allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / reiserfs / inode.c
bloba7d0e903831cae648b00493e83514ba69e7f73b9
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
21 static int reiserfs_commit_write(struct file *f, struct page *page,
22 unsigned from, unsigned to);
23 static int reiserfs_prepare_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
26 void reiserfs_delete_inode(struct inode *inode)
28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 int jbegin_count =
30 JOURNAL_PER_BALANCE_CNT * 2 +
31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 struct reiserfs_transaction_handle th;
33 int err;
35 truncate_inode_pages(&inode->i_data, 0);
37 reiserfs_write_lock(inode->i_sb);
39 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
40 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
41 reiserfs_delete_xattrs(inode);
43 if (journal_begin(&th, inode->i_sb, jbegin_count))
44 goto out;
45 reiserfs_update_inode_transaction(inode);
47 err = reiserfs_delete_object(&th, inode);
49 /* Do quota update inside a transaction for journaled quotas. We must do that
50 * after delete_object so that quota updates go into the same transaction as
51 * stat data deletion */
52 if (!err)
53 DQUOT_FREE_INODE(inode);
55 if (journal_end(&th, inode->i_sb, jbegin_count))
56 goto out;
58 /* check return value from reiserfs_delete_object after
59 * ending the transaction
61 if (err)
62 goto out;
64 /* all items of file are deleted, so we can remove "save" link */
65 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
66 * about an error here */
67 } else {
68 /* no object items are in the tree */
71 out:
72 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
73 inode->i_blocks = 0;
74 reiserfs_write_unlock(inode->i_sb);
77 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
78 __u32 objectid, loff_t offset, int type, int length)
80 key->version = version;
82 key->on_disk_key.k_dir_id = dirid;
83 key->on_disk_key.k_objectid = objectid;
84 set_cpu_key_k_offset(key, offset);
85 set_cpu_key_k_type(key, type);
86 key->key_length = length;
89 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
90 offset and type of key */
91 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
92 int type, int length)
94 _make_cpu_key(key, get_inode_item_key_version(inode),
95 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
96 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
97 length);
101 // when key is 0, do not set version and short key
103 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
104 int version,
105 loff_t offset, int type, int length,
106 int entry_count /*or ih_free_space */ )
108 if (key) {
109 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
110 ih->ih_key.k_objectid =
111 cpu_to_le32(key->on_disk_key.k_objectid);
113 put_ih_version(ih, version);
114 set_le_ih_k_offset(ih, offset);
115 set_le_ih_k_type(ih, type);
116 put_ih_item_len(ih, length);
117 /* set_ih_free_space (ih, 0); */
118 // for directory items it is entry count, for directs and stat
119 // datas - 0xffff, for indirects - 0
120 put_ih_entry_count(ih, entry_count);
124 // FIXME: we might cache recently accessed indirect item
126 // Ugh. Not too eager for that....
127 // I cut the code until such time as I see a convincing argument (benchmark).
128 // I don't want a bloated inode struct..., and I don't like code complexity....
130 /* cutting the code is fine, since it really isn't in use yet and is easy
131 ** to add back in. But, Vladimir has a really good idea here. Think
132 ** about what happens for reading a file. For each page,
133 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
134 ** an indirect item. This indirect item has X number of pointers, where
135 ** X is a big number if we've done the block allocation right. But,
136 ** we only use one or two of these pointers during each call to readpage,
137 ** needlessly researching again later on.
139 ** The size of the cache could be dynamic based on the size of the file.
141 ** I'd also like to see us cache the location the stat data item, since
142 ** we are needlessly researching for that frequently.
144 ** --chris
147 /* If this page has a file tail in it, and
148 ** it was read in by get_block_create_0, the page data is valid,
149 ** but tail is still sitting in a direct item, and we can't write to
150 ** it. So, look through this page, and check all the mapped buffers
151 ** to make sure they have valid block numbers. Any that don't need
152 ** to be unmapped, so that block_prepare_write will correctly call
153 ** reiserfs_get_block to convert the tail into an unformatted node
155 static inline void fix_tail_page_for_writing(struct page *page)
157 struct buffer_head *head, *next, *bh;
159 if (page && page_has_buffers(page)) {
160 head = page_buffers(page);
161 bh = head;
162 do {
163 next = bh->b_this_page;
164 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
165 reiserfs_unmap_buffer(bh);
167 bh = next;
168 } while (bh != head);
172 /* reiserfs_get_block does not need to allocate a block only if it has been
173 done already or non-hole position has been found in the indirect item */
174 static inline int allocation_needed(int retval, b_blocknr_t allocated,
175 struct item_head *ih,
176 __le32 * item, int pos_in_item)
178 if (allocated)
179 return 0;
180 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
181 get_block_num(item, pos_in_item))
182 return 0;
183 return 1;
186 static inline int indirect_item_found(int retval, struct item_head *ih)
188 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
191 static inline void set_block_dev_mapped(struct buffer_head *bh,
192 b_blocknr_t block, struct inode *inode)
194 map_bh(bh, inode->i_sb, block);
198 // files which were created in the earlier version can not be longer,
199 // than 2 gb
201 static int file_capable(struct inode *inode, long block)
203 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
204 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
205 return 1;
207 return 0;
210 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
211 struct inode *inode, struct treepath *path)
213 struct super_block *s = th->t_super;
214 int len = th->t_blocks_allocated;
215 int err;
217 BUG_ON(!th->t_trans_id);
218 BUG_ON(!th->t_refcount);
220 pathrelse(path);
222 /* we cannot restart while nested */
223 if (th->t_refcount > 1) {
224 return 0;
226 reiserfs_update_sd(th, inode);
227 err = journal_end(th, s, len);
228 if (!err) {
229 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
230 if (!err)
231 reiserfs_update_inode_transaction(inode);
233 return err;
236 // it is called by get_block when create == 0. Returns block number
237 // for 'block'-th logical block of file. When it hits direct item it
238 // returns 0 (being called from bmap) or read direct item into piece
239 // of page (bh_result)
241 // Please improve the english/clarity in the comment above, as it is
242 // hard to understand.
244 static int _get_block_create_0(struct inode *inode, long block,
245 struct buffer_head *bh_result, int args)
247 INITIALIZE_PATH(path);
248 struct cpu_key key;
249 struct buffer_head *bh;
250 struct item_head *ih, tmp_ih;
251 int fs_gen;
252 int blocknr;
253 char *p = NULL;
254 int chars;
255 int ret;
256 int result;
257 int done = 0;
258 unsigned long offset;
260 // prepare the key to look for the 'block'-th block of file
261 make_cpu_key(&key, inode,
262 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
265 research:
266 result = search_for_position_by_key(inode->i_sb, &key, &path);
267 if (result != POSITION_FOUND) {
268 pathrelse(&path);
269 if (p)
270 kunmap(bh_result->b_page);
271 if (result == IO_ERROR)
272 return -EIO;
273 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
274 // That there is some MMAPED data associated with it that is yet to be written to disk.
275 if ((args & GET_BLOCK_NO_HOLE)
276 && !PageUptodate(bh_result->b_page)) {
277 return -ENOENT;
279 return 0;
282 bh = get_last_bh(&path);
283 ih = get_ih(&path);
284 if (is_indirect_le_ih(ih)) {
285 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
287 /* FIXME: here we could cache indirect item or part of it in
288 the inode to avoid search_by_key in case of subsequent
289 access to file */
290 blocknr = get_block_num(ind_item, path.pos_in_item);
291 ret = 0;
292 if (blocknr) {
293 map_bh(bh_result, inode->i_sb, blocknr);
294 if (path.pos_in_item ==
295 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
296 set_buffer_boundary(bh_result);
298 } else
299 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
300 // That there is some MMAPED data associated with it that is yet to be written to disk.
301 if ((args & GET_BLOCK_NO_HOLE)
302 && !PageUptodate(bh_result->b_page)) {
303 ret = -ENOENT;
306 pathrelse(&path);
307 if (p)
308 kunmap(bh_result->b_page);
309 return ret;
311 // requested data are in direct item(s)
312 if (!(args & GET_BLOCK_READ_DIRECT)) {
313 // we are called by bmap. FIXME: we can not map block of file
314 // when it is stored in direct item(s)
315 pathrelse(&path);
316 if (p)
317 kunmap(bh_result->b_page);
318 return -ENOENT;
321 /* if we've got a direct item, and the buffer or page was uptodate,
322 ** we don't want to pull data off disk again. skip to the
323 ** end, where we map the buffer and return
325 if (buffer_uptodate(bh_result)) {
326 goto finished;
327 } else
329 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
330 ** pages without any buffers. If the page is up to date, we don't want
331 ** read old data off disk. Set the up to date bit on the buffer instead
332 ** and jump to the end
334 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
335 set_buffer_uptodate(bh_result);
336 goto finished;
338 // read file tail into part of page
339 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
340 fs_gen = get_generation(inode->i_sb);
341 copy_item_head(&tmp_ih, ih);
343 /* we only want to kmap if we are reading the tail into the page.
344 ** this is not the common case, so we don't kmap until we are
345 ** sure we need to. But, this means the item might move if
346 ** kmap schedules
348 if (!p) {
349 p = (char *)kmap(bh_result->b_page);
350 if (fs_changed(fs_gen, inode->i_sb)
351 && item_moved(&tmp_ih, &path)) {
352 goto research;
355 p += offset;
356 memset(p, 0, inode->i_sb->s_blocksize);
357 do {
358 if (!is_direct_le_ih(ih)) {
359 BUG();
361 /* make sure we don't read more bytes than actually exist in
362 ** the file. This can happen in odd cases where i_size isn't
363 ** correct, and when direct item padding results in a few
364 ** extra bytes at the end of the direct item
366 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
367 break;
368 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
369 chars =
370 inode->i_size - (le_ih_k_offset(ih) - 1) -
371 path.pos_in_item;
372 done = 1;
373 } else {
374 chars = ih_item_len(ih) - path.pos_in_item;
376 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
378 if (done)
379 break;
381 p += chars;
383 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
384 // we done, if read direct item is not the last item of
385 // node FIXME: we could try to check right delimiting key
386 // to see whether direct item continues in the right
387 // neighbor or rely on i_size
388 break;
390 // update key to look for the next piece
391 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
392 result = search_for_position_by_key(inode->i_sb, &key, &path);
393 if (result != POSITION_FOUND)
394 // i/o error most likely
395 break;
396 bh = get_last_bh(&path);
397 ih = get_ih(&path);
398 } while (1);
400 flush_dcache_page(bh_result->b_page);
401 kunmap(bh_result->b_page);
403 finished:
404 pathrelse(&path);
406 if (result == IO_ERROR)
407 return -EIO;
409 /* this buffer has valid data, but isn't valid for io. mapping it to
410 * block #0 tells the rest of reiserfs it just has a tail in it
412 map_bh(bh_result, inode->i_sb, 0);
413 set_buffer_uptodate(bh_result);
414 return 0;
417 // this is called to create file map. So, _get_block_create_0 will not
418 // read direct item
419 static int reiserfs_bmap(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
422 if (!file_capable(inode, block))
423 return -EFBIG;
425 reiserfs_write_lock(inode->i_sb);
426 /* do not read the direct item */
427 _get_block_create_0(inode, block, bh_result, 0);
428 reiserfs_write_unlock(inode->i_sb);
429 return 0;
432 /* special version of get_block that is only used by grab_tail_page right
433 ** now. It is sent to block_prepare_write, and when you try to get a
434 ** block past the end of the file (or a block from a hole) it returns
435 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
436 ** be able to do i/o on the buffers returned, unless an error value
437 ** is also returned.
