allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / udf / balloc.c
blob4cec9101568135fd6f18a0f50fcaf9ccd9689dc0
1 /*
2 * balloc.c
4 * PURPOSE
5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
16 * HISTORY
18 * 02/24/99 blf Created.
22 #include "udfdecl.h"
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
28 #include "udf_i.h"
29 #include "udf_sb.h"
31 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
32 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
37 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
38 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
39 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
40 #define uintBPL_t uint(BITS_PER_LONG)
41 #define uint(x) xuint(x)
42 #define xuint(x) __le ## x
44 static inline int find_next_one_bit (void * addr, int size, int offset)
46 uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
47 int result = offset & ~(BITS_PER_LONG-1);
48 unsigned long tmp;
50 if (offset >= size)
51 return size;
52 size -= result;
53 offset &= (BITS_PER_LONG-1);
54 if (offset)
56 tmp = leBPL_to_cpup(p++);
57 tmp &= ~0UL << offset;
58 if (size < BITS_PER_LONG)
59 goto found_first;
60 if (tmp)
61 goto found_middle;
62 size -= BITS_PER_LONG;
63 result += BITS_PER_LONG;
65 while (size & ~(BITS_PER_LONG-1))
67 if ((tmp = leBPL_to_cpup(p++)))
68 goto found_middle;
69 result += BITS_PER_LONG;
70 size -= BITS_PER_LONG;
72 if (!size)
73 return result;
74 tmp = leBPL_to_cpup(p);
75 found_first:
76 tmp &= ~0UL >> (BITS_PER_LONG-size);
77 found_middle:
78 return result + ffz(~tmp);
81 #define find_first_one_bit(addr, size)\
82 find_next_one_bit((addr), (size), 0)
84 static int read_block_bitmap(struct super_block * sb,
85 struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
87 struct buffer_head *bh = NULL;
88 int retval = 0;
89 kernel_lb_addr loc;
91 loc.logicalBlockNum = bitmap->s_extPosition;
92 loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
94 bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
95 if (!bh)
97 retval = -EIO;
99 bitmap->s_block_bitmap[bitmap_nr] = bh;
100 return retval;
103 static int __load_block_bitmap(struct super_block * sb,
104 struct udf_bitmap *bitmap, unsigned int block_group)
106 int retval = 0;
107 int nr_groups = bitmap->s_nr_groups;
109 if (block_group >= nr_groups)
111 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
114 if (bitmap->s_block_bitmap[block_group])
115 return block_group;
116 else
118 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
119 if (retval < 0)
120 return retval;
121 return block_group;
125 static inline int load_block_bitmap(struct super_block * sb,
126 struct udf_bitmap *bitmap, unsigned int block_group)
128 int slot;
130 slot = __load_block_bitmap(sb, bitmap, block_group);
132 if (slot < 0)
133 return slot;
135 if (!bitmap->s_block_bitmap[slot])
136 return -EIO;
138 return slot;
141 static void udf_bitmap_free_blocks(struct super_block * sb,
142 struct inode * inode,
143 struct udf_bitmap *bitmap,
144 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
146 struct udf_sb_info *sbi = UDF_SB(sb);
147 struct buffer_head * bh = NULL;
148 unsigned long block;
149 unsigned long block_group;
150 unsigned long bit;
151 unsigned long i;
152 int bitmap_nr;
153 unsigned long overflow;
155 mutex_lock(&sbi->s_alloc_mutex);
156 if (bloc.logicalBlockNum < 0 ||
157 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
159 udf_debug("%d < %d || %d + %d > %d\n",
160 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
161 UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
162 goto error_return;
165 block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
167 do_more:
168 overflow = 0;
169 block_group = block >> (sb->s_blocksize_bits + 3);
170 bit = block % (sb->s_blocksize << 3);
173 * Check to see if we are freeing blocks across a group boundary.
