free(policy_cache, policy);
190 return ERR_PTR(-EINVAL);
192 break;
193 case MPOL_PREFERRED:
194 policy->v.preferred_node = first_node(*nodes);
195 if (policy->v.preferred_node >= MAX_NUMNODES)
196 policy->v.preferred_node = -1;
197 break;
198 case MPOL_BIND:
199 policy->v.zonelist = bind_zonelist(nodes);
200 if (IS_ERR(policy->v.zonelist)) {
201 void *error_code = policy->v.zonelist;
202 kmem_cache_free(policy_cache, policy);
203 return error_code;
205 break;
207 policy->policy = mode;
208 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
209 return policy;
212 static void gather_stats(struct page *, void *, int pte_dirty);
213 static void migrate_page_add(struct page *page, struct list_head *pagelist,
214 unsigned long flags);
216 /* Scan through pages checking if pages follow certain conditions. */
217 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
218 unsigned long addr, unsigned long end,
219 const nodemask_t *nodes, unsigned long flags,
220 void *private)
222 pte_t *orig_pte;
223 pte_t *pte;
224 spinlock_t *ptl;
226 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
227 do {
228 struct page *page;
229 int nid;
231 if (!pte_present(*pte))
232 continue;
233 page = vm_normal_page(vma, addr, *pte);
234 if (!page)
235 continue;
237 * The check for PageReserved here is important to avoid
238 * handling zero pages and other pages that may have been
239 * marked special by the system.
241 * If the PageReserved would not be checked here then f.e.
242 * the location of the zero page could have an influence
243 * on MPOL_MF_STRICT, zero pages would be counted for
244 * the per node stats, and there would be useless attempts
245 * to put zero pages on the migration list.
247 if (PageReserved(page))
248 continue;
249 nid = page_to_nid(page);
250 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
251 continue;
253 if (flags & MPOL_MF_STATS)
254 gather_stats(page, private, pte_dirty(*pte));
255 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
256 migrate_page_add(page, private, flags);
257 else
258 break;
259 } while (pte++, addr += PAGE_SIZE, addr != end);
260 pte_unmap_unlock(orig_pte, ptl);
261 return addr != end;
264 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
265 unsigned long addr, unsigned long end,
266 const nodemask_t *nodes, unsigned long flags,
267 void *private)
269 pmd_t *pmd;
270 unsigned long next;
272 pmd = pmd_offset(pud, addr);
273 do {
274 next = pmd_addr_end(addr, end);
275 if (pmd_none_or_clear_bad(pmd))
276 continue;
277 if (check_pte_range(vma, pmd, addr, next, nodes,
278 flags, private))
279 return -EIO;
280 } while (pmd++, addr = next, addr != end);
281 return 0;
284 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 const nodemask_t *nodes, unsigned long flags,
287 void *private)
289 pud_t *pud;
290 unsigned long next;
292 pud = pud_offset(pgd, addr);
293 do {
294 next = pud_addr_end(addr, end);
295 if (pud_none_or_clear_bad(pud))
296 continue;
297 if (check_pmd_range(vma, pud, addr, next, nodes,
298 flags, private))
299 return -EIO;
300 } while (pud++, addr = next, addr != end);
301 return 0;
304 static inline int check_pgd_range(struct vm_area_struct *vma,
305 unsigned long addr, unsigned long end,
306 const nodemask_t *nodes, unsigned long flags,
307 void *private)
309 pgd_t *pgd;
310 unsigned long next;
312 pgd = pgd_offset(vma->vm_mm, addr);
313 do {
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
316 continue;
317 if (check_pud_range(vma, pgd, addr, next, nodes,
318 flags, private))
319 return -EIO;
320 } while (pgd++, addr = next, addr != end);
321 return 0;
325 * Check if all pages in a range are on a set of nodes.
326 * If pagelist != NULL then isolate pages from the LRU and
327 * put them on the pagelist.
329 static struct vm_area_struct *
330 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
331 const nodemask_t *nodes, unsigned long flags, void *private)
333 int err;
334 struct vm_area_struct *first, *vma, *prev;
336 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
338 err = migrate_prep();
339 if (err)
340 return ERR_PTR(err);
343 first = find_vma(mm, start);
344 if (!first)
345 return ERR_PTR(-EFAULT);
346 prev = NULL;
347 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
348 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
349 if (!vma->vm_next && vma->vm_end < end)
350 return ERR_PTR(-EFAULT);
351 if (prev && prev->vm_end < vma->vm_start)
352 return ERR_PTR(-EFAULT);
354 if (!is_vm_hugetlb_page(vma) &&
355 ((flags & MPOL_MF_STRICT) ||
356 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
357 vma_migratable(vma)))) {
358 unsigned long endvma = vma->vm_end;
360 if (endvma > end)
361 endvma = end;
362 if (vma->vm_start > start)
363 start = vma->vm_start;
364 err = check_pgd_range(vma, start, endvma, nodes,
365 flags, private);
366 if (err) {
367 first = ERR_PTR(err);
368 break;
371 prev = vma;
373 return first;
376 /* Apply policy to a single VMA */
377 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
379 int err = 0;
380 struct mempolicy *old = vma->vm_policy;
382 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
383 vma->vm_start, vma->vm_end, vma->vm_pgoff,
384 vma->vm_ops, vma->vm_file,
385 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
387 if (vma->vm_ops && vma->vm_ops->set_policy)
388 err = vma->vm_ops->set_policy(vma, new);
389 if (!err) {
390 mpol_get(new);
391 vma->vm_policy = new;
392 mpol_free(old);
394 return err;
397 /* Step 2: apply policy to a range and do splits. */
398 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
399 unsigned long end, struct mempolicy *new)
401 struct vm_area_struct *next;
402 int err;
404 err = 0;
405 for (; vma && vma->vm_start < end; vma = next) {
406 next = vma->vm_next;
407 if (vma->vm_start < start)
408 err = split_vma(vma->vm_mm, vma, start, 1);
409 if (!err && vma->vm_end > end)
410 err = split_vma(vma->vm_mm, vma, end, 0);
411 if (!err)
412 err = policy_vma(vma, new);
413 if (err)
414 break;
416 return err;
419 static int contextualize_policy(int mode, nodemask_t *nodes)
421 if (!nodes)
422 return 0;
424 cpuset_update_task_memory_state();
425 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
426 return -EINVAL;
427 return mpol_check_policy(mode, nodes);
432 * Update task->flags PF_MEMPOLICY bit: set iff non-default
433 * mempolicy. Allows more rapid checking of this (combined perhaps
434 * with other PF_* flag bits) on memory allocation hot code paths.
