allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / lib / proportions.c
blob0601b6f2ab9c36dbcb188e4f9105156bf69b1de7
1 /*
2 * Floating proportions
4 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 * Description:
8 * The floating proportion is a time derivative with an exponentially decaying
9 * history:
11 * p_{j} = \Sum_{i=0} (dx_{j}/dt_{-i}) / 2^(1+i)
13 * Where j is an element from {prop_local}, x_{j} is j's number of events,
14 * and i the time period over which the differential is taken. So d/dt_{-i} is
15 * the differential over the i-th last period.
17 * The decaying history gives smooth transitions. The time differential carries
18 * the notion of speed.
20 * The denominator is 2^(1+i) because we want the series to be normalised, ie.
22 * \Sum_{i=0} 1/2^(1+i) = 1
24 * Further more, if we measure time (t) in the same events as x; so that:
26 * t = \Sum_{j} x_{j}
28 * we get that:
30 * \Sum_{j} p_{j} = 1
32 * Writing this in an iterative fashion we get (dropping the 'd's):
34 * if (++x_{j}, ++t > period)
35 * t /= 2;
36 * for_each (j)
37 * x_{j} /= 2;
39 * so that:
41 * p_{j} = x_{j} / t;
43 * We optimize away the '/= 2' for the global time delta by noting that:
45 * if (++t > period) t /= 2:
47 * Can be approximated by:
49 * period/2 + (++t % period/2)
51 * [ Furthermore, when we choose period to be 2^n it can be written in terms of
52 * binary operations and wraparound artefacts disappear. ]
54 * Also note that this yields a natural counter of the elapsed periods:
56 * c = t / (period/2)
58 * [ Its monotonic increasing property can be applied to mitigate the wrap-
59 * around issue. ]
61 * This allows us to do away with the loop over all prop_locals on each period
62 * expiration. By remembering the period count under which it was last accessed
63 * as c_{j}, we can obtain the number of 'missed' cycles from:
65 * c - c_{j}
67 * We can then lazily catch up to the global period count every time we are
68 * going to use x_{j}, by doing:
70 * x_{j} /= 2^(c - c_{j}), c_{j} = c
73 #include <linux/proportions.h>
74 #include <linux/rcupdate.h>
77 * Limit the time part in order to ensure there are some bits left for the
78 * cycle counter.
80 #define PROP_MAX_SHIFT (3*BITS_PER_LONG/4)
82 int prop_descriptor_init(struct prop_descriptor *pd, int shift)
84 if (shift > PROP_MAX_SHIFT)
85 shift = PROP_MAX_SHIFT;
87 pd->index = 0;
88 pd->pg[0].shift = shift;
89 mutex_init(&pd->mutex);
90 percpu_counter_init(&pd->pg[0].events, 0);
91 percpu_counter_init(&pd->pg[1].events, 0);
93 return 0;
97 * We have two copies, and flip between them to make it seem like an atomic
98 * update. The update is not really atomic wrt the events counter, but
99 * it is internally consistent with the bit layout depending on shift.
101 * We copy the events count, move the bits around and flip the index.
103 void prop_change_shift(struct prop_descriptor *pd, int shift)
105 int index;
106 int offset;
107 u64 events;
108 unsigned long flags;
110 if (shift > PROP_MAX_SHIFT)
111 shift = PROP_MAX_SHIFT;
113 mutex_lock(&pd->mutex);
115 index = pd->index ^ 1;
116 offset = pd->pg[pd->index].shift - shift;
117 if (!offset)
118 goto out;
120 pd->pg[index].shift = shift;
122 local_irq_save(flags);
123 events = percpu_counter_sum(&pd->pg[pd->index].events);
124 if (offset < 0)
125 events <<= -offset;
126 else
127 events >>= offset;
128 percpu_counter_init(&pd->pg[index].events, events);
131 * ensure the new pg is fully written before the switch
133 smp_wmb();
134 pd->index = index;
135 local_irq_restore(flags);
137 synchronize_rcu();
139 out:
140 mutex_unlock(&pd->mutex);
144 * wrap the access to the data in an rcu_read_lock() section;
145 * this is used to track the active references.
147 static struct prop_global *prop_get_global(struct prop_descriptor *pd)
149 int index;
151 rcu_read_lock();
152 index = pd->index;
154 * match the wmb from vcd_flip()
156 smp_rmb();
157 return &pd->pg[index];
160 static void prop_put_global(struct prop_descriptor *pd, struct prop_global *pg)
162 rcu_read_unlock();
165 static void
166 prop_adjust_shift(int *pl_shift, unsigned long *pl_period, int new_shift)
168 int offset = *pl_shift - new_shift;
170 if (!offset)
171 return;
173 if (offset < 0)
174 *pl_period <<= -offset;
175 else
176 *pl_period >>= offset;
178 *pl_shift = new_shift;
182 * PERCPU
185 int prop_local_init_percpu(struct prop_local_percpu *pl)
187 spin_lock_init(&pl->lock);
188 pl->shift = 0;
189 pl->period = 0;
190 percpu_counter_init(&pl->events, 0);
191 return 0;
194 void prop_local_destroy_percpu(struct prop_local_percpu *pl)
196 percpu_counter_destroy(&pl->events);
200 * Catch up with missed period expirations.