175 if (bit + count > (sb->s_blocksize << 3))
177 overflow = bit + count - (sb->s_blocksize << 3);
178 count -= overflow;
180 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
181 if (bitmap_nr < 0)
182 goto error_return;
184 bh = bitmap->s_block_bitmap[bitmap_nr];
185 for (i=0; i < count; i++)
187 if (udf_set_bit(bit + i, bh->b_data))
189 udf_debug("bit %ld already set\n", bit + i);
190 udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
192 else
194 if (inode)
195 DQUOT_FREE_BLOCK(inode, 1);
196 if (UDF_SB_LVIDBH(sb))
198 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
199 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
203 mark_buffer_dirty(bh);
204 if (overflow)
206 block += count;
207 count = overflow;
208 goto do_more;
210 error_return:
211 sb->s_dirt = 1;
212 if (UDF_SB_LVIDBH(sb))
213 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
214 mutex_unlock(&sbi->s_alloc_mutex);
215 return;
218 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
219 struct inode * inode,
220 struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
221 uint32_t block_count)
223 struct udf_sb_info *sbi = UDF_SB(sb);
224 int alloc_count = 0;
225 int bit, block, block_group, group_start;
226 int nr_groups, bitmap_nr;
227 struct buffer_head *bh;
229 mutex_lock(&sbi->s_alloc_mutex);
230 if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
231 goto out;
233 if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
234 block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
236 repeat:
237 nr_groups = (UDF_SB_PARTLEN(sb, partition) +
238 (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
239 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
240 block_group = block >> (sb->s_blocksize_bits + 3);
241 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
244 if (bitmap_nr < 0)
245 goto out;
246 bh = bitmap->s_block_bitmap[bitmap_nr];
248 bit = block % (sb->s_blocksize << 3);
250 while (bit < (sb->s_blocksize << 3) && block_count > 0)
252 if (!udf_test_bit(bit, bh->b_data))
253 goto out;
254 else if (DQUOT_PREALLOC_BLOCK(inode, 1))
255 goto out;
256 else if (!udf_clear_bit(bit, bh->b_data))
258 udf_debug("bit already cleared for block %d\n", bit);
259 DQUOT_FREE_BLOCK(inode, 1);
260 goto out;
262 block_count --;
263 alloc_count ++;
264 bit ++;
265 block ++;
267 mark_buffer_dirty(bh);
268 if (block_count > 0)
269 goto repeat;
270 out:
271 if (UDF_SB_LVIDBH(sb))
273 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
274 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
275 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
277 sb->s_dirt = 1;
278 mutex_unlock(&sbi->s_alloc_mutex);
279 return alloc_count;
282 static int udf_bitmap_new_block(struct super_block * sb,
283 struct inode * inode,
284 struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
286 struct udf_sb_info *sbi = UDF_SB(sb);
287 int newbit, bit=0, block, block_group, group_start;
288 int end_goal, nr_groups, bitmap_nr, i;
289 struct buffer_head *bh = NULL;
290 char *ptr;
291 int newblock = 0;
293 *err = -ENOSPC;
294 mutex_lock(&sbi->s_alloc_mutex);
296 repeat:
297 if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
298 goal = 0;
300 nr_groups = bitmap->s_nr_groups;
301 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
302 block_group = block >> (sb->s_blocksize_bits + 3);
303 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
305 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
306 if (bitmap_nr < 0)
307 goto error_return;
308 bh = bitmap->s_block_bitmap[bitmap_nr];
309 ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
311 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
313 bit = block % (sb->s_blocksize << 3);
315 if (udf_test_bit(bit, bh->b_data))
317 goto got_block;
319 end_goal = (bit + 63) & ~63;
320 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
321 if (bit < end_goal)
322 goto got_block;
323 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
324 newbit = (ptr - ((char *)bh->b_data)) << 3;
325 if (newbit < sb->s_blocksize << 3)
327 bit = newbit;
328 goto search_back;
330 newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
331 if (newbit < sb->s_blocksize << 3)
333 bit = newbit;
334 goto got_block;
338 for (i=0; i<(nr_groups*2); i++)
340 block_group ++;
341 if (block_group >= nr_groups)
342 block_group = 0;
343 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
345 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
346 if (bitmap_nr < 0)
347 goto error_return;
348 bh = bitmap->s_block_bitmap[bitmap_nr];
349 if (i < nr_groups)
351 ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
352 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
354 bit = (ptr - ((char *)bh->b_data)) << 3;
355 break;
358 else
360 bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
361 if (bit < sb->s_blocksize << 3)
362 break;
365 if (i >= (nr_groups*2))
367 mutex_unlock(&sbi->s_alloc_mutex);
368 return newblock;
370 if (bit < sb->s_blocksize << 3)
371 goto search_back;
372 else
373 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
374 if (bit >= sb->s_blocksize << 3)
376 mutex_unlock(&sbi->s_alloc_mutex);
377 return 0;
380 search_back:
381 for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
383 got_block:
386 * Check quota for allocation of this block.