439 ** So, this allows block_prepare_write to be used for reading a single block
440 ** in a page. Where it does not produce a valid page for holes, or past the
441 ** end of the file. This turns out to be exactly what we need for reading
442 ** tails for conversion.
444 ** The point of the wrapper is forcing a certain value for create, even
445 ** though the VFS layer is calling this function with create==1. If you
446 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
447 ** don't use this function.
449 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
450 struct buffer_head *bh_result,
451 int create)
453 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
456 /* This is special helper for reiserfs_get_block in case we are executing
457 direct_IO request. */
458 static int reiserfs_get_blocks_direct_io(struct inode *inode,
459 sector_t iblock,
460 struct buffer_head *bh_result,
461 int create)
463 int ret;
465 bh_result->b_page = NULL;
467 /* We set the b_size before reiserfs_get_block call since it is
468 referenced in convert_tail_for_hole() that may be called from
469 reiserfs_get_block() */
470 bh_result->b_size = (1 << inode->i_blkbits);
472 ret = reiserfs_get_block(inode, iblock, bh_result,
473 create | GET_BLOCK_NO_DANGLE);
474 if (ret)
475 goto out;
477 /* don't allow direct io onto tail pages */
478 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
479 /* make sure future calls to the direct io funcs for this offset
480 ** in the file fail by unmapping the buffer
482 clear_buffer_mapped(bh_result);
483 ret = -EINVAL;
485 /* Possible unpacked tail. Flush the data before pages have
486 disappeared */
487 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
488 int err;
489 lock_kernel();
490 err = reiserfs_commit_for_inode(inode);
491 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
492 unlock_kernel();
493 if (err < 0)
494 ret = err;
496 out:
497 return ret;
501 ** helper function for when reiserfs_get_block is called for a hole
502 ** but the file tail is still in a direct item
503 ** bh_result is the buffer head for the hole
504 ** tail_offset is the offset of the start of the tail in the file
506 ** This calls prepare_write, which will start a new transaction
507 ** you should not be in a transaction, or have any paths held when you
508 ** call this.
510 static int convert_tail_for_hole(struct inode *inode,
511 struct buffer_head *bh_result,
512 loff_t tail_offset)
514 unsigned long index;
515 unsigned long tail_end;
516 unsigned long tail_start;
517 struct page *tail_page;
518 struct page *hole_page = bh_result->b_page;
519 int retval = 0;
521 if ((tail_offset & (bh_result->b_size - 1)) != 1)
522 return -EIO;
524 /* always try to read until the end of the block */
525 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
526 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
528 index = tail_offset >> PAGE_CACHE_SHIFT;
529 /* hole_page can be zero in case of direct_io, we are sure
530 that we cannot get here if we write with O_DIRECT into
531 tail page */
532 if (!hole_page || index != hole_page->index) {
533 tail_page = grab_cache_page(inode->i_mapping, index);
534 retval = -ENOMEM;
535 if (!tail_page) {
536 goto out;
538 } else {
539 tail_page = hole_page;
542 /* we don't have to make sure the conversion did not happen while
543 ** we were locking the page because anyone that could convert
544 ** must first take i_mutex.
546 ** We must fix the tail page for writing because it might have buffers
547 ** that are mapped, but have a block number of 0. This indicates tail
548 ** data that has been read directly into the page, and block_prepare_write
549 ** won't trigger a get_block in this case.
551 fix_tail_page_for_writing(tail_page);
552 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
553 if (retval)
554 goto unlock;
556 /* tail conversion might change the data in the page */
557 flush_dcache_page(tail_page);
559 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
561 unlock:
562 if (tail_page != hole_page) {
563 unlock_page(tail_page);
564 page_cache_release(tail_page);
566 out:
567 return retval;
570 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
571 long block,
572 struct inode *inode,
573 b_blocknr_t * allocated_block_nr,
574 struct treepath *path, int flags)
576 BUG_ON(!th->t_trans_id);
578 #ifdef REISERFS_PREALLOCATE
579 if (!(flags & GET_BLOCK_NO_IMUX)) {
580 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
581 path, block);
583 #endif
584 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
585 block);
588 int reiserfs_get_block(struct inode *inode, sector_t block,
589 struct buffer_head *bh_result, int create)
591 int repeat, retval = 0;
592 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
593 INITIALIZE_PATH(path);
594 int pos_in_item;
595 struct cpu_key key;
596 struct buffer_head *bh, *unbh = NULL;
597 struct item_head *ih, tmp_ih;
598 __le32 *item;
599 int done;
600 int fs_gen;
601 struct reiserfs_transaction_handle *th = NULL;
602 /* space reserved in transaction batch:
603 . 3 balancings in direct->indirect conversion
604 . 1 block involved into reiserfs_update_sd()
605 XXX in practically impossible worst case direct2indirect()
606 can incur (much) more than 3 balancings.
607 quota update for user, group */
608 int jbegin_count =
609 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
610 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
611 int version;
612 int dangle = 1;
613 loff_t new_offset =
614 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
616 /* bad.... */
617 reiserfs_write_lock(inode->i_sb);
618 version = get_inode_item_key_version(inode);
620 if (!file_capable(inode, block)) {
621 reiserfs_write_unlock(inode->i_sb);
622 return -EFBIG;
625 /* if !create, we aren't changing the FS, so we don't need to
626 ** log anything, so we don't need to start a transaction
628 if (!(create & GET_BLOCK_CREATE)) {
629 int ret;
630 /* find number of block-th logical block of the file */
631 ret = _get_block_create_0(inode, block, bh_result,
632 create | GET_BLOCK_READ_DIRECT);
633 reiserfs_write_unlock(inode->i_sb);
634 return ret;
637 * if we're already in a transaction, make sure to close
638 * any new transactions we start in this func
640 if ((create & GET_BLOCK_NO_DANGLE) ||
641 reiserfs_transaction_running(inode->i_sb))
642 dangle = 0;
644 /* If file is of such a size, that it might have a tail and tails are enabled
645 ** we should mark it as possibly needing tail packing on close
647 if ((have_large_tails(inode->i_sb)
648 && inode->i_size < i_block_size(inode) * 4)
649 || (have_small_tails(inode->i_sb)
650 && inode->i_size < i_block_size(inode)))
651 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
653 /* set the key of the first byte in the 'block'-th block of file */
654 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
655 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
656 start_trans:
657 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
658 if (!th) {
659 retval = -ENOMEM;
660 goto failure;
662 reiserfs_update_inode_transaction(inode);
664 research:
666 retval = search_for_position_by_key(inode->i_sb, &key, &path);
667 if (retval == IO_ERROR) {
668 retval = -EIO;
669 goto failure;
672 bh = get_last_bh(&path);
673 ih = get_ih(&path);
674 item = get_item(&path);
675 pos_in_item = path.pos_in_item;
677 fs_gen = get_generation(inode->i_sb);
678 copy_item_head(&tmp_ih, ih);
680 if (allocation_needed
681 (retval, allocated_block_nr, ih, item, pos_in_item)) {
682 /* we have to allocate block for the unformatted node */
683 if (!th) {
684 pathrelse(&path);
685 goto start_trans;
688 repeat =
689 _allocate_block(th, block, inode, &allocated_block_nr,
690 &path, create);
692 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
693 /* restart the transaction to give the journal a chance to free
694 ** some blocks. releases the path, so we have to go back to
695 ** research if we succeed on the second try
697 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
698 retval = restart_transaction(th, inode, &path);
699 if (retval)
700 goto failure;
701 repeat =
702 _allocate_block(th, block, inode,
703 &allocated_block_nr, NULL, create);
705 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
706 goto research;
708 if (repeat == QUOTA_EXCEEDED)
709 retval = -EDQUOT;
710 else
711 retval = -ENOSPC;
712 goto failure;
715 if (fs_changed(fs_gen, inode->i_sb)
716 && item_moved(&tmp_ih, &path)) {
717 goto research;
721 if (indirect_item_found(retval, ih)) {
722 b_blocknr_t unfm_ptr;
723 /* 'block'-th block is in the file already (there is
724 corresponding cell in some indirect item). But it may be
725 zero unformatted node pointer (hole) */
726 unfm_ptr = get_block_num(item, pos_in_item);
727 if (unfm_ptr == 0) {
728 /* use allocated block to plug the hole */
729 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
730 if (fs_changed(fs_gen, inode->i_sb)
731 && item_moved(&tmp_ih, &path)) {
732 reiserfs_restore_prepared_buffer(inode->i_sb,
733 bh);
734 goto research;
736 set_buffer_new(bh_result);
737 if (buffer_dirty(bh_result)
738 && reiserfs_data_ordered(inode->i_sb))
739 reiserfs_add_ordered_list(inode, bh_result);
740 put_block_num(item, pos_in_item, allocated_block_nr);
741 unfm_ptr = allocated_block_nr;
742 journal_mark_dirty(th, inode->i_sb, bh);
743 reiserfs_update_sd(th, inode);
745 set_block_dev_mapped(bh_result, unfm_ptr, inode);
746 pathrelse(&path);
747 retval = 0;
748 if (!dangle && th)
749 retval = reiserfs_end_persistent_transaction(th);
751 reiserfs_write_unlock(inode->i_sb);
753 /* the item was found, so new blocks were not added to the file
754 ** there is no need to make sure the inode is updated with this