436 * If called from outside this file, the task 'p' should -only- be
437 * a newly forked child not yet visible on the task list, because
438 * manipulating the task flags of a visible task is not safe.
440 * The above limitation is why this routine has the funny name
441 * mpol_fix_fork_child_flag().
443 * It is also safe to call this with a task pointer of current,
444 * which the static wrapper mpol_set_task_struct_flag() does,
445 * for use within this file.
448 void mpol_fix_fork_child_flag(struct task_struct *p)
450 if (p->mempolicy)
451 p->flags |= PF_MEMPOLICY;
452 else
453 p->flags &= ~PF_MEMPOLICY;
456 static void mpol_set_task_struct_flag(void)
458 mpol_fix_fork_child_flag(current);
461 /* Set the process memory policy */
462 long do_set_mempolicy(int mode, nodemask_t *nodes)
464 struct mempolicy *new;
466 if (contextualize_policy(mode, nodes))
467 return -EINVAL;
468 new = mpol_new(mode, nodes);
469 if (IS_ERR(new))
470 return PTR_ERR(new);
471 mpol_free(current->mempolicy);
472 current->mempolicy = new;
473 mpol_set_task_struct_flag();
474 if (new && new->policy == MPOL_INTERLEAVE)
475 current->il_next = first_node(new->v.nodes);
476 return 0;
479 /* Fill a zone bitmap for a policy */
480 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
482 int i;
484 nodes_clear(*nodes);
485 switch (p->policy) {
486 case MPOL_BIND:
487 for (i = 0; p->v.zonelist->zones[i]; i++)
488 node_set(zone_to_nid(p->v.zonelist->zones[i]),
489 *nodes);
490 break;
491 case MPOL_DEFAULT:
492 break;
493 case MPOL_INTERLEAVE:
494 *nodes = p->v.nodes;
495 break;
496 case MPOL_PREFERRED:
497 /* or use current node instead of online map? */
498 if (p->v.preferred_node < 0)
499 *nodes = node_online_map;
500 else
501 node_set(p->v.preferred_node, *nodes);
502 break;
503 default:
504 BUG();
508 static int lookup_node(struct mm_struct *mm, unsigned long addr)
510 struct page *p;
511 int err;
513 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
514 if (err >= 0) {
515 err = page_to_nid(p);
516 put_page(p);
518 return err;
521 /* Retrieve NUMA policy */
522 long do_get_mempolicy(int *policy, nodemask_t *nmask,
523 unsigned long addr, unsigned long flags)
525 int err;
526 struct mm_struct *mm = current->mm;
527 struct vm_area_struct *vma = NULL;
528 struct mempolicy *pol = current->mempolicy;
530 cpuset_update_task_memory_state();
531 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
532 return -EINVAL;
533 if (flags & MPOL_F_ADDR) {
534 down_read(&mm->mmap_sem);
535 vma = find_vma_intersection(mm, addr, addr+1);
536 if (!vma) {
537 up_read(&mm->mmap_sem);
538 return -EFAULT;
540 if (vma->vm_ops && vma->vm_ops->get_policy)
541 pol = vma->vm_ops->get_policy(vma, addr);
542 else
543 pol = vma->vm_policy;
544 } else if (addr)
545 return -EINVAL;
547 if (!pol)
548 pol = &default_policy;
550 if (flags & MPOL_F_NODE) {
551 if (flags & MPOL_F_ADDR) {
552 err = lookup_node(mm, addr);
553 if (err < 0)
554 goto out;
555 *policy = err;
556 } else if (pol == current->mempolicy &&
557 pol->policy == MPOL_INTERLEAVE) {
558 *policy = current->il_next;
559 } else {
560 err = -EINVAL;
561 goto out;
563 } else
564 *policy = pol->policy;
566 if (vma) {
567 up_read(&current->mm->mmap_sem);
568 vma = NULL;
571 err = 0;
572 if (nmask)
573 get_zonemask(pol, nmask);
575 out:
576 if (vma)
577 up_read(&current->mm->mmap_sem);
578 return err;
581 #ifdef CONFIG_MIGRATION
583 * page migration
585 static void migrate_page_add(struct page *page, struct list_head *pagelist,
586 unsigned long flags)
589 * Avoid migrating a page that is shared with others.
591 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
592 isolate_lru_page(page, pagelist);
595 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
597 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
601 * Migrate pages from one node to a target node.
602 * Returns error or the number of pages not migrated.
604 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
606 nodemask_t nmask;
607 LIST_HEAD(pagelist);
608 int err = 0;
610 nodes_clear(nmask);
611 node_set(source, nmask);
613 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
614 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
616 if (!list_empty(&pagelist))
617 err = migrate_pages(&pagelist, new_node_page, dest);
619 return err;
623 * Move pages between the two nodesets so as to preserve the physical
624 * layout as much as possible.