388 if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
390 mutex_unlock(&sbi->s_alloc_mutex);
391 *err = -EDQUOT;
392 return 0;
395 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
396 (sizeof(struct spaceBitmapDesc) << 3);
398 if (!udf_clear_bit(bit, bh->b_data))
400 udf_debug("bit already cleared for block %d\n", bit);
401 goto repeat;
404 mark_buffer_dirty(bh);
406 if (UDF_SB_LVIDBH(sb))
408 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
409 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
410 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
412 sb->s_dirt = 1;
413 mutex_unlock(&sbi->s_alloc_mutex);
414 *err = 0;
415 return newblock;
417 error_return:
418 *err = -EIO;
419 mutex_unlock(&sbi->s_alloc_mutex);
420 return 0;
423 static void udf_table_free_blocks(struct super_block * sb,
424 struct inode * inode,
425 struct inode * table,
426 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
428 struct udf_sb_info *sbi = UDF_SB(sb);
429 uint32_t start, end;
430 uint32_t elen;
431 kernel_lb_addr eloc;
432 struct extent_position oepos, epos;
433 int8_t etype;
434 int i;
436 mutex_lock(&sbi->s_alloc_mutex);
437 if (bloc.logicalBlockNum < 0 ||
438 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
440 udf_debug("%d < %d || %d + %d > %d\n",
441 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
442 UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
443 goto error_return;
446 /* We do this up front - There are some error conditions that could occure,
447 but.. oh well */
448 if (inode)
449 DQUOT_FREE_BLOCK(inode, count);
450 if (UDF_SB_LVIDBH(sb))
452 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
453 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
454 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
457 start = bloc.logicalBlockNum + offset;
458 end = bloc.logicalBlockNum + offset + count - 1;
460 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
461 elen = 0;
462 epos.block = oepos.block = UDF_I_LOCATION(table);
463 epos.bh = oepos.bh = NULL;
465 while (count && (etype =
466 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
468 if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
469 start))
471 if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
473 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
474 start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
475 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
477 else
479 elen = (etype << 30) |
480 (elen + (count << sb->s_blocksize_bits));
481 start += count;
482 count = 0;
484 udf_write_aext(table, &oepos, eloc, elen, 1);
486 else if (eloc.logicalBlockNum == (end + 1))
488 if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
490 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
491 end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
492 eloc.logicalBlockNum -=
493 ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
494 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
496 else
498 eloc.logicalBlockNum = start;
499 elen = (etype << 30) |
500 (elen + (count << sb->s_blocksize_bits));
501 end -= count;
502 count = 0;
504 udf_write_aext(table, &oepos, eloc, elen, 1);
507 if (epos.bh != oepos.bh)
509 i = -1;
510 oepos.block = epos.block;
511 brelse(oepos.bh);
512 get_bh(epos.bh);
513 oepos.bh = epos.bh;
514 oepos.offset = 0;
516 else
517 oepos.offset = epos.offset;
520 if (count)
522 /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
523 a new block, and since we hold the super block lock already
524 very bad things would happen :)
526 We copy the behavior of udf_add_aext, but instead of
527 trying to allocate a new block close to the existing one,
528 we just steal a block from the extent we are trying to add.
530 It would be nice if the blocks were close together, but it
531 isn't required.
534 int adsize;
535 short_ad *sad = NULL;
536 long_ad *lad = NULL;
537 struct allocExtDesc *aed;
539 eloc.logicalBlockNum = start;
540 elen = EXT_RECORDED_ALLOCATED |
541 (count << sb->s_blocksize_bits);
543 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
544 adsize = sizeof(short_ad);
545 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
546 adsize = sizeof(long_ad);
547 else
549 brelse(oepos.bh);
550 brelse(epos.bh);
551 goto error_return;
554 if (epos.offset + (2 * adsize) > sb->s_blocksize)
556 char *sptr, *dptr;
557 int loffset;
559 brelse(oepos.bh);
560 oepos = epos;
562 /* Steal a block from the extent being free'd */
563 epos.block.logicalBlockNum = eloc.logicalBlockNum;
564 eloc.logicalBlockNum ++;
565 elen -= sb->s_blocksize;
567 if (!(epos.bh = udf_tread(sb,
568 udf_get_lb_pblock(sb, epos.block, 0))))
570 brelse(oepos.bh);
571 goto error_return;
573 aed = (struct allocExtDesc *)(epos.bh->b_data);
574 aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum);
575 if (epos.offset + adsize > sb->s_blocksize)
577 loffset = epos.offset;
578 aed->lengthAllocDescs = cpu_to_le32(adsize);