202 * until (c_{j} == c)
203 * x_{j} -= x_{j}/2;
204 * c_{j}++;
206 static
207 void prop_norm_percpu(struct prop_global *pg, struct prop_local_percpu *pl)
209 unsigned long period = 1UL << (pg->shift - 1);
210 unsigned long period_mask = ~(period - 1);
211 unsigned long global_period;
212 unsigned long flags;
214 global_period = percpu_counter_read(&pg->events);
215 global_period &= period_mask;
218 * Fast path - check if the local and global period count still match
219 * outside of the lock.
221 if (pl->period == global_period)
222 return;
224 spin_lock_irqsave(&pl->lock, flags);
225 prop_adjust_shift(&pl->shift, &pl->period, pg->shift);
227 * For each missed period, we half the local counter.
228 * basically:
229 * pl->events >> (global_period - pl->period);
231 * but since the distributed nature of percpu counters make division
232 * rather hard, use a regular subtraction loop. This is safe, because
233 * the events will only every be incremented, hence the subtraction
234 * can never result in a negative number.
236 while (pl->period != global_period) {
237 unsigned long val = percpu_counter_read(&pl->events);
238 unsigned long half = (val + 1) >> 1;
241 * Half of zero won't be much less, break out.
242 * This limits the loop to shift iterations, even
243 * if we missed a million.
245 if (!val)
246 break;
248 percpu_counter_mod(&pl->events, -half);
249 pl->period += period;
251 pl->period = global_period;
252 spin_unlock_irqrestore(&pl->lock, flags);
256 * ++x_{j}, ++t
258 void __prop_inc_percpu(struct prop_descriptor *pd, struct prop_local_percpu *pl)
260 struct prop_global *pg = prop_get_global(pd);
262 prop_norm_percpu(pg, pl);
263 percpu_counter_mod(&pl->events, 1);
264 percpu_counter_mod(&pg->events, 1);
265 prop_put_global(pd, pg);
269 * Obtain a fraction of this proportion
271 * p_{j} = x_{j} / (period/2 + t % period/2)
273 void prop_fraction_percpu(struct prop_descriptor *pd,
274 struct prop_local_percpu *pl,
275 long *numerator, long *denominator)
277 struct prop_global *pg = prop_get_global(pd);
278 unsigned long period_2 = 1UL << (pg->shift - 1);
279 unsigned long counter_mask = period_2 - 1;
280 unsigned long global_count;
282 prop_norm_percpu(pg, pl);
283 *numerator = percpu_counter_read_positive(&pl->events);
285 global_count = percpu_counter_read(&pg->events);
286 *denominator = period_2 + (global_count & counter_mask);
288 prop_put_global(pd, pg);
292 * SINGLE
295 int prop_local_init_single(struct prop_local_single *pl)
297 spin_lock_init(&pl->lock);
298 pl->shift = 0;
299 pl->period = 0;
300 pl->events = 0;
301 return 0;
304 void prop_local_destroy_single(struct prop_local_single *pl)
309 * Catch up with missed period expirations.
311 static
312 void prop_norm_single(struct prop_global *pg, struct prop_local_single *pl)
314 unsigned long period = 1UL << (pg->shift - 1);
315 unsigned long period_mask = ~(period - 1);
316 unsigned long global_period;
317 unsigned long flags;
319 global_period = percpu_counter_read(&pg->events);
320 global_period &= period_mask;
323 * Fast path - check if the local and global period count still match
324 * outside of the lock.
326 if (pl->period == global_period)
327 return;
329 spin_lock_irqsave(&pl->lock, flags);
330 prop_adjust_shift(&pl->shift, &pl->period, pg->shift);
332 * For each missed period, we half the local counter.
334 period = (global_period - pl->period) >> (pg->shift - 1);
335 if (likely(period < BITS_PER_LONG))
336 pl->events >>= period;
337 else
338 pl->events = 0;
339 pl->period = global_period;
340 spin_unlock_irqrestore(&pl->lock, flags);
344 * ++x_{j}, ++t
346 void __prop_inc_single(struct prop_descriptor *pd, struct prop_local_single *pl)
348 struct prop_global *pg = prop_get_global(pd);
350 prop_norm_single(pg, pl);
351 pl->events++;
352 percpu_counter_mod(&pg->events, 1);
353 prop_put_global(pd, pg);
357 * Obtain a fraction of this proportion
359 * p_{j} = x_{j} / (period/2 + t % period/2)
361 void prop_fraction_single(struct prop_descriptor *pd,
362 struct prop_local_single *pl,
363 long *numerator, long *denominator)
365 struct prop_global *pg = prop_get_global(pd);
366 unsigned long period_2 = 1UL << (pg->shift - 1);
367 unsigned long counter_mask = period_2 - 1;
368 unsigned long global_count;
370 prop_norm_single(pg, pl);
371 *numerator = pl->events;
373 global_count = percpu_counter_read(&pg->events);
374 *denominator = period_2 + (global_count & counter_mask);
376 prop_put_global(pd, pg);