626 * Returns the number of page that could not be moved.
628 int do_migrate_pages(struct mm_struct *mm,
629 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
631 LIST_HEAD(pagelist);
632 int busy = 0;
633 int err = 0;
634 nodemask_t tmp;
636 down_read(&mm->mmap_sem);
638 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
639 if (err)
640 goto out;
643 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
644 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
645 * bit in 'tmp', and return that <source, dest> pair for migration.
646 * The pair of nodemasks 'to' and 'from' define the map.
648 * If no pair of bits is found that way, fallback to picking some
649 * pair of 'source' and 'dest' bits that are not the same. If the
650 * 'source' and 'dest' bits are the same, this represents a node
651 * that will be migrating to itself, so no pages need move.
653 * If no bits are left in 'tmp', or if all remaining bits left
654 * in 'tmp' correspond to the same bit in 'to', return false
655 * (nothing left to migrate).
657 * This lets us pick a pair of nodes to migrate between, such that
658 * if possible the dest node is not already occupied by some other
659 * source node, minimizing the risk of overloading the memory on a
660 * node that would happen if we migrated incoming memory to a node
661 * before migrating outgoing memory source that same node.
663 * A single scan of tmp is sufficient. As we go, we remember the
664 * most recent <s, d> pair that moved (s != d). If we find a pair
665 * that not only moved, but what's better, moved to an empty slot
666 * (d is not set in tmp), then we break out then, with that pair.
667 * Otherwise when we finish scannng from_tmp, we at least have the
668 * most recent <s, d> pair that moved. If we get all the way through
669 * the scan of tmp without finding any node that moved, much less
670 * moved to an empty node, then there is nothing left worth migrating.
673 tmp = *from_nodes;
674 while (!nodes_empty(tmp)) {
675 int s,d;
676 int source = -1;
677 int dest = 0;
679 for_each_node_mask(s, tmp) {
680 d = node_remap(s, *from_nodes, *to_nodes);
681 if (s == d)
682 continue;
684 source = s; /* Node moved. Memorize */
685 dest = d;
687 /* dest not in remaining from nodes? */
688 if (!node_isset(dest, tmp))
689 break;
691 if (source == -1)
692 break;
694 node_clear(source, tmp);
695 err = migrate_to_node(mm, source, dest, flags);
696 if (err > 0)
697 busy += err;
698 if (err < 0)
699 break;
701 out:
702 up_read(&mm->mmap_sem);
703 if (err < 0)
704 return err;
705 return busy;
709 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
711 struct vm_area_struct *vma = (struct vm_area_struct *)private;
713 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
714 page_address_in_vma(page, vma));
716 #else
718 static void migrate_page_add(struct page *page, struct list_head *pagelist,
719 unsigned long flags)
723 int do_migrate_pages(struct mm_struct *mm,
724 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
726 return -ENOSYS;
729 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
731 return NULL;
733 #endif
735 long do_mbind(unsigned long start, unsigned long len,
736 unsigned long mode, nodemask_t *nmask, unsigned long flags)
738 struct vm_area_struct *vma;
739 struct mm_struct *mm = current->mm;
740 struct mempolicy *new;
741 unsigned long end;
742 int err;
743 LIST_HEAD(pagelist);
745 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
746 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
747 || mode > MPOL_MAX)
748 return -EINVAL;
749 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
750 return -EPERM;
752 if (start & ~PAGE_MASK)
753 return -EINVAL;
755 if (mode == MPOL_DEFAULT)
756 flags &= ~MPOL_MF_STRICT;
758 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
759 end = start + len;
761 if (end < start)
762 return -EINVAL;
763 if (end == start)
764 return 0;
766 if (mpol_check_policy(mode, nmask))
767 return -EINVAL;
769 new = mpol_new(mode, nmask);
770 if (IS_ERR(new))
771 return PTR_ERR(new);
774 * If we are using the default policy then operation
775 * on discontinuous address spaces is okay after all
777 if (!new)
778 flags |= MPOL_MF_DISCONTIG_OK;
780 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
781 mode,nodes_addr(nodes)[0]);
783 down_write(&mm->mmap_sem);
784 vma = check_range(mm, start, end, nmask,
785 flags | MPOL_MF_INVERT, &pagelist);
787 err = PTR_ERR(vma);
788 if (!IS_ERR(vma)) {
789 int nr_failed = 0;
791 err = mbind_range(vma, start, end, new);
793 if (!list_empty(&pagelist))
794 nr_failed = migrate_pages(&pagelist, new_vma_page,
795 (unsigned long)vma);
797 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
798 err = -EIO;
801 up_write(&mm->mmap_sem);
802 mpol_free(new);
803 return err;
807 * User space interface with variable sized bitmaps for nodelists.