755 ** transaction
757 return retval;
760 if (!th) {
761 pathrelse(&path);
762 goto start_trans;
765 /* desired position is not found or is in the direct item. We have
766 to append file with holes up to 'block'-th block converting
767 direct items to indirect one if necessary */
768 done = 0;
769 do {
770 if (is_statdata_le_ih(ih)) {
771 __le32 unp = 0;
772 struct cpu_key tmp_key;
774 /* indirect item has to be inserted */
775 make_le_item_head(&tmp_ih, &key, version, 1,
776 TYPE_INDIRECT, UNFM_P_SIZE,
777 0 /* free_space */ );
779 if (cpu_key_k_offset(&key) == 1) {
780 /* we are going to add 'block'-th block to the file. Use
781 allocated block for that */
782 unp = cpu_to_le32(allocated_block_nr);
783 set_block_dev_mapped(bh_result,
784 allocated_block_nr, inode);
785 set_buffer_new(bh_result);
786 done = 1;
788 tmp_key = key; // ;)
789 set_cpu_key_k_offset(&tmp_key, 1);
790 PATH_LAST_POSITION(&path)++;
792 retval =
793 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
794 inode, (char *)&unp);
795 if (retval) {
796 reiserfs_free_block(th, inode,
797 allocated_block_nr, 1);
798 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
800 //mark_tail_converted (inode);
801 } else if (is_direct_le_ih(ih)) {
802 /* direct item has to be converted */
803 loff_t tail_offset;
805 tail_offset =
806 ((le_ih_k_offset(ih) -
807 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
808 if (tail_offset == cpu_key_k_offset(&key)) {
809 /* direct item we just found fits into block we have
810 to map. Convert it into unformatted node: use
811 bh_result for the conversion */
812 set_block_dev_mapped(bh_result,
813 allocated_block_nr, inode);
814 unbh = bh_result;
815 done = 1;
816 } else {
817 /* we have to padd file tail stored in direct item(s)
818 up to block size and convert it to unformatted
819 node. FIXME: this should also get into page cache */
821 pathrelse(&path);
823 * ugly, but we can only end the transaction if
824 * we aren't nested
826 BUG_ON(!th->t_refcount);
827 if (th->t_refcount == 1) {
828 retval =
829 reiserfs_end_persistent_transaction
830 (th);
831 th = NULL;
832 if (retval)
833 goto failure;
836 retval =
837 convert_tail_for_hole(inode, bh_result,
838 tail_offset);
839 if (retval) {
840 if (retval != -ENOSPC)
841 reiserfs_warning(inode->i_sb,
842 "clm-6004: convert tail failed inode %lu, error %d",
843 inode->i_ino,
844 retval);
845 if (allocated_block_nr) {
846 /* the bitmap, the super, and the stat data == 3 */
847 if (!th)
848 th = reiserfs_persistent_transaction(inode->i_sb, 3);
849 if (th)
850 reiserfs_free_block(th,
851 inode,
852 allocated_block_nr,
855 goto failure;
857 goto research;
859 retval =
860 direct2indirect(th, inode, &path, unbh,
861 tail_offset);
862 if (retval) {
863 reiserfs_unmap_buffer(unbh);
864 reiserfs_free_block(th, inode,
865 allocated_block_nr, 1);
866 goto failure;
868 /* it is important the set_buffer_uptodate is done after
869 ** the direct2indirect. The buffer might contain valid
870 ** data newer than the data on disk (read by readpage, changed,
871 ** and then sent here by writepage). direct2indirect needs
872 ** to know if unbh was already up to date, so it can decide
873 ** if the data in unbh needs to be replaced with data from
874 ** the disk
876 set_buffer_uptodate(unbh);
878 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
879 buffer will disappear shortly, so it should not be added to
881 if (unbh->b_page) {
882 /* we've converted the tail, so we must
883 ** flush unbh before the transaction commits
885 reiserfs_add_tail_list(inode, unbh);
887 /* mark it dirty now to prevent commit_write from adding
888 ** this buffer to the inode's dirty buffer list
891 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
892 * It's still atomic, but it sets the page dirty too,
893 * which makes it eligible for writeback at any time by the
894 * VM (which was also the case with __mark_buffer_dirty())
896 mark_buffer_dirty(unbh);
898 } else {
899 /* append indirect item with holes if needed, when appending
900 pointer to 'block'-th block use block, which is already
901 allocated */
902 struct cpu_key tmp_key;
903 unp_t unf_single = 0; // We use this in case we need to allocate only
904 // one block which is a fastpath
905 unp_t *un;
906 __u64 max_to_insert =
907 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
908 UNFM_P_SIZE;
909 __u64 blocks_needed;
911 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
912 "vs-804: invalid position for append");
913 /* indirect item has to be appended, set up key of that position */
914 make_cpu_key(&tmp_key, inode,
915 le_key_k_offset(version,
916 &(ih->ih_key)) +
917 op_bytes_number(ih,
918 inode->i_sb->s_blocksize),
919 //pos_in_item * inode->i_sb->s_blocksize,
920 TYPE_INDIRECT, 3); // key type is unimportant
922 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
923 "green-805: invalid offset");
924 blocks_needed =
926 ((cpu_key_k_offset(&key) -
927 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
928 s_blocksize_bits);
930 if (blocks_needed == 1) {
931 un = &unf_single;
932 } else {
933 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
934 if (!un) {
935 un = &unf_single;
936 blocks_needed = 1;
937 max_to_insert = 0;
940 if (blocks_needed <= max_to_insert) {
941 /* we are going to add target block to the file. Use allocated
942 block for that */
943 un[blocks_needed - 1] =
944 cpu_to_le32(allocated_block_nr);
945 set_block_dev_mapped(bh_result,
946 allocated_block_nr, inode);
947 set_buffer_new(bh_result);
948 done = 1;
949 } else {
950 /* paste hole to the indirect item */
951 /* If kmalloc failed, max_to_insert becomes zero and it means we
952 only have space for one block */
953 blocks_needed =
954 max_to_insert ? max_to_insert : 1;
956 retval =
957 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
958 (char *)un,
959 UNFM_P_SIZE *
960 blocks_needed);
962 if (blocks_needed != 1)
963 kfree(un);
965 if (retval) {
966 reiserfs_free_block(th, inode,
967 allocated_block_nr, 1);
968 goto failure;
970 if (!done) {
971 /* We need to mark new file size in case this function will be
972 interrupted/aborted later on. And we may do this only for
973 holes. */
974 inode->i_size +=
975 inode->i_sb->s_blocksize * blocks_needed;
979 if (done == 1)
980 break;
982 /* this loop could log more blocks than we had originally asked
983 ** for. So, we have to allow the transaction to end if it is
984 ** too big or too full. Update the inode so things are
985 ** consistent if we crash before the function returns
987 ** release the path so that anybody waiting on the path before
988 ** ending their transaction will be able to continue.
990 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
991 retval = restart_transaction(th, inode, &path);
992 if (retval)
993 goto failure;
995 /* inserting indirect pointers for a hole can take a
996 ** long time. reschedule if needed
998 cond_resched();
1000 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1001 if (retval == IO_ERROR) {
1002 retval = -EIO;
1003 goto failure;
1005 if (retval == POSITION_FOUND) {
1006 reiserfs_warning(inode->i_sb,
1007 "vs-825: reiserfs_get_block: "
1008 "%K should not be found", &key);
1009 retval = -EEXIST;
1010 if (allocated_block_nr)
1011 reiserfs_free_block(th, inode,
1012 allocated_block_nr, 1);
1013 pathrelse(&path);
1014 goto failure;
1016 bh = get_last_bh(&path);
1017 ih = get_ih(&path);
1018 item = get_item(&path);
1019 pos_in_item = path.pos_in_item;
1020 } while (1);
1022 retval = 0;
1024 failure:
1025 if (th && (!dangle || (retval && !th->t_trans_id))) {
1026 int err;
1027 if (th->t_trans_id)
1028 reiserfs_update_sd(th, inode);
1029 err = reiserfs_end_persistent_transaction(th);
1030 if (err)
1031 retval = err;
1034 reiserfs_write_unlock(inode->i_sb);
1035 reiserfs_check_path(&path);
1036 return retval;
1039 static int
1040 reiserfs_readpages(struct file *file, struct address_space *mapping,
1041 struct list_head *pages, unsigned nr_pages)
1043 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1046 /* Compute real number of used bytes by file
1047 * Following three functions can go away when we'll have enough space in stat item
1049 static int real_space_diff(struct inode *inode, int sd_size)
1051 int bytes;
1052 loff_t blocksize = inode->i_sb->s_blocksize;
1054 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1055 return sd_size;
1057 /* End of file is also in full block with indirect reference, so round
1058 ** up to the next block.
1060 ** there is just no way to know if the tail is actually packed
1061 ** on the file, so we have to assume it isn't. When we pack the
1062 ** tail, we add 4 bytes to pretend there really is an unformatted
1063 ** node pointer
1065 bytes =
1066 ((inode->i_size +
1067 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1068 sd_size;
1069 return bytes;
1072 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1073 int sd_size)
1075 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1076 return inode->i_size +
1077 (loff_t) (real_space_diff(inode, sd_size));
1079 return ((loff_t) real_space_diff(inode, sd_size)) +
1080 (((loff_t) blocks) << 9);
1083 /* Compute number of blocks used by file in ReiserFS counting */
1084 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1086 loff_t bytes = inode_get_bytes(inode);
1087 loff_t real_space = real_space_diff(inode, sd_size);
1089 /* keeps fsck and non-quota versions of reiserfs happy */
1090 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1091 bytes += (loff_t) 511;
1094 /* files from before the quota patch might i_blocks such that
1095 ** bytes < real_space. Deal with that here to prevent it from
1096 ** going negative.