579 sptr = UDF_I_DATA(inode) + epos.offset -
580 udf_file_entry_alloc_offset(inode) +
581 UDF_I_LENEATTR(inode) - adsize;
582 dptr = epos.bh->b_data + sizeof(struct allocExtDesc);
583 memcpy(dptr, sptr, adsize);
584 epos.offset = sizeof(struct allocExtDesc) + adsize;
586 else
588 loffset = epos.offset + adsize;
589 aed->lengthAllocDescs = cpu_to_le32(0);
590 sptr = oepos.bh->b_data + epos.offset;
591 epos.offset = sizeof(struct allocExtDesc);
593 if (oepos.bh)
595 aed = (struct allocExtDesc *)oepos.bh->b_data;
596 aed->lengthAllocDescs =
597 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
599 else
601 UDF_I_LENALLOC(table) += adsize;
602 mark_inode_dirty(table);
605 if (UDF_SB_UDFREV(sb) >= 0x0200)
606 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1,
607 epos.block.logicalBlockNum, sizeof(tag));
608 else
609 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1,
610 epos.block.logicalBlockNum, sizeof(tag));
611 switch (UDF_I_ALLOCTYPE(table))
613 case ICBTAG_FLAG_AD_SHORT:
615 sad = (short_ad *)sptr;
616 sad->extLength = cpu_to_le32(
617 EXT_NEXT_EXTENT_ALLOCDECS |
618 sb->s_blocksize);
619 sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum);
620 break;
622 case ICBTAG_FLAG_AD_LONG:
624 lad = (long_ad *)sptr;
625 lad->extLength = cpu_to_le32(
626 EXT_NEXT_EXTENT_ALLOCDECS |
627 sb->s_blocksize);
628 lad->extLocation = cpu_to_lelb(epos.block);
629 break;
632 if (oepos.bh)
634 udf_update_tag(oepos.bh->b_data, loffset);
635 mark_buffer_dirty(oepos.bh);
637 else
638 mark_inode_dirty(table);
641 if (elen) /* It's possible that stealing the block emptied the extent */
643 udf_write_aext(table, &epos, eloc, elen, 1);
645 if (!epos.bh)
647 UDF_I_LENALLOC(table) += adsize;
648 mark_inode_dirty(table);
650 else
652 aed = (struct allocExtDesc *)epos.bh->b_data;
653 aed->lengthAllocDescs =
654 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
655 udf_update_tag(epos.bh->b_data, epos.offset);
656 mark_buffer_dirty(epos.bh);
661 brelse(epos.bh);
662 brelse(oepos.bh);
664 error_return:
665 sb->s_dirt = 1;
666 mutex_unlock(&sbi->s_alloc_mutex);
667 return;
670 static int udf_table_prealloc_blocks(struct super_block * sb,
671 struct inode * inode,
672 struct inode *table, uint16_t partition, uint32_t first_block,
673 uint32_t block_count)
675 struct udf_sb_info *sbi = UDF_SB(sb);
676 int alloc_count = 0;
677 uint32_t elen, adsize;
678 kernel_lb_addr eloc;
679 struct extent_position epos;
680 int8_t etype = -1;
682 if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
683 return 0;
685 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
686 adsize = sizeof(short_ad);
687 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
688 adsize = sizeof(long_ad);
689 else
690 return 0;
692 mutex_lock(&sbi->s_alloc_mutex);
693 epos.offset = sizeof(struct unallocSpaceEntry);
694 epos.block = UDF_I_LOCATION(table);
695 epos.bh = NULL;
696 eloc.logicalBlockNum = 0xFFFFFFFF;
698 while (first_block != eloc.logicalBlockNum && (etype =
699 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
701 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
702 eloc.logicalBlockNum, elen, first_block);
703 ; /* empty loop body */
706 if (first_block == eloc.logicalBlockNum)
708 epos.offset -= adsize;
710 alloc_count = (elen >> sb->s_blocksize_bits);
711 if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
712 alloc_count = 0;
713 else if (alloc_count > block_count)
715 alloc_count = block_count;
716 eloc.logicalBlockNum += alloc_count;
717 elen -= (alloc_count << sb->s_blocksize_bits);
718 udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1);
720 else
721 udf_delete_aext(table, epos, eloc, (etype << 30) | elen);
723 else
724 alloc_count = 0;
726 brelse(epos.bh);
728 if (alloc_count && UDF_SB_LVIDBH(sb))
730 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
731 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
732 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
733 sb->s_dirt = 1;
735 mutex_unlock(&sbi->s_alloc_mutex);
736 return alloc_count;
739 static int udf_table_new_block(struct super_block * sb,
740 struct inode * inode,
741 struct inode *table, uint16_t partition, uint32_t goal, int *err)
743 struct udf_sb_info *sbi = UDF_SB(sb);
744 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
745 uint32_t newblock = 0, adsize;
746 uint32_t elen, goal_elen = 0;
747 kernel_lb_addr eloc, goal_eloc;
748 struct extent_position epos, goal_epos;
749 int8_t etype;
751 *err = -ENOSPC;
753 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
754 adsize = sizeof(short_ad);
755 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
756 adsize = sizeof(long_ad);
757 else
758 return newblock;
760 mutex_lock(&sbi->s_alloc_mutex);
761 if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
762 goal = 0;
764 /* We search for the closest matching block to goal. If we find a exact hit,
765 we stop. Otherwise we keep going till we run out of extents.