810 /* Copy a node mask from user space. */
811 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
812 unsigned long maxnode)
814 unsigned long k;
815 unsigned long nlongs;
816 unsigned long endmask;
818 --maxnode;
819 nodes_clear(*nodes);
820 if (maxnode == 0 || !nmask)
821 return 0;
822 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
823 return -EINVAL;
825 nlongs = BITS_TO_LONGS(maxnode);
826 if ((maxnode % BITS_PER_LONG) == 0)
827 endmask = ~0UL;
828 else
829 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
831 /* When the user specified more nodes than supported just check
832 if the non supported part is all zero. */
833 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
834 if (nlongs > PAGE_SIZE/sizeof(long))
835 return -EINVAL;
836 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
837 unsigned long t;
838 if (get_user(t, nmask + k))
839 return -EFAULT;
840 if (k == nlongs - 1) {
841 if (t & endmask)
842 return -EINVAL;
843 } else if (t)
844 return -EINVAL;
846 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
847 endmask = ~0UL;
850 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
851 return -EFAULT;
852 nodes_addr(*nodes)[nlongs-1] &= endmask;
853 return 0;
856 /* Copy a kernel node mask to user space */
857 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
858 nodemask_t *nodes)
860 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
861 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
863 if (copy > nbytes) {
864 if (copy > PAGE_SIZE)
865 return -EINVAL;
866 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
867 return -EFAULT;
868 copy = nbytes;
870 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
873 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
874 unsigned long mode,
875 unsigned long __user *nmask, unsigned long maxnode,
876 unsigned flags)
878 nodemask_t nodes;
879 int err;
881 err = get_nodes(&nodes, nmask, maxnode);
882 if (err)
883 return err;
884 #ifdef CONFIG_CPUSETS
885 /* Restrict the nodes to the allowed nodes in the cpuset */
886 nodes_and(nodes, nodes, current->mems_allowed);
887 #endif
888 return do_mbind(start, len, mode, &nodes, flags);
891 /* Set the process memory policy */
892 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
893 unsigned long maxnode)
895 int err;
896 nodemask_t nodes;
898 if (mode < 0 || mode > MPOL_MAX)
899 return -EINVAL;
900 err = get_nodes(&nodes, nmask, maxnode);
901 if (err)
902 return err;
903 return do_set_mempolicy(mode, &nodes);
906 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
907 const unsigned long __user *old_nodes,
908 const unsigned long __user *new_nodes)
910 struct mm_struct *mm;
911 struct task_struct *task;
912 nodemask_t old;
913 nodemask_t new;
914 nodemask_t task_nodes;
915 int err;
917 err = get_nodes(&old, old_nodes, maxnode);
918 if (err)
919 return err;
921 err = get_nodes(&new, new_nodes, maxnode);
922 if (err)
923 return err;
925 /* Find the mm_struct */
926 read_lock(&tasklist_lock);
927 task = pid ? find_task_by_pid(pid) : current;
928 if (!task) {
929 read_unlock(&tasklist_lock);
930 return -ESRCH;
932 mm = get_task_mm(task);
933 read_unlock(&tasklist_lock);
935 if (!mm)
936 return -EINVAL;
939 * Check if this process has the right to modify the specified
940 * process. The right exists if the process has administrative
941 * capabilities, superuser privileges or the same
942 * userid as the target process.
944 if ((current->euid != task->suid) && (current->euid != task->uid) &&
945 (current->uid != task->suid) && (current->uid != task->uid) &&
946 !capable(CAP_SYS_NICE)) {
947 err = -EPERM;
948 goto out;
951 task_nodes = cpuset_mems_allowed(task);
952 /* Is the user allowed to access the target nodes? */
953 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
954 err = -EPERM;
955 goto out;
958 err = security_task_movememory(task);
959 if (err)
960 goto out;
962 err = do_migrate_pages(mm, &old, &new,
963 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
964 out:
965 mmput(mm);
966 return err;
970 /* Retrieve NUMA policy */
971 asmlinkage long sys_get_mempolicy(int __user *policy,
972 unsigned long __user *nmask,
973 unsigned long maxnode,
974 unsigned long addr, unsigned long flags)
976 int err, pval;
977 nodemask_t nodes;
979 if (nmask != NULL && maxnode < MAX_NUMNODES)
980 return -EINVAL;
982 err = do_get_mempolicy(&pval, &nodes, addr, flags);
984 if (err)
985 return err;
987 if (policy && put_user(pval, policy))
988 return -EFAULT;
990 if (nmask)
991 err = copy_nodes_to_user(nmask, maxnode, &nodes);
993 return err;
996 #ifdef CONFIG_COMPAT
998 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
999 compat_ulong_t __user *nmask,
1000 compat_ulong_t maxnode,
1001 compat_ulong_t addr, compat_ulong_t flags)
1003 long err;
1004 unsigned long __user *nm = NULL;
1005 unsigned long nr_bits, alloc_size;
1006 DECLARE_BITMAP(bm, MAX_NUMNODES);
1008 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1009 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1011 if (nmask)
1012 nm = compat_alloc_user_space(alloc_size);
1014 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1016 if (!err && nmask) {
1017 err = copy_from_user(bm, nm, alloc_size);
1018 /* ensure entire bitmap is zeroed */
1019 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1020 err |= compat_put_bitmap(nmask, bm, nr_bits);
1023 return err;
1026 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1027 compat_ulong_t maxnode)
1029 long err = 0;
1030 unsigned long __user *nm = NULL;
1031 unsigned long nr_bits, alloc_size;
1032 DECLARE_BITMAP(bm, MAX_NUMNODES);
1034 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1035 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1037 if (nmask) {
1038 err = compat_get_bitmap(bm, nmask, nr_bits);
1039 nm = compat_alloc_user_space(alloc_size);
1040 err |= copy_to_user(nm, bm, alloc_size);
1043 if (err)
1044 return -EFAULT;
1046 return sys_set_mempolicy(mode, nm, nr_bits+1);
1049 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1050 compat_ulong_t mode, compat_ulong_t __user *nmask,
1051 compat_ulong_t maxnode, compat_ulong_t flags)
1053 long err = 0;
1054 unsigned long __user *nm = NULL;
1055 unsigned long nr_bits, alloc_size;