1098 if (bytes < real_space)
1099 return 0;
1100 return (bytes - real_space) >> 9;
1104 // BAD: new directories have stat data of new type and all other items
1105 // of old type. Version stored in the inode says about body items, so
1106 // in update_stat_data we can not rely on inode, but have to check
1107 // item version directly
1110 // called by read_locked_inode
1111 static void init_inode(struct inode *inode, struct treepath *path)
1113 struct buffer_head *bh;
1114 struct item_head *ih;
1115 __u32 rdev;
1116 //int version = ITEM_VERSION_1;
1118 bh = PATH_PLAST_BUFFER(path);
1119 ih = PATH_PITEM_HEAD(path);
1121 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1123 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1124 REISERFS_I(inode)->i_flags = 0;
1125 REISERFS_I(inode)->i_prealloc_block = 0;
1126 REISERFS_I(inode)->i_prealloc_count = 0;
1127 REISERFS_I(inode)->i_trans_id = 0;
1128 REISERFS_I(inode)->i_jl = NULL;
1129 mutex_init(&(REISERFS_I(inode)->i_mmap));
1130 reiserfs_init_acl_access(inode);
1131 reiserfs_init_acl_default(inode);
1132 reiserfs_init_xattr_rwsem(inode);
1134 if (stat_data_v1(ih)) {
1135 struct stat_data_v1 *sd =
1136 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1137 unsigned long blocks;
1139 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1140 set_inode_sd_version(inode, STAT_DATA_V1);
1141 inode->i_mode = sd_v1_mode(sd);
1142 inode->i_nlink = sd_v1_nlink(sd);
1143 inode->i_uid = sd_v1_uid(sd);
1144 inode->i_gid = sd_v1_gid(sd);
1145 inode->i_size = sd_v1_size(sd);
1146 inode->i_atime.tv_sec = sd_v1_atime(sd);
1147 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1148 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1149 inode->i_atime.tv_nsec = 0;
1150 inode->i_ctime.tv_nsec = 0;
1151 inode->i_mtime.tv_nsec = 0;
1153 inode->i_blocks = sd_v1_blocks(sd);
1154 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1155 blocks = (inode->i_size + 511) >> 9;
1156 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1157 if (inode->i_blocks > blocks) {
1158 // there was a bug in <=3.5.23 when i_blocks could take negative
1159 // values. Starting from 3.5.17 this value could even be stored in
1160 // stat data. For such files we set i_blocks based on file
1161 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1162 // only updated if file's inode will ever change
1163 inode->i_blocks = blocks;
1166 rdev = sd_v1_rdev(sd);
1167 REISERFS_I(inode)->i_first_direct_byte =
1168 sd_v1_first_direct_byte(sd);
1169 /* an early bug in the quota code can give us an odd number for the
1170 ** block count. This is incorrect, fix it here.
1172 if (inode->i_blocks & 1) {
1173 inode->i_blocks++;
1175 inode_set_bytes(inode,
1176 to_real_used_space(inode, inode->i_blocks,
1177 SD_V1_SIZE));
1178 /* nopack is initially zero for v1 objects. For v2 objects,
1179 nopack is initialised from sd_attrs */
1180 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1181 } else {
1182 // new stat data found, but object may have old items
1183 // (directories and symlinks)
1184 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1186 inode->i_mode = sd_v2_mode(sd);
1187 inode->i_nlink = sd_v2_nlink(sd);
1188 inode->i_uid = sd_v2_uid(sd);
1189 inode->i_size = sd_v2_size(sd);
1190 inode->i_gid = sd_v2_gid(sd);
1191 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1192 inode->i_atime.tv_sec = sd_v2_atime(sd);
1193 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1194 inode->i_ctime.tv_nsec = 0;
1195 inode->i_mtime.tv_nsec = 0;
1196 inode->i_atime.tv_nsec = 0;
1197 inode->i_blocks = sd_v2_blocks(sd);
1198 rdev = sd_v2_rdev(sd);
1199 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1200 inode->i_generation =
1201 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1202 else
1203 inode->i_generation = sd_v2_generation(sd);
1205 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1206 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1207 else
1208 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1209 REISERFS_I(inode)->i_first_direct_byte = 0;
1210 set_inode_sd_version(inode, STAT_DATA_V2);
1211 inode_set_bytes(inode,
1212 to_real_used_space(inode, inode->i_blocks,
1213 SD_V2_SIZE));
1214 /* read persistent inode attributes from sd and initalise
1215 generic inode flags from them */
1216 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1217 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1220 pathrelse(path);
1221 if (S_ISREG(inode->i_mode)) {
1222 inode->i_op = &reiserfs_file_inode_operations;
1223 inode->i_fop = &reiserfs_file_operations;
1224 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1225 } else if (S_ISDIR(inode->i_mode)) {
1226 inode->i_op = &reiserfs_dir_inode_operations;
1227 inode->i_fop = &reiserfs_dir_operations;
1228 } else if (S_ISLNK(inode->i_mode)) {
1229 inode->i_op = &reiserfs_symlink_inode_operations;
1230 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1231 } else {
1232 inode->i_blocks = 0;
1233 inode->i_op = &reiserfs_special_inode_operations;
1234 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1238 // update new stat data with inode fields
1239 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1241 struct stat_data *sd_v2 = (struct stat_data *)sd;
1242 __u16 flags;
1244 set_sd_v2_mode(sd_v2, inode->i_mode);
1245 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1246 set_sd_v2_uid(sd_v2, inode->i_uid);
1247 set_sd_v2_size(sd_v2, size);
1248 set_sd_v2_gid(sd_v2, inode->i_gid);
1249 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1250 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1251 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1252 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1253 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1254 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1255 else
1256 set_sd_v2_generation(sd_v2, inode->i_generation);
1257 flags = REISERFS_I(inode)->i_attrs;
1258 i_attrs_to_sd_attrs(inode, &flags);
1259 set_sd_v2_attrs(sd_v2, flags);
1262 // used to copy inode's fields to old stat data
1263 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1265 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1267 set_sd_v1_mode(sd_v1, inode->i_mode);
1268 set_sd_v1_uid(sd_v1, inode->i_uid);
1269 set_sd_v1_gid(sd_v1, inode->i_gid);
1270 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1271 set_sd_v1_size(sd_v1, size);
1272 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1273 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1274 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1276 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1277 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1278 else
1279 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1281 // Sigh. i_first_direct_byte is back
1282 set_sd_v1_first_direct_byte(sd_v1,
1283 REISERFS_I(inode)->i_first_direct_byte);
1286 /* NOTE, you must prepare the buffer head before sending it here,
1287 ** and then log it after the call
1289 static void update_stat_data(struct treepath *path, struct inode *inode,
1290 loff_t size)
1292 struct buffer_head *bh;
1293 struct item_head *ih;
1295 bh = PATH_PLAST_BUFFER(path);
1296 ih = PATH_PITEM_HEAD(path);
1298 if (!is_statdata_le_ih(ih))
1299 reiserfs_panic(inode->i_sb,
1300 "vs-13065: update_stat_data: key %k, found item %h",
1301 INODE_PKEY(inode), ih);
1303 if (stat_data_v1(ih)) {
1304 // path points to old stat data
1305 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1306 } else {
1307 inode2sd(B_I_PITEM(bh, ih), inode, size);
1310 return;
1313 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1314 struct inode *inode, loff_t size)
1316 struct cpu_key key;
1317 INITIALIZE_PATH(path);
1318 struct buffer_head *bh;
1319 int fs_gen;
1320 struct item_head *ih, tmp_ih;
1321 int retval;
1323 BUG_ON(!th->t_trans_id);
1325 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1327 for (;;) {
1328 int pos;
1329 /* look for the object's stat data */
1330 retval = search_item(inode->i_sb, &key, &path);
1331 if (retval == IO_ERROR) {
1332 reiserfs_warning(inode->i_sb,
1333 "vs-13050: reiserfs_update_sd: "
1334 "i/o failure occurred trying to update %K stat data",
1335 &key);
1336 return;
1338 if (retval == ITEM_NOT_FOUND) {
1339 pos = PATH_LAST_POSITION(&path);
1340 pathrelse(&path);
1341 if (inode->i_nlink == 0) {
1342 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 return;
1345 reiserfs_warning(inode->i_sb,
1346 "vs-13060: reiserfs_update_sd: "
1347 "stat data of object %k (nlink == %d) not found (pos %d)",
1348 INODE_PKEY(inode), inode->i_nlink,
1349 pos);
1350 reiserfs_check_path(&path);
1351 return;
1354 /* sigh, prepare_for_journal might schedule. When it schedules the
1355 ** FS might change. We have to detect that, and loop back to the
1356 ** search if the stat data item has moved
1358 bh = get_last_bh(&path);
1359 ih = get_ih(&path);
1360 copy_item_head(&tmp_ih, ih);
1361 fs_gen = get_generation(inode->i_sb);
1362 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 if (fs_changed(fs_gen, inode->i_sb)
1364 && item_moved(&tmp_ih, &path)) {
1365 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 continue; /* Stat_data item has been moved after scheduling. */
1368 break;
1370 update_stat_data(&path, inode, size);
1371 journal_mark_dirty(th, th->t_super, bh);
1372 pathrelse(&path);
1373 return;
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong. But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1384 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 make_bad_inode(inode);
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1395 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 inode->i_ino = args->objectid;
1397 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 return 0;
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402 inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 struct reiserfs_iget_args *args)
1406 INITIALIZE_PATH(path_to_sd);
1407 struct cpu_key key;
1408 unsigned long dirino;
1409 int retval;
1411 dirino = args->dirid;
1413 /* set version 1, version 2 could be used too, because stat data
1414 key is the same in both versions */
1415 key.version = KEY_FORMAT_3_5;
1416 key.on_disk_key.k_dir_id = dirino;
1417 key.on_disk_key.k_objectid = inode->i_ino;
1418 key.on_disk_key.k_offset = 0;
1419 key.on_disk_key.k_type = 0;
1421 /* look for the object's stat data */
1422 retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 if (retval == IO_ERROR) {
1424 reiserfs_warning(inode->i_sb,
1425 "vs-13070: reiserfs_read_locked_inode: "
1426 "i/o failure occurred trying to find stat data of %K",
1427 &key);
1428 reiserfs_make_bad_inode(inode);
1429 return;
1431 if (retval != ITEM_FOUND) {
1432 /* a stale NFS handle can trigger this without it being an error */
1433 pathrelse(&path_to_sd);
1434 reiserfs_make_bad_inode(inode);
1435 inode->i_nlink = 0;
1436 return;
1439 init_inode(inode, &path_to_sd);
1441 /* It is possible that knfsd is trying to access inode of a file
1442 that is being removed from the disk by some other thread. As we
1443 update sd on unlink all that is required is to check for nlink
1444 here. This bug was first found by Sizif when debugging
1445 SquidNG/Butterfly, forgotten, and found again after Philippe
1446 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1448 More logical fix would require changes in fs/inode.c:iput() to
1449 remove inode from hash-table _after_ fs cleaned disk stuff up and
1450 in iget() to return NULL if I_FREEING inode is found in
1451 hash-table. */
1452 /* Currently there is one place where it's ok to meet inode with
1453 nlink==0: processing of open-unlinked and half-truncated files
1454 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1455 if ((inode->i_nlink == 0) &&
1456 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1457 reiserfs_warning(inode->i_sb,
1458 "vs-13075: reiserfs_read_locked_inode: "
1459 "dead inode read from disk %K. "
1460 "This is likely to be race with knfsd. Ignore",
1461 &key);
1462 reiserfs_make_bad_inode(inode);
1465 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1470 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1472 * @inode: inode from hash table to check
1473 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1475 * This function is called by iget5_locked() to distinguish reiserfs inodes
1476 * having the same inode numbers. Such inodes can only exist due to some
1477 * error condition. One of them should be bad. Inodes with identical
1478 * inode numbers (objectids) are distinguished by parent directory ids.