766 We store the buffer_head, bloc, and extoffset of the current closest
767 match and use that when we are done.
769 epos.offset = sizeof(struct unallocSpaceEntry);
770 epos.block = UDF_I_LOCATION(table);
771 epos.bh = goal_epos.bh = NULL;
773 while (spread && (etype =
774 udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
776 if (goal >= eloc.logicalBlockNum)
778 if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
779 nspread = 0;
780 else
781 nspread = goal - eloc.logicalBlockNum -
782 (elen >> sb->s_blocksize_bits);
784 else
785 nspread = eloc.logicalBlockNum - goal;
787 if (nspread < spread)
789 spread = nspread;
790 if (goal_epos.bh != epos.bh)
792 brelse(goal_epos.bh);
793 goal_epos.bh = epos.bh;
794 get_bh(goal_epos.bh);
796 goal_epos.block = epos.block;
797 goal_epos.offset = epos.offset - adsize;
798 goal_eloc = eloc;
799 goal_elen = (etype << 30) | elen;
803 brelse(epos.bh);
805 if (spread == 0xFFFFFFFF)
807 brelse(goal_epos.bh);
808 mutex_unlock(&sbi->s_alloc_mutex);
809 return 0;
812 /* Only allocate blocks from the beginning of the extent.
813 That way, we only delete (empty) extents, never have to insert an
814 extent because of splitting */
815 /* This works, but very poorly.... */
817 newblock = goal_eloc.logicalBlockNum;
818 goal_eloc.logicalBlockNum ++;
819 goal_elen -= sb->s_blocksize;
821 if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
823 brelse(goal_epos.bh);
824 mutex_unlock(&sbi->s_alloc_mutex);
825 *err = -EDQUOT;
826 return 0;
829 if (goal_elen)
830 udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
831 else
832 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
833 brelse(goal_epos.bh);
835 if (UDF_SB_LVIDBH(sb))
837 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
838 cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
839 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
842 sb->s_dirt = 1;
843 mutex_unlock(&sbi->s_alloc_mutex);
844 *err = 0;
845 return newblock;
848 inline void udf_free_blocks(struct super_block * sb,
849 struct inode * inode,
850 kernel_lb_addr bloc, uint32_t offset, uint32_t count)
852 uint16_t partition = bloc.partitionReferenceNum;
854 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
856 return udf_bitmap_free_blocks(sb, inode,
857 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
858 bloc, offset, count);
860 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
862 return udf_table_free_blocks(sb, inode,
863 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
864 bloc, offset, count);
866 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
868 return udf_bitmap_free_blocks(sb, inode,
869 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
870 bloc, offset, count);
872 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
874 return udf_table_free_blocks(sb, inode,
875 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
876 bloc, offset, count);
878 else
879 return;
882 inline int udf_prealloc_blocks(struct super_block * sb,
883 struct inode * inode,
884 uint16_t partition, uint32_t first_block, uint32_t block_count)
886 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
888 return udf_bitmap_prealloc_blocks(sb, inode,
889 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
890 partition, first_block, block_count);
892 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
894 return udf_table_prealloc_blocks(sb, inode,
895 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
896 partition, first_block, block_count);
898 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
900 return udf_bitmap_prealloc_blocks(sb, inode,
901 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
902 partition, first_block, block_count);
904 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
906 return udf_table_prealloc_blocks(sb, inode,
907 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
908 partition, first_block, block_count);
910 else
911 return 0;
914 inline int udf_new_block(struct super_block * sb,
915 struct inode * inode,
916 uint16_t partition, uint32_t goal, int *err)
918 int ret;
920 if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
922 ret = udf_bitmap_new_block(sb, inode,
923 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
924 partition, goal, err);
925 return ret;
927 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
929 return udf_table_new_block(sb, inode,
930 UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
931 partition, goal, err);
933 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
935 return udf_bitmap_new_block(sb, inode,
936 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
937 partition, goal, err);
939 else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
941 return udf_table_new_block(sb, inode,
942 UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
943 partition, goal, err);
945 else
947 *err = -EIO;
948 return 0;