1056 nodemask_t bm;
1058 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1059 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1061 if (nmask) {
1062 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1063 nm = compat_alloc_user_space(alloc_size);
1064 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1067 if (err)
1068 return -EFAULT;
1070 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1073 #endif
1075 /* Return effective policy for a VMA */
1076 static struct mempolicy * get_vma_policy(struct task_struct *task,
1077 struct vm_area_struct *vma, unsigned long addr)
1079 struct mempolicy *pol = task->mempolicy;
1081 if (vma) {
1082 if (vma->vm_ops && vma->vm_ops->get_policy)
1083 pol = vma->vm_ops->get_policy(vma, addr);
1084 else if (vma->vm_policy &&
1085 vma->vm_policy->policy != MPOL_DEFAULT)
1086 pol = vma->vm_policy;
1088 if (!pol)
1089 pol = &default_policy;
1090 return pol;
1093 /* Return a zonelist representing a mempolicy */
1094 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1096 int nd;
1098 switch (policy->policy) {
1099 case MPOL_PREFERRED:
1100 nd = policy->v.preferred_node;
1101 if (nd < 0)
1102 nd = numa_node_id();
1103 break;
1104 case MPOL_BIND:
1105 /* Lower zones don't get a policy applied */
1106 /* Careful: current->mems_allowed might have moved */
1107 if (gfp_zone(gfp) >= policy_zone)
1108 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1109 return policy->v.zonelist;
1110 /*FALL THROUGH*/
1111 case MPOL_INTERLEAVE: /* should not happen */
1112 case MPOL_DEFAULT:
1113 nd = numa_node_id();
1114 break;
1115 default:
1116 nd = 0;
1117 BUG();
1119 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1122 /* Do dynamic interleaving for a process */
1123 static unsigned interleave_nodes(struct mempolicy *policy)
1125 unsigned nid, next;
1126 struct task_struct *me = current;
1128 nid = me->il_next;
1129 next = next_node(nid, policy->v.nodes);
1130 if (next >= MAX_NUMNODES)
1131 next = first_node(policy->v.nodes);
1132 me->il_next = next;
1133 return nid;
1137 * Depending on the memory policy provide a node from which to allocate the
1138 * next slab entry.
1140 unsigned slab_node(struct mempolicy *policy)
1142 int pol = policy ? policy->policy : MPOL_DEFAULT;
1144 switch (pol) {
1145 case MPOL_INTERLEAVE:
1146 return interleave_nodes(policy);
1148 case MPOL_BIND:
1150 * Follow bind policy behavior and start allocation at the
1151 * first node.
1153 return zone_to_nid(policy->v.zonelist->zones[0]);
1155 case MPOL_PREFERRED:
1156 if (policy->v.preferred_node >= 0)
1157 return policy->v.preferred_node;
1158 /* Fall through */
1160 default:
1161 return numa_node_id();
1165 /* Do static interleaving for a VMA with known offset. */
1166 static unsigned offset_il_node(struct mempolicy *pol,
1167 struct vm_area_struct *vma, unsigned long off)
1169 unsigned nnodes = nodes_weight(pol->v.nodes);
1170 unsigned target = (unsigned)off % nnodes;
1171 int c;
1172 int nid = -1;
1174 c = 0;
1175 do {
1176 nid = next_node(nid, pol->v.nodes);
1177 c++;
1178 } while (c <= target);
1179 return nid;
1182 /* Determine a node number for interleave */
1183 static inline unsigned interleave_nid(struct mempolicy *pol,
1184 struct vm_area_struct *vma, unsigned long addr, int shift)
1186 if (vma) {
1187 unsigned long off;
1190 * for small pages, there is no difference between
1191 * shift and PAGE_SHIFT, so the bit-shift is safe.
1192 * for huge pages, since vm_pgoff is in units of small
1193 * pages, we need to shift off the always 0 bits to get
1194 * a useful offset.
1196 BUG_ON(shift < PAGE_SHIFT);
1197 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1198 off += (addr - vma->vm_start) >> shift;
1199 return offset_il_node(pol, vma, off);
1200 } else
1201 return interleave_nodes(pol);
1204 #ifdef CONFIG_HUGETLBFS
1205 /* Return a zonelist suitable for a huge page allocation. */
1206 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1208 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1210 if (pol->policy == MPOL_INTERLEAVE) {
1211 unsigned nid;
1213 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1214 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1216 return zonelist_policy(GFP_HIGHUSER, pol);
1218 #endif
1220 /* Allocate a page in interleaved policy.
1221 Own path because it needs to do special accounting. */
1222 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1223 unsigned nid)
1225 struct zonelist *zl;
1226 struct page *page;
1228 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1229 page = __alloc_pages(gfp, order, zl);
1230 if (page && page_zone(page) == zl->zones[0])
1231 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1232 return page;
1236 * alloc_page_vma - Allocate a page for a VMA.
1238 * @gfp:
1239 * %GFP_USER user allocation.
1240 * %GFP_KERNEL kernel allocations,
1241 * %GFP_HIGHMEM highmem/user allocations,
1242 * %GFP_FS allocation should not call back into a file system.
1243 * %GFP_ATOMIC don't sleep.
1245 * @vma: Pointer to VMA or NULL if not available.
1246 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1248 * This function allocates a page from the kernel page pool and applies
1249 * a NUMA policy associated with the VMA or the current process.
1250 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1251 * mm_struct of the VMA to prevent it from going away. Should be used for
1252 * all allocations for pages that will be mapped into
1253 * user space. Returns NULL when no page can be allocated.
1255 * Should be called with the mm_sem of the vma hold.
1257 struct page *
1258 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1260 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1262 cpuset_update_task_memory_state();
1264 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1265 unsigned nid;
1267 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1268 return alloc_page_interleave(gfp, 0, nid);
1270 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1274 * alloc_pages_current - Allocate pages.
1276 * @gfp:
1277 * %GFP_USER user allocation,
1278 * %GFP_KERNEL kernel allocation,
1279 * %GFP_HIGHMEM highmem allocation,
1280 * %GFP_FS don't call back into a file system.
1281 * %GFP_ATOMIC don't sleep.