1481 int reiserfs_find_actor(struct inode *inode, void *opaque)
1483 struct reiserfs_iget_args *args;
1485 args = opaque;
1486 /* args is already in CPU order */
1487 return (inode->i_ino == args->objectid) &&
1488 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1491 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1493 struct inode *inode;
1494 struct reiserfs_iget_args args;
1496 args.objectid = key->on_disk_key.k_objectid;
1497 args.dirid = key->on_disk_key.k_dir_id;
1498 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1499 reiserfs_find_actor, reiserfs_init_locked_inode,
1500 (void *)(&args));
1501 if (!inode)
1502 return ERR_PTR(-ENOMEM);
1504 if (inode->i_state & I_NEW) {
1505 reiserfs_read_locked_inode(inode, &args);
1506 unlock_new_inode(inode);
1509 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1510 /* either due to i/o error or a stale NFS handle */
1511 iput(inode);
1512 inode = NULL;
1514 return inode;
1517 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1518 u32 objectid, u32 dir_id, u32 generation)
1521 struct cpu_key key;
1522 struct dentry *result;
1523 struct inode *inode;
1525 key.on_disk_key.k_objectid = objectid;
1526 key.on_disk_key.k_dir_id = dir_id;
1527 reiserfs_write_lock(sb);
1528 inode = reiserfs_iget(sb, &key);
1529 if (inode && !IS_ERR(inode) && generation != 0 &&
1530 generation != inode->i_generation) {
1531 iput(inode);
1532 inode = NULL;
1534 reiserfs_write_unlock(sb);
1535 if (!inode)
1536 inode = ERR_PTR(-ESTALE);
1537 if (IS_ERR(inode))
1538 return ERR_PTR(PTR_ERR(inode));
1539 result = d_alloc_anon(inode);
1540 if (!result) {
1541 iput(inode);
1542 return ERR_PTR(-ENOMEM);
1544 return result;
1547 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1548 int fh_len, int fh_type)
1550 /* fhtype happens to reflect the number of u32s encoded.
1551 * due to a bug in earlier code, fhtype might indicate there
1552 * are more u32s then actually fitted.
1553 * so if fhtype seems to be more than len, reduce fhtype.
1554 * Valid types are:
1555 * 2 - objectid + dir_id - legacy support
1556 * 3 - objectid + dir_id + generation
1557 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1558 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1559 * 6 - as above plus generation of directory
1560 * 6 does not fit in NFSv2 handles
1562 if (fh_type > fh_len) {
1563 if (fh_type != 6 || fh_len != 5)
1564 reiserfs_warning(sb,
1565 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1566 fh_type, fh_len);
1567 fh_type = 5;
1570 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1571 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1574 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1575 int fh_len, int fh_type)
1577 if (fh_type < 4)
1578 return NULL;
1580 return reiserfs_get_dentry(sb,
1581 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1582 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1583 (fh_type == 6) ? fid->raw[5] : 0);
1586 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1587 int need_parent)
1589 struct inode *inode = dentry->d_inode;
1590 int maxlen = *lenp;
1592 if (maxlen < 3)
1593 return 255;
1595 data[0] = inode->i_ino;
1596 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1597 data[2] = inode->i_generation;
1598 *lenp = 3;
1599 /* no room for directory info? return what we've stored so far */
1600 if (maxlen < 5 || !need_parent)
1601 return 3;
1603 spin_lock(&dentry->d_lock);
1604 inode = dentry->d_parent->d_inode;
1605 data[3] = inode->i_ino;
1606 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1607 *lenp = 5;
1608 if (maxlen >= 6) {
1609 data[5] = inode->i_generation;
1610 *lenp = 6;
1612 spin_unlock(&dentry->d_lock);
1613 return *lenp;
1616 /* looks for stat data, then copies fields to it, marks the buffer
1617 containing stat data as dirty */
1618 /* reiserfs inodes are never really dirty, since the dirty inode call
1619 ** always logs them. This call allows the VFS inode marking routines
1620 ** to properly mark inodes for datasync and such, but only actually
1621 ** does something when called for a synchronous update.
1623 int reiserfs_write_inode(struct inode *inode, int do_sync)
1625 struct reiserfs_transaction_handle th;
1626 int jbegin_count = 1;
1628 if (inode->i_sb->s_flags & MS_RDONLY)
1629 return -EROFS;
1630 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1631 ** these cases are just when the system needs ram, not when the
1632 ** inode needs to reach disk for safety, and they can safely be
1633 ** ignored because the altered inode has already been logged.
1635 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1636 reiserfs_write_lock(inode->i_sb);
1637 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1638 reiserfs_update_sd(&th, inode);
1639 journal_end_sync(&th, inode->i_sb, jbegin_count);
1641 reiserfs_write_unlock(inode->i_sb);
1643 return 0;
1646 /* stat data of new object is inserted already, this inserts the item
1647 containing "." and ".." entries */
1648 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1649 struct inode *inode,
1650 struct item_head *ih, struct treepath *path,
1651 struct inode *dir)
1653 struct super_block *sb = th->t_super;
1654 char empty_dir[EMPTY_DIR_SIZE];
1655 char *body = empty_dir;
1656 struct cpu_key key;
1657 int retval;
1659 BUG_ON(!th->t_trans_id);
1661 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1662 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1663 TYPE_DIRENTRY, 3 /*key length */ );
1665 /* compose item head for new item. Directories consist of items of
1666 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1667 is done by reiserfs_new_inode */
1668 if (old_format_only(sb)) {
1669 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1670 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1672 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1673 ih->ih_key.k_objectid,
1674 INODE_PKEY(dir)->k_dir_id,
1675 INODE_PKEY(dir)->k_objectid);
1676 } else {
1677 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1678 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1680 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1681 ih->ih_key.k_objectid,
1682 INODE_PKEY(dir)->k_dir_id,
1683 INODE_PKEY(dir)->k_objectid);
1686 /* look for place in the tree for new item */
1687 retval = search_item(sb, &key, path);
1688 if (retval == IO_ERROR) {
1689 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1690 "i/o failure occurred creating new directory");
1691 return -EIO;
1693 if (retval == ITEM_FOUND) {
1694 pathrelse(path);
1695 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1696 "object with this key exists (%k)",
1697 &(ih->ih_key));
1698 return -EEXIST;
1701 /* insert item, that is empty directory item */
1702 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1705 /* stat data of object has been inserted, this inserts the item
1706 containing the body of symlink */
1707 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1708 struct item_head *ih,
1709 struct treepath *path, const char *symname,
1710 int item_len)
1712 struct super_block *sb = th->t_super;
1713 struct cpu_key key;
1714 int retval;
1716 BUG_ON(!th->t_trans_id);
1718 _make_cpu_key(&key, KEY_FORMAT_3_5,
1719 le32_to_cpu(ih->ih_key.k_dir_id),
1720 le32_to_cpu(ih->ih_key.k_objectid),
1721 1, TYPE_DIRECT, 3 /*key length */ );
1723 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1724 0 /*free_space */ );
1726 /* look for place in the tree for new item */
1727 retval = search_item(sb, &key, path);
1728 if (retval == IO_ERROR) {
1729 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1730 "i/o failure occurred creating new symlink");
1731 return -EIO;
1733 if (retval == ITEM_FOUND) {
1734 pathrelse(path);
1735 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1736 "object with this key exists (%k)",
1737 &(ih->ih_key));
1738 return -EEXIST;
1741 /* insert item, that is body of symlink */
1742 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1745 /* inserts the stat data into the tree, and then calls
1746 reiserfs_new_directory (to insert ".", ".." item if new object is
1747 directory) or reiserfs_new_symlink (to insert symlink body if new
1748 object is symlink) or nothing (if new object is regular file)
1750 NOTE! uid and gid must already be set in the inode. If we return
1751 non-zero due to an error, we have to drop the quota previously allocated
1752 for the fresh inode. This can only be done outside a transaction, so
1753 if we return non-zero, we also end the transaction. */
1754 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1755 struct inode *dir, int mode, const char *symname,
1756 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1757 strlen (symname) for symlinks) */
1758 loff_t i_size, struct dentry *dentry,
1759 struct inode *inode)
1761 struct super_block *sb;
1762 INITIALIZE_PATH(path_to_key);
1763 struct cpu_key key;
1764 struct item_head ih;
1765 struct stat_data sd;
1766 int retval;
1767 int err;
1769 BUG_ON(!th->t_trans_id);
1771 if (DQUOT_ALLOC_INODE(inode)) {
1772 err = -EDQUOT;
1773 goto out_end_trans;
1775 if (!dir->i_nlink) {
1776 err = -EPERM;
1777 goto out_bad_inode;
1780 sb = dir->i_sb;
1782 /* item head of new item */
1783 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1784 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1785 if (!ih.ih_key.k_objectid) {
1786 err = -ENOMEM;
1787 goto out_bad_inode;
1789 if (old_format_only(sb))
1790 /* not a perfect generation count, as object ids can be reused, but
1791 ** this is as good as reiserfs can do right now.
1792 ** note that the private part of inode isn't filled in yet, we have
1793 ** to use the directory.