1282 * @order: Power of two of allocation size in pages. 0 is a single page.
1284 * Allocate a page from the kernel page pool. When not in
1285 * interrupt context and apply the current process NUMA policy.
1286 * Returns NULL when no page can be allocated.
1288 * Don't call cpuset_update_task_memory_state() unless
1289 * 1) it's ok to take cpuset_sem (can WAIT), and
1290 * 2) allocating for current task (not interrupt).
1292 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1294 struct mempolicy *pol = current->mempolicy;
1296 if ((gfp & __GFP_WAIT) && !in_interrupt())
1297 cpuset_update_task_memory_state();
1298 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1299 pol = &default_policy;
1300 if (pol->policy == MPOL_INTERLEAVE)
1301 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1302 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1304 EXPORT_SYMBOL(alloc_pages_current);
1307 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1308 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1309 * with the mems_allowed returned by cpuset_mems_allowed(). This
1310 * keeps mempolicies cpuset relative after its cpuset moves. See
1311 * further kernel/cpuset.c update_nodemask().
1313 void *cpuset_being_rebound;
1315 /* Slow path of a mempolicy copy */
1316 struct mempolicy *__mpol_copy(struct mempolicy *old)
1318 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1320 if (!new)
1321 return ERR_PTR(-ENOMEM);
1322 if (current_cpuset_is_being_rebound()) {
1323 nodemask_t mems = cpuset_mems_allowed(current);
1324 mpol_rebind_policy(old, &mems);
1326 *new = *old;
1327 atomic_set(&new->refcnt, 1);
1328 if (new->policy == MPOL_BIND) {
1329 int sz = ksize(old->v.zonelist);
1330 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1331 if (!new->v.zonelist) {
1332 kmem_cache_free(policy_cache, new);
1333 return ERR_PTR(-ENOMEM);
1336 return new;
1339 /* Slow path of a mempolicy comparison */
1340 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1342 if (!a || !b)
1343 return 0;
1344 if (a->policy != b->policy)
1345 return 0;
1346 switch (a->policy) {
1347 case MPOL_DEFAULT:
1348 return 1;
1349 case MPOL_INTERLEAVE:
1350 return nodes_equal(a->v.nodes, b->v.nodes);
1351 case MPOL_PREFERRED:
1352 return a->v.preferred_node == b->v.preferred_node;
1353 case MPOL_BIND: {
1354 int i;
1355 for (i = 0; a->v.zonelist->zones[i]; i++)
1356 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1357 return 0;
1358 return b->v.zonelist->zones[i] == NULL;
1360 default:
1361 BUG();
1362 return 0;
1366 /* Slow path of a mpol destructor. */
1367 void __mpol_free(struct mempolicy *p)
1369 if (!atomic_dec_and_test(&p->refcnt))
1370 return;
1371 if (p->policy == MPOL_BIND)
1372 kfree(p->v.zonelist);
1373 p->policy = MPOL_DEFAULT;
1374 kmem_cache_free(policy_cache, p);
1378 * Shared memory backing store policy support.
1380 * Remember policies even when nobody has shared memory mapped.
1381 * The policies are kept in Red-Black tree linked from the inode.
1382 * They are protected by the sp->lock spinlock, which should be held
1383 * for any accesses to the tree.
1386 /* lookup first element intersecting start-end */
1387 /* Caller holds sp->lock */
1388 static struct sp_node *
1389 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1391 struct rb_node *n = sp->root.rb_node;
1393 while (n) {
1394 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1396 if (start >= p->end)
1397 n = n->rb_right;
1398 else if (end <= p->start)
1399 n = n->rb_left;
1400 else
1401 break;
1403 if (!n)
1404 return NULL;
1405 for (;;) {
1406 struct sp_node *w = NULL;
1407 struct rb_node *prev = rb_prev(n);
1408 if (!prev)
1409 break;
1410 w = rb_entry(prev, struct sp_node, nd);
1411 if (w->end <= start)
1412 break;
1413 n = prev;
1415 return rb_entry(n, struct sp_node, nd);
1418 /* Insert a new shared policy into the list. */
1419 /* Caller holds sp->lock */
1420 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1422 struct rb_node **p = &sp->root.rb_node;
1423 struct rb_node *parent = NULL;
1424 struct sp_node *nd;
1426 while (*p) {
1427 parent = *p;
1428 nd = rb_entry(parent, struct sp_node, nd);
1429 if (new->start < nd->start)
1430 p = &(*p)->rb_left;
1431 else if (new->end > nd->end)
1432 p = &(*p)->rb_right;
1433 else
1434 BUG();
1436 rb_link_node(&new->nd, parent, p);
1437 rb_insert_color(&new->nd, &sp->root);
1438 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1439 new->policy ? new->policy->policy : 0);
1442 /* Find shared policy intersecting idx */
1443 struct mempolicy *
1444 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1446 struct mempolicy *pol = NULL;
1447 struct sp_node *sn;
1449 if (!sp->root.rb_node)
1450 return NULL;
1451 spin_lock(&sp->lock);
1452 sn = sp_lookup(sp, idx, idx+1);
1453 if (sn) {
1454 mpol_get(sn->policy);
1455 pol = sn->policy;
1457 spin_unlock(&sp->lock);
1458 return pol;
1461 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1463 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1464 rb_erase(&n->nd, &sp->root);
1465 mpol_free(n->policy);
1466 kmem_cache_free(sn_cache, n);
1469 struct sp_node *
1470 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1472 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1474 if (!n)
1475 return NULL;
1476 n->start = start;
1477 n->end = end;
1478 mpol_get(pol);
1479 n->policy = pol;
1480 return n;
1483 /* Replace a policy range. */
1484 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1485 unsigned long end, struct sp_node *new)
1487 struct sp_node *n, *new2 = NULL;
1489 restart:
1490 spin_lock(&sp->lock);
1491 n = sp_lookup(sp, start, end);
1492 /* Take care of old policies in the same range. */
1493 while (n && n->start < end) {
1494 struct rb_node *next = rb_next(&n->nd);
1495 if (n->start >= start) {
1496 if (n->end <= end)
1497 sp_delete(sp, n);
1498 else
1499 n->start = end;
1500 } else {
1501 /* Old policy spanning whole new range. */
1502 if (n->end > end) {
1503 if (!new2) {
1504 spin_unlock(&sp->lock);
1505 new2 = sp_alloc(end, n->end, n->policy);
1506 if (!new2)
1507 return -ENOMEM;
1508 goto restart;
1510 n->end = start;
1511 sp_insert(sp, new2);
1512 new2 = NULL;
1513 break;
1514 } else
1515 n->end = start;
1517 if (!next)
1518 break;
1519 n = rb_entry(next, struct sp_node, nd);
1521 if (new)
1522 sp_insert(sp, new);
1523 spin_unlock(&sp->lock);
1524 if (new2) {
1525 mpol_free(new2->policy);
1526 kmem_cache_free(sn_cache, new2);
1528 return 0;
1531 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1532 nodemask_t *policy_nodes)
1534 info->root = RB_ROOT;
1535 spin_lock_init(&info->lock);
1537 if (policy != MPOL_DEFAULT) {
1538 struct mempolicy *newpol;
1540 /* Falls back to MPOL_DEFAULT on any error */
1541 newpol = mpol_new(policy, policy_nodes);
1542 if (!IS_ERR(newpol)) {
1543 /* Create pseudo-vma that contains just the policy */
1544 struct vm_area_struct pvma;
1546 memset(&pvma, 0, sizeof(struct vm_area_struct));
1547 /* Policy covers entire file */
1548 pvma.vm_end = TASK_SIZE;
1549 mpol_set_shared_policy(info, &pvma, newpol);
1550 mpol_free(newpol);
1555 int mpol_set_shared_policy(struct shared_policy *info,
1556 struct vm_area_struct *vma, struct mempolicy *npol)
1558 int err;
1559 struct sp_node *new = NULL;
1560 unsigned long sz = vma_pages(vma);
1562 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1563 vma->vm_pgoff,
1564 sz, npol? npol->policy : -1,
1565 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1567 if (npol) {
1568 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1569 if (!new)
1570 return -ENOMEM;
1572 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1573 if (err && new)
1574 kmem_cache_free(sn_cache, new);
1575 return err;
1578 /* Free a backing policy store on inode delete. */
1579 void mpol_free_shared_policy(struct shared_policy *p)
1581 struct sp_node *n;
1582 struct rb_node *next;
1584 if (!p->root.rb_node)
1585 return;
1586 spin_lock(&p->lock);
1587 next = rb_first(&p->root);
1588 while (next) {
1589 n = rb_entry(next, struct sp_node, nd);
1590 next = rb_next(&n->nd);
1591 rb_erase(&n->nd, &p->root);
1592 mpol_free(n->policy);
1593 kmem_cache_free(sn_cache, n);
1595 spin_unlock(&p->lock);
1598 /* assumes fs == KERNEL_DS */
1599 void __init numa_policy_init(void)
1601 policy_cache = kmem_cache_create("numa_policy",
1602 sizeof(struct mempolicy),
1603 0, SLAB_PANIC, NULL, NULL);
1605 sn_cache = kmem_cache_create("shared_policy_node",
1606 sizeof(struct sp_node),
1607 0, SLAB_PANIC, NULL, NULL);
1609 /* Set interleaving policy for system init. This way not all
1610 the data structures allocated at system boot end up in node zero. */
1612 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1613 printk("numa_policy_init: interleaving failed\n");
1616 /* Reset policy of current process to default */
1617 void numa_default_policy(void)
1619 do_set_mempolicy(MPOL_DEFAULT, NULL);
1622 /* Migrate a policy to a different set of nodes */
1623 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1625 nodemask_t *mpolmask;
1626 nodemask_t tmp;
1628 if (!pol)
1629 return;
1630 mpolmask = &pol->cpuset_mems_allowed;
1631 if (nodes_equal(*mpolmask, *newmask))
1632 return;
1634 switch (pol->policy) {
1635 case MPOL_DEFAULT:
1636 break;
1637 case MPOL_INTERLEAVE:
1638 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1639 pol->v.nodes = tmp;
1640 *mpolmask = *newmask;
1641 current->il_next = node_remap(current->il_next,
1642 *mpolmask, *newmask);
1643 break;
1644 case MPOL_PREFERRED:
1645 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1646 *mpolmask, *newmask);
1647 *mpolmask = *newmask;
1648 break;
1649 case MPOL_BIND: {
1650 nodemask_t nodes;
1651 struct zone **z;
1652 struct zonelist *zonelist;
1654 nodes_clear(nodes);
1655 for (z = pol->v.zonelist->zones; *z; z++)
1656 node_set(zone_to_nid(*z), nodes);
1657 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1658 nodes = tmp;
1660 zonelist = bind_zonelist(&nodes);
1662 /* If no mem, then zonelist is NULL and we keep old zonelist.
1663 * If that old zonelist has no remaining mems_allowed nodes,
1664 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1667 if (!IS_ERR(zonelist)) {
1668 /* Good - got mem - substitute new zonelist */
1669 kfree(pol->v.zonelist);
1670 pol->v.zonelist = zonelist;
1672 *mpolmask = *newmask;
1673 break;
1675 default:
1676 BUG();
1677 break;
1682 * Wrapper for mpol_rebind_policy() that just requires task
1683 * pointer, and updates task mempolicy.