1795 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1796 else
1797 #if defined( USE_INODE_GENERATION_COUNTER )
1798 inode->i_generation =
1799 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1800 #else
1801 inode->i_generation = ++event;
1802 #endif
1804 /* fill stat data */
1805 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1807 /* uid and gid must already be set by the caller for quota init */
1809 /* symlink cannot be immutable or append only, right? */
1810 if (S_ISLNK(inode->i_mode))
1811 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1813 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1814 inode->i_size = i_size;
1815 inode->i_blocks = 0;
1816 inode->i_bytes = 0;
1817 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1818 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1820 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1821 REISERFS_I(inode)->i_flags = 0;
1822 REISERFS_I(inode)->i_prealloc_block = 0;
1823 REISERFS_I(inode)->i_prealloc_count = 0;
1824 REISERFS_I(inode)->i_trans_id = 0;
1825 REISERFS_I(inode)->i_jl = NULL;
1826 REISERFS_I(inode)->i_attrs =
1827 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1828 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1829 mutex_init(&(REISERFS_I(inode)->i_mmap));
1830 reiserfs_init_acl_access(inode);
1831 reiserfs_init_acl_default(inode);
1832 reiserfs_init_xattr_rwsem(inode);
1834 if (old_format_only(sb))
1835 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1836 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1837 else
1838 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1839 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1841 /* key to search for correct place for new stat data */
1842 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1843 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1844 TYPE_STAT_DATA, 3 /*key length */ );
1846 /* find proper place for inserting of stat data */
1847 retval = search_item(sb, &key, &path_to_key);
1848 if (retval == IO_ERROR) {
1849 err = -EIO;
1850 goto out_bad_inode;
1852 if (retval == ITEM_FOUND) {
1853 pathrelse(&path_to_key);
1854 err = -EEXIST;
1855 goto out_bad_inode;
1857 if (old_format_only(sb)) {
1858 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1859 pathrelse(&path_to_key);
1860 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1861 err = -EINVAL;
1862 goto out_bad_inode;
1864 inode2sd_v1(&sd, inode, inode->i_size);
1865 } else {
1866 inode2sd(&sd, inode, inode->i_size);
1868 // these do not go to on-disk stat data
1869 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1871 // store in in-core inode the key of stat data and version all
1872 // object items will have (directory items will have old offset
1873 // format, other new objects will consist of new items)
1874 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1875 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1876 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1877 else
1878 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1879 if (old_format_only(sb))
1880 set_inode_sd_version(inode, STAT_DATA_V1);
1881 else
1882 set_inode_sd_version(inode, STAT_DATA_V2);
1884 /* insert the stat data into the tree */
1885 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1886 if (REISERFS_I(dir)->new_packing_locality)
1887 th->displace_new_blocks = 1;
1888 #endif
1889 retval =
1890 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1891 (char *)(&sd));
1892 if (retval) {
1893 err = retval;
1894 reiserfs_check_path(&path_to_key);
1895 goto out_bad_inode;
1897 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1898 if (!th->displace_new_blocks)
1899 REISERFS_I(dir)->new_packing_locality = 0;
1900 #endif
1901 if (S_ISDIR(mode)) {
1902 /* insert item with "." and ".." */
1903 retval =
1904 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1907 if (S_ISLNK(mode)) {
1908 /* insert body of symlink */
1909 if (!old_format_only(sb))
1910 i_size = ROUND_UP(i_size);
1911 retval =
1912 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1913 i_size);
1915 if (retval) {
1916 err = retval;
1917 reiserfs_check_path(&path_to_key);
1918 journal_end(th, th->t_super, th->t_blocks_allocated);
1919 goto out_inserted_sd;
1922 /* XXX CHECK THIS */
1923 if (reiserfs_posixacl(inode->i_sb)) {
1924 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1925 if (retval) {
1926 err = retval;
1927 reiserfs_check_path(&path_to_key);
1928 journal_end(th, th->t_super, th->t_blocks_allocated);
1929 goto out_inserted_sd;
1931 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1932 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1933 "but vfs thinks they are!");
1934 } else if (is_reiserfs_priv_object(dir)) {
1935 reiserfs_mark_inode_private(inode);
1938 insert_inode_hash(inode);
1939 reiserfs_update_sd(th, inode);
1940 reiserfs_check_path(&path_to_key);
1942 return 0;
1944 /* it looks like you can easily compress these two goto targets into
1945 * one. Keeping it like this doesn't actually hurt anything, and they
1946 * are place holders for what the quota code actually needs.
1948 out_bad_inode:
1949 /* Invalidate the object, nothing was inserted yet */
1950 INODE_PKEY(inode)->k_objectid = 0;
1952 /* Quota change must be inside a transaction for journaling */
1953 DQUOT_FREE_INODE(inode);
1955 out_end_trans:
1956 journal_end(th, th->t_super, th->t_blocks_allocated);
1957 /* Drop can be outside and it needs more credits so it's better to have it outside */
1958 DQUOT_DROP(inode);
1959 inode->i_flags |= S_NOQUOTA;
1960 make_bad_inode(inode);
1962 out_inserted_sd:
1963 inode->i_nlink = 0;
1964 th->t_trans_id = 0; /* so the caller can't use this handle later */
1966 /* If we were inheriting an ACL, we need to release the lock so that
1967 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1968 * code really needs to be reworked, but this will take care of it
1969 * for now. -jeffm */
1970 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1971 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1972 reiserfs_write_unlock_xattrs(dir->i_sb);
1973 iput(inode);
1974 reiserfs_write_lock_xattrs(dir->i_sb);
1975 } else
1976 #endif
1977 iput(inode);
1978 return err;
1982 ** finds the tail page in the page cache,
1983 ** reads the last block in.
1985 ** On success, page_result is set to a locked, pinned page, and bh_result
1986 ** is set to an up to date buffer for the last block in the file. returns 0.
1988 ** tail conversion is not done, so bh_result might not be valid for writing
1989 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1990 ** trying to write the block.
1992 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1994 static int grab_tail_page(struct inode *p_s_inode,
1995 struct page **page_result,
1996 struct buffer_head **bh_result)
1999 /* we want the page with the last byte in the file,
2000 ** not the page that will hold the next byte for appending
2002 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2003 unsigned long pos = 0;
2004 unsigned long start = 0;
2005 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2006 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2007 struct buffer_head *bh;
2008 struct buffer_head *head;
2009 struct page *page;
2010 int error;
2012 /* we know that we are only called with inode->i_size > 0.
2013 ** we also know that a file tail can never be as big as a block
2014 ** If i_size % blocksize == 0, our file is currently block aligned
2015 ** and it won't need converting or zeroing after a truncate.
2017 if ((offset & (blocksize - 1)) == 0) {
2018 return -ENOENT;
2020 page = grab_cache_page(p_s_inode->i_mapping, index);
2021 error = -ENOMEM;
2022 if (!page) {
2023 goto out;
2025 /* start within the page of the last block in the file */
2026 start = (offset / blocksize) * blocksize;
2028 error = block_prepare_write(page, start, offset,
2029 reiserfs_get_block_create_0);
2030 if (error)
2031 goto unlock;
2033 head = page_buffers(page);
2034 bh = head;
2035 do {
2036 if (pos >= start) {
2037 break;
2039 bh = bh->b_this_page;
2040 pos += blocksize;
2041 } while (bh != head);
2043 if (!buffer_uptodate(bh)) {
2044 /* note, this should never happen, prepare_write should
2045 ** be taking care of this for us. If the buffer isn't up to date,
2046 ** I've screwed up the code to find the buffer, or the code to
2047 ** call prepare_write
2049 reiserfs_warning(p_s_inode->i_sb,
2050 "clm-6000: error reading block %lu on dev %s",
2051 bh->b_blocknr,
2052 reiserfs_bdevname(p_s_inode->i_sb));
2053 error = -EIO;
2054 goto unlock;
2056 *bh_result = bh;
2057 *page_result = page;
2059 out:
2060 return error;
2062 unlock:
2063 unlock_page(page);
2064 page_cache_release(page);
2065 return error;
2069 ** vfs version of truncate file. Must NOT be called with
2070 ** a transaction already started.
2072 ** some code taken from block_truncate_page
2074 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2076 struct reiserfs_transaction_handle th;
2077 /* we want the offset for the first byte after the end of the file */
2078 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2079 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2080 unsigned length;
2081 struct page *page = NULL;
2082 int error;
2083 struct buffer_head *bh = NULL;
2084 int err2;
2086 reiserfs_write_lock(p_s_inode->i_sb);
2088 if (p_s_inode->i_size > 0) {
2089 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2090 // -ENOENT means we truncated past the end of the file,
2091 // and get_block_create_0 could not find a block to read in,
2092 // which is ok.
2093 if (error != -ENOENT)
2094 reiserfs_warning(p_s_inode->i_sb,
2095 "clm-6001: grab_tail_page failed %d",
2096 error);
2097 page = NULL;
2098 bh = NULL;
2102 /* so, if page != NULL, we have a buffer head for the offset at
2103 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2104 ** then we have an unformatted node. Otherwise, we have a direct item,
2105 ** and no zeroing is required on disk. We zero after the truncate,
2106 ** because the truncate might pack the item anyway
2107 ** (it will unmap bh if it packs).
2109 /* it is enough to reserve space in transaction for 2 balancings:
2110 one for "save" link adding and another for the first
2111 cut_from_item. 1 is for update_sd */
2112 error = journal_begin(&th, p_s_inode->i_sb,
2113 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2114 if (error)
2115 goto out;
2116 reiserfs_update_inode_transaction(p_s_inode);
2117 if (update_timestamps)
2118 /* we are doing real truncate: if the system crashes before the last
2119 transaction of truncating gets committed - on reboot the file
2120 either appears truncated properly or not truncated at all */
2121 add_save_link(&th, p_s_inode, 1);
2122 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2123 error =
2124 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2125 if (error)
2126 goto out;
2128 /* check reiserfs_do_truncate after ending the transaction */
2129 if (err2) {
2130 error = err2;
2131 goto out;
2134 if (update_timestamps) {
2135 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2136 if (error)
2137 goto out;
2140 if (page) {
2141 length = offset & (blocksize - 1);
2142 /* if we are not on a block boundary */
2143 if (length) {
2144 length = blocksize - length;
2145 zero_user_page(page, offset, length, KM_USER0);
2146 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2147 mark_buffer_dirty(bh);
2150 unlock_page(page);
2151 page_cache_release(page);
2154 reiserfs_write_unlock(p_s_inode->i_sb);
2155 return 0;
2156 out:
2157 if (page) {
2158 unlock_page(page);
2159 page_cache_release(page);
2161 reiserfs_write_unlock(p_s_inode->i_sb);
2162 return error;
2165 static int map_block_for_writepage(struct inode *inode,
2166 struct buffer_head *bh_result,
2167 unsigned long block)
2169 struct reiserfs_transaction_handle th;
2170 int fs_gen;
2171 struct item_head tmp_ih;
2172 struct item_head *ih;
2173 struct buffer_head *bh;
2174 __le32 *item;
2175 struct cpu_key key;
2176 INITIALIZE_PATH(path);
2177 int pos_in_item;
2178 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2179 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2180 int retval;
2181 int use_get_block = 0;
2182 int bytes_copied = 0;
2183 int copy_size;
2184 int trans_running = 0;
2186 /* catch places below that try to log something without starting a trans */
2187 th.t_trans_id = 0;
2189 if (!buffer_uptodate(bh_result)) {
2190 return -EIO;
2193 kmap(bh_result->b_page);
2194 start_over:
2195 reiserfs_write_lock(inode->i_sb);
2196 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2198 research:
2199 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2200 if (retval != POSITION_FOUND) {
2201 use_get_block = 1;
2202 goto out;
2205 bh = get_last_bh(&path);
2206 ih = get_ih(&path);
2207 item = get_item(&path);
2208 pos_in_item = path.pos_in_item;
2210 /* we've found an unformatted node */
2211 if (indirect_item_found(retval, ih)) {
2212 if (bytes_copied > 0) {
2213 reiserfs_warning(inode->i_sb,
2214 "clm-6002: bytes_copied %d",
2215 bytes_copied);
2217 if (!get_block_num(item, pos_in_item)) {
2218 /* crap, we are writing to a hole */
2219 use_get_block = 1;
2220 goto out;
2222 set_block_dev_mapped(bh_result,
2223 get_block_num(item, pos_in_item), inode);
2224 } else if (is_direct_le_ih(ih)) {
2225 char *p;
2226 p = page_address(bh_result->b_page);
2227 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2228 copy_size = ih_item_len(ih) - pos_in_item;
2230 fs_gen = get_generation(inode->i_sb);
2231 copy_item_head(&tmp_ih, ih);
2233 if (!trans_running) {
2234 /* vs-3050 is gone, no need to drop the path */
2235 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2236 if (retval)
2237 goto out;
2238 reiserfs_update_inode_transaction(inode);
2239 trans_running = 1;
2240 if (fs_changed(fs_gen, inode->i_sb)
2241 && item_moved(&tmp_ih, &path)) {
2242 reiserfs_restore_prepared_buffer(inode->i_sb,
2243 bh);
2244 goto research;
2248 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2250 if (fs_changed(fs_gen, inode->i_sb)
2251 && item_moved(&tmp_ih, &path)) {
2252 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2253 goto research;
2256 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2257 copy_size);
2259 journal_mark_dirty(&th, inode->i_sb, bh);
2260 bytes_copied += copy_size;
2261 set_block_dev_mapped(bh_result, 0, inode);
2263 /* are there still bytes left? */
2264 if (bytes_copied < bh_result->b_size &&
2265 (byte_offset + bytes_copied) < inode->i_size) {
2266 set_cpu_key_k_offset(&key,
2267 cpu_key_k_offset(&key) +
2268 copy_size);
2269 goto research;
2271 } else {
2272 reiserfs_warning(inode->i_sb,
2273 "clm-6003: bad item inode %lu, device %s",
2274 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2275 retval = -EIO;
2276 goto out;
2278 retval = 0;
2280 out:
2281 pathrelse(&path);
2282 if (trans_running) {
2283 int err = journal_end(&th, inode->i_sb, jbegin_count);
2284 if (err)
2285 retval = err;
2286 trans_running = 0;
2288 reiserfs_write_unlock(inode->i_sb);
2290 /* this is where we fill in holes in the file. */
2291 if (use_get_block) {
2292 retval = reiserfs_get_block(inode, block, bh_result,
2293 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2294 | GET_BLOCK_NO_DANGLE);
2295 if (!retval) {
2296 if (!buffer_mapped(bh_result)
2297 || bh_result->b_blocknr == 0) {
2298 /* get_block failed to find a mapped unformatted node. */
2299 use_get_block = 0;
2300 goto start_over;
2304 kunmap(bh_result->b_page);
2306 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2307 /* we've copied data from the page into the direct item, so the
2308 * buffer in the page is now clean, mark it to reflect that.
2310 lock_buffer(bh_result);
2311 clear_buffer_dirty(bh_result);
2312 unlock_buffer(bh_result);
2314 return retval;
2318 * mason@suse.com: updated in 2.5.54 to follow the same general io
2319 * start/recovery path as __block_write_full_page, along with special
2320 * code to handle reiserfs tails.
2322 static int reiserfs_write_full_page(struct page *page,
2323 struct writeback_control *wbc)
2325 struct inode *inode = page->mapping->host;
2326 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2327 int error = 0;
2328 unsigned long block;
2329 sector_t last_block;
2330 struct buffer_head *head, *bh;
2331 int partial = 0;
2332 int nr = 0;
2333 int checked = PageChecked(page);
2334 struct reiserfs_transaction_handle th;
2335 struct super_block *s = inode->i_sb;
2336 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2337 th.t_trans_id = 0;
2339 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2340 if (checked && (current->flags & PF_MEMALLOC)) {
2341 redirty_page_for_writepage(wbc, page);
2342 unlock_page(page);
2343 return 0;
2346 /* The page dirty bit is cleared before writepage is called, which
2347 * means we have to tell create_empty_buffers to make dirty buffers
2348 * The page really should be up to date at this point, so tossing
2349 * in the BH_Uptodate is just a sanity check.
2351 if (!page_has_buffers(page)) {
2352 create_empty_buffers(page, s->s_blocksize,
2353 (1 << BH_Dirty) | (1 << BH_Uptodate));
2355 head = page_buffers(page);
2357 /* last page in the file, zero out any contents past the
2358 ** last byte in the file
2360 if (page->index >= end_index) {
2361 unsigned last_offset;
2363 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2364 /* no file contents in this page */
2365 if (page->index >= end_index + 1 || !last_offset) {
2366 unlock_page(page);
2367 return 0;
2369 zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0);
2371 bh = head;
2372 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2373 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2374 /* first map all the buffers, logging any direct items we find */
2375 do {
2376 if (block > last_block) {
2378 * This can happen when the block size is less than
2379 * the page size. The corresponding bytes in the page
2380 * were zero filled above
2382 clear_buffer_dirty(bh);
2383 set_buffer_uptodate(bh);
2384 } else if ((checked || buffer_dirty(bh)) &&
2385 (!buffer_mapped(bh) || (buffer_mapped(bh)
2386 && bh->b_blocknr ==
2387 0))) {
2388 /* not mapped yet, or it points to a direct item, search
2389 * the btree for the mapping info, and log any direct
2390 * items found
2392 if ((error = map_block_for_writepage(inode, bh, block))) {
2393 goto fail;
2396 bh = bh->b_this_page;
2397 block++;
2398 } while (bh != head);
2401 * we start the transaction after map_block_for_writepage,
2402 * because it can create holes in the file (an unbounded operation).
2403 * starting it here, we can make a reliable estimate for how many
2404 * blocks we're going to log
2406 if (checked) {
2407 ClearPageChecked(page);
2408 reiserfs_write_lock(s);
2409 error = journal_begin(&th, s, bh_per_page + 1);
2410 if (error) {
2411 reiserfs_write_unlock(s);
2412 goto fail;
2414 reiserfs_update_inode_transaction(inode);
2416 /* now go through and lock any dirty buffers on the page */
2417 do {
2418 get_bh(bh);
2419 if (!buffer_mapped(bh))
2420 continue;
2421 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2422 continue;
2424 if (checked) {
2425 reiserfs_prepare_for_journal(s, bh, 1);
2426 journal_mark_dirty(&th, s, bh);
2427 continue;
2429 /* from this point on, we know the buffer is mapped to a
2430 * real block and not a direct item
2432 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2433 lock_buffer(bh);
2434 } else {
2435 if (test_set_buffer_locked(bh)) {
2436 redirty_page_for_writepage(wbc, page);
2437 continue;
2440 if (test_clear_buffer_dirty(bh)) {
2441 mark_buffer_async_write(bh);
2442 } else {
2443 unlock_buffer(bh);
2445 } while ((bh = bh->b_this_page) != head);
2447 if (checked) {
2448 error = journal_end(&th, s, bh_per_page + 1);
2449 reiserfs_write_unlock(s);
2450 if (error)
2451 goto fail;
2453 BUG_ON(PageWriteback(page));
2454 set_page_writeback(page);
2455 unlock_page(page);
2458 * since any buffer might be the only dirty buffer on the page,
2459 * the first submit_bh can bring the page out of writeback.
2460 * be careful with the buffers.
2462 do {
2463 struct buffer_head *next = bh->b_this_page;
2464 if (buffer_async_write(bh)) {
2465 submit_bh(WRITE, bh);
2466 nr++;
2468 put_bh(bh);
2469 bh = next;
2470 } while (bh != head);
2472 error = 0;
2473 done:
2474 if (nr == 0) {
2476 * if this page only had a direct item, it is very possible for
2477 * no io to be required without there being an error. Or,
2478 * someone else could have locked them and sent them down the
2479 * pipe without locking the page
2481 bh = head;
2482 do {
2483 if (!buffer_uptodate(bh)) {
2484 partial = 1;
2485 break;
2487 bh = bh->b_this_page;
2488 } while (bh != head);
2489 if (!partial)
2490 SetPageUptodate(page);
2491 end_page_writeback(page);
2493 return error;
2495 fail:
2496 /* catches various errors, we need to make sure any valid dirty blocks
2497 * get to the media. The page is currently locked and not marked for
2498 * writeback
2500 ClearPageUptodate(page);
2501 bh = head;
2502 do {
2503 get_bh(bh);
2504 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2505 lock_buffer(bh);
2506 mark_buffer_async_write(bh);
2507 } else {
2509 * clear any dirty bits that might have come from getting
2510 * attached to a dirty page
2512 clear_buffer_dirty(bh);
2514 bh = bh->b_this_page;
2515 } while (bh != head);
2516 SetPageError(page);
2517 BUG_ON(PageWriteback(page));
2518 set_page_writeback(page);
2519 unlock_page(page);
2520 do {
2521 struct buffer_head *next = bh->b_this_page;
2522 if (buffer_async_write(bh)) {
2523 clear_buffer_dirty(bh);
2524 submit_bh(WRITE, bh);
2525 nr++;
2527 put_bh(bh);
2528 bh = next;
2529 } while (bh != head);
2530 goto done;
2533 static int reiserfs_readpage(struct file *f, struct page *page)
2535 return block_read_full_page(page, reiserfs_get_block);
2538 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2540 struct inode *inode = page->mapping->host;
2541 reiserfs_wait_on_write_block(inode->i_sb);
2542 return reiserfs_write_full_page(page, wbc);
2545 static int reiserfs_prepare_write(struct file *f, struct page *page,
2546 unsigned from, unsigned to)
2548 struct inode *inode = page->mapping->host;
2549 int ret;
2550 int old_ref = 0;
2552 reiserfs_wait_on_write_block(inode->i_sb);
2553 fix_tail_page_for_writing(page);
2554 if (reiserfs_transaction_running(inode->i_sb)) {
2555 struct reiserfs_transaction_handle *th;
2556 th = (struct reiserfs_transaction_handle *)current->
2557 journal_info;
2558 BUG_ON(!th->t_refcount);
2559 BUG_ON(!th->t_trans_id);
2560 old_ref = th->t_refcount;
2561 th->t_refcount++;
2564 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2565 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2566 struct reiserfs_transaction_handle *th = current->journal_info;
2567 /* this gets a little ugly. If reiserfs_get_block returned an
2568 * error and left a transacstion running, we've got to close it,
2569 * and we've got to free handle if it was a persistent transaction.
2571 * But, if we had nested into an existing transaction, we need
2572 * to just drop the ref count on the handle.
2574 * If old_ref == 0, the transaction is from reiserfs_get_block,
2575 * and it was a persistent trans. Otherwise, it was nested above.
2577 if (th->t_refcount > old_ref) {
2578 if (old_ref)
2579 th->t_refcount--;
2580 else {
2581 int err;
2582 reiserfs_write_lock(inode->i_sb);
2583 err = reiserfs_end_persistent_transaction(th);
2584 reiserfs_write_unlock(inode->i_sb);
2585 if (err)
2586 ret = err;
2590 return ret;
2594 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2596 return generic_block_bmap(as, block, reiserfs_bmap);
2599 static int reiserfs_commit_write(struct file *f, struct page *page,
2600 unsigned from, unsigned to)
2602 struct inode *inode = page->mapping->host;
2603 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2604 int ret = 0;
2605 int update_sd = 0;
2606 struct reiserfs_transaction_handle *th = NULL;
2608 reiserfs_wait_on_write_block(inode->i_sb);
2609 if (reiserfs_transaction_running(inode->i_sb)) {
2610 th = current->journal_info;
2612 reiserfs_commit_page(inode, page, from, to);
2614 /* generic_commit_write does this for us, but does not update the
2615 ** transaction tracking stuff when the size changes. So, we have
2616 ** to do the i_size updates here.
2618 if (pos > inode->i_size) {
2619 struct reiserfs_transaction_handle myth;
2620 reiserfs_write_lock(inode->i_sb);
2621 /* If the file have grown beyond the border where it
2622 can have a tail, unmark it as needing a tail
2623 packing */
2624 if ((have_large_tails(inode->i_sb)
2625 && inode->i_size > i_block_size(inode) * 4)
2626 || (have_small_tails(inode->i_sb)
2627 && inode->i_size > i_block_size(inode)))
2628 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2630 ret = journal_begin(&myth, inode->i_sb, 1);
2631 if (ret) {
2632 reiserfs_write_unlock(inode->i_sb);
2633 goto journal_error;
2635 reiserfs_update_inode_transaction(inode);
2636 inode->i_size = pos;
2638 * this will just nest into our transaction. It's important
2639 * to use mark_inode_dirty so the inode gets pushed around on the
2640 * dirty lists, and so that O_SYNC works as expected
2642 mark_inode_dirty(inode);
2643 reiserfs_update_sd(&myth, inode);
2644 update_sd = 1;
2645 ret = journal_end(&myth, inode->i_sb, 1);
2646 reiserfs_write_unlock(inode->i_sb);
2647 if (ret)
2648 goto journal_error;
2650 if (th) {
2651 reiserfs_write_lock(inode->i_sb);
2652 if (!update_sd)
2653 mark_inode_dirty(inode);
2654 ret = reiserfs_end_persistent_transaction(th);
2655 reiserfs_write_unlock(inode->i_sb);
2656 if (ret)
2657 goto out;
2660 out:
2661 return ret;
2663 journal_error:
2664 if (th) {
2665 reiserfs_write_lock(inode->i_sb);
2666 if (!update_sd)
2667 reiserfs_update_sd(th, inode);
2668 ret = reiserfs_end_persistent_transaction(th);
2669 reiserfs_write_unlock(inode->i_sb);
2672 return ret;
2675 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2677 if (reiserfs_attrs(inode->i_sb)) {
2678 if (sd_attrs & REISERFS_SYNC_FL)
2679 inode->i_flags |= S_SYNC;
2680 else
2681 inode->i_flags &= ~S_SYNC;
2682 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2683 inode->i_flags |= S_IMMUTABLE;
2684 else
2685 inode->i_flags &= ~S_IMMUTABLE;
2686 if (sd_attrs & REISERFS_APPEND_FL)
2687 inode->i_flags |= S_APPEND;
2688 else
2689 inode->i_flags &= ~S_APPEND;
2690 if (sd_attrs & REISERFS_NOATIME_FL)
2691 inode->i_flags |= S_NOATIME;
2692 else
2693 inode->i_flags &= ~S_NOATIME;
2694 if (sd_attrs & REISERFS_NOTAIL_FL)
2695 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2696 else
2697 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2701 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2703 if (reiserfs_attrs(inode->i_sb)) {
2704 if (inode->i_flags & S_IMMUTABLE)
2705 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2706 else
2707 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2708 if (inode->i_flags & S_SYNC)
2709 *sd_attrs |= REISERFS_SYNC_FL;
2710 else
2711 *sd_attrs &= ~REISERFS_SYNC_FL;
2712 if (inode->i_flags & S_NOATIME)
2713 *sd_attrs |= REISERFS_NOATIME_FL;
2714 else
2715 *sd_attrs &= ~REISERFS_NOATIME_FL;
2716 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2717 *sd_attrs |= REISERFS_NOTAIL_FL;
2718 else
2719 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2723 /* decide if this buffer needs to stay around for data logging or ordered
2724 ** write purposes
2726 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2728 int ret = 1;
2729 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2731 lock_buffer(bh);
2732 spin_lock(&j->j_dirty_buffers_lock);
2733 if (!buffer_mapped(bh)) {
2734 goto free_jh;
2736 /* the page is locked, and the only places that log a data buffer
2737 * also lock the page.
2739 if (reiserfs_file_data_log(inode)) {
2741 * very conservative, leave the buffer pinned if
2742 * anyone might need it.
2744 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2745 ret = 0;
2747 } else if (buffer_dirty(bh)) {
2748 struct reiserfs_journal_list *jl;
2749 struct reiserfs_jh *jh = bh->b_private;
2751 /* why is this safe?
2752 * reiserfs_setattr updates i_size in the on disk
2753 * stat data before allowing vmtruncate to be called.
2755 * If buffer was put onto the ordered list for this
2756 * transaction, we know for sure either this transaction
2757 * or an older one already has updated i_size on disk,
2758 * and this ordered data won't be referenced in the file
2759 * if we crash.
2761 * if the buffer was put onto the ordered list for an older
2762 * transaction, we need to leave it around
2764 if (jh && (jl = jh->jl)
2765 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2766 ret = 0;
2768 free_jh:
2769 if (ret && bh->b_private) {
2770 reiserfs_free_jh(bh);
2772 spin_unlock(&j->j_dirty_buffers_lock);
2773 unlock_buffer(bh);
2774 return ret;
2777 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2778 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2780 struct buffer_head *head, *bh, *next;
2781 struct inode *inode = page->mapping->host;
2782 unsigned int curr_off = 0;
2783 int ret = 1;
2785 BUG_ON(!PageLocked(page));
2787 if (offset == 0)
2788 ClearPageChecked(page);
2790 if (!page_has_buffers(page))
2791 goto out;
2793 head = page_buffers(page);
2794 bh = head;
2795 do {
2796 unsigned int next_off = curr_off + bh->b_size;
2797 next = bh->b_this_page;
2800 * is this block fully invalidated?
2802 if (offset <= curr_off) {
2803 if (invalidatepage_can_drop(inode, bh))
2804 reiserfs_unmap_buffer(bh);
2805 else
2806 ret = 0;
2808 curr_off = next_off;
2809 bh = next;
2810 } while (bh != head);
2813 * We release buffers only if the entire page is being invalidated.
2814 * The get_block cached value has been unconditionally invalidated,
2815 * so real IO is not possible anymore.
2817 if (!offset && ret) {
2818 ret = try_to_release_page(page, 0);
2819 /* maybe should BUG_ON(!ret); - neilb */
2821 out:
2822 return;
2825 static int reiserfs_set_page_dirty(struct page *page)
2827 struct inode *inode = page->mapping->host;
2828 if (reiserfs_file_data_log(inode)) {
2829 SetPageChecked(page);
2830 return __set_page_dirty_nobuffers(page);
2832 return __set_page_dirty_buffers(page);
2836 * Returns 1 if the page's buffers were dropped. The page is locked.
2838 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2839 * in the buffers at page_buffers(page).
2841 * even in -o notail mode, we can't be sure an old mount without -o notail
2842 * didn't create files with tails.
2844 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2846 struct inode *inode = page->mapping->host;
2847 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2848 struct buffer_head *head;
2849 struct buffer_head *bh;
2850 int ret = 1;
2852 WARN_ON(PageChecked(page));
2853 spin_lock(&j->j_dirty_buffers_lock);
2854 head = page_buffers(page);
2855 bh = head;
2856 do {
2857 if (bh->b_private) {
2858 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2859 reiserfs_free_jh(bh);
2860 } else {
2861 ret = 0;
2862 break;
2865 bh = bh->b_this_page;
2866 } while (bh != head);
2867 if (ret)
2868 ret = try_to_free_buffers(page);
2869 spin_unlock(&j->j_dirty_buffers_lock);
2870 return ret;
2873 /* We thank Mingming Cao for helping us understand in great detail what
2874 to do in this section of the code. */
2875 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2876 const struct iovec *iov, loff_t offset,
2877 unsigned long nr_segs)
2879 struct file *file = iocb->ki_filp;
2880 struct inode *inode = file->f_mapping->host;
2882 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2883 offset, nr_segs,
2884 reiserfs_get_blocks_direct_io, NULL);
2887 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2889 struct inode *inode = dentry->d_inode;
2890 int error;
2891 unsigned int ia_valid = attr->ia_valid;
2892 reiserfs_write_lock(inode->i_sb);
2893 if (attr->ia_valid & ATTR_SIZE) {
2894 /* version 2 items will be caught by the s_maxbytes check
2895 ** done for us in vmtruncate
2897 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2898 attr->ia_size > MAX_NON_LFS) {
2899 error = -EFBIG;
2900 goto out;
2902 /* fill in hole pointers in the expanding truncate case. */
2903 if (attr->ia_size > inode->