1686 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1688 mpol_rebind_policy(tsk->mempolicy, new);
1692 * Rebind each vma in mm to new nodemask.
1694 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1697 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1699 struct vm_area_struct *vma;
1701 down_write(&mm->mmap_sem);
1702 for (vma = mm->mmap; vma; vma = vma->vm_next)
1703 mpol_rebind_policy(vma->vm_policy, new);
1704 up_write(&mm->mmap_sem);
1708 * Display pages allocated per node and memory policy via /proc.
1711 static const char * const policy_types[] =
1712 { "default", "prefer", "bind", "interleave" };
1715 * Convert a mempolicy into a string.
1716 * Returns the number of characters in buffer (if positive)
1717 * or an error (negative)
1719 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1721 char *p = buffer;
1722 int l;
1723 nodemask_t nodes;
1724 int mode = pol ? pol->policy : MPOL_DEFAULT;
1726 switch (mode) {
1727 case MPOL_DEFAULT:
1728 nodes_clear(nodes);
1729 break;
1731 case MPOL_PREFERRED:
1732 nodes_clear(nodes);
1733 node_set(pol->v.preferred_node, nodes);
1734 break;
1736 case MPOL_BIND:
1737 get_zonemask(pol, &nodes);
1738 break;
1740 case MPOL_INTERLEAVE:
1741 nodes = pol->v.nodes;
1742 break;
1744 default:
1745 BUG();
1746 return -EFAULT;
1749 l = strlen(policy_types[mode]);
1750 if (buffer + maxlen < p + l + 1)
1751 return -ENOSPC;
1753 strcpy(p, policy_types[mode]);
1754 p += l;
1756 if (!nodes_empty(nodes)) {
1757 if (buffer + maxlen < p + 2)
1758 return -ENOSPC;
1759 *p++ = '=';
1760 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1762 return p - buffer;
1765 struct numa_maps {
1766 unsigned long pages;
1767 unsigned long anon;
1768 unsigned long active;
1769 unsigned long writeback;
1770 unsigned long mapcount_max;
1771 unsigned long dirty;
1772 unsigned long swapcache;
1773 unsigned long node[MAX_NUMNODES];
1776 static void gather_stats(struct page *page, void *private, int pte_dirty)
1778 struct numa_maps *md = private;
1779 int count = page_mapcount(page);
1781 md->pages++;
1782 if (pte_dirty || PageDirty(page))
1783 md->dirty++;
1785 if (PageSwapCache(page))
1786 md->swapcache++;
1788 if (PageActive(page))
1789 md->active++;
1791 if (PageWriteback(page))
1792 md->writeback++;
1794 if (PageAnon(page))
1795 md->anon++;
1797 if (count > md->mapcount_max)
1798 md->mapcount_max = count;
1800 md->node[page_to_nid(page)]++;
1803 #ifdef CONFIG_HUGETLB_PAGE
1804 static void check_huge_range(struct vm_area_struct *vma,
1805 unsigned long start, unsigned long end,
1806 struct numa_maps *md)
1808 unsigned long addr;
1809 struct page *page;
1811 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1812 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1813 pte_t pte;
1815 if (!ptep)
1816 continue;
1818 pte = *ptep;
1819 if (pte_none(pte))
1820 continue;
1822 page = pte_page(pte);
1823 if (!page)
1824 continue;
1826 gather_stats(page, md, pte_dirty(*ptep));
1829 #else
1830 static inline void check_huge_range(struct vm_area_struct *vma,
1831 unsigned long start, unsigned long end,
1832 struct numa_maps *md)
1835 #endif
1837 int show_numa_map(struct seq_file *m, void *v)
1839 struct proc_maps_private *priv = m->private;
1840 struct vm_area_struct *vma = v;
1841 struct numa_maps *md;
1842 struct file *file = vma->vm_file;
1843 struct mm_struct *mm = vma->vm_mm;
1844 int n;
1845 char buffer[50];
1847 if (!mm)
1848 return 0;
1850 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1851 if (!md)
1852 return 0;
1854 mpol_to_str(buffer, sizeof(buffer),
1855 get_vma_policy(priv->task, vma, vma->vm_start));
1857 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1859 if (file) {
1860 seq_printf(m, " file=");
1861 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
1862 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1863 seq_printf(m, " heap");
1864 } else if (vma->vm_start <= mm->start_stack &&
1865 vma->vm_end >= mm->start_stack) {
1866 seq_printf(m, " stack");
1869 if (is_vm_hugetlb_page(vma)) {
1870 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1871 seq_printf(m, " huge");
1872 } else {
1873 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1874 &node_online_map, MPOL_MF_STATS, md);
1877 if (!md->pages)
1878 goto out;
1880 if (md->anon)
1881 seq_printf(m," anon=%lu",md->anon);
1883 if (md->dirty)
1884 seq_printf(m," dirty=%lu",md->dirty);
1886 if (md->pages != md->anon && md->pages != md->dirty)
1887 seq_printf(m, " mapped=%lu", md->pages);
1889 if (md->mapcount_max > 1)
1890 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1892 if (md->swapcache)
1893 seq_printf(m," swapcache=%lu", md->swapcache);
1895 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1896 seq_printf(m," active=%lu", md->active);
1898 if (md->writeback)
1899 seq_printf(m," writeback=%lu", md->writeback);
1901 for_each_online_node(n)
1902 if (md->node[n])
1903 seq_printf(m, " N%d=%lu", n, md->node[n]);
1904 out:
1905 seq_putc(m, '\n');
1906 kfree(md);
1908 if (m->count < m->size)
1909 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1910 return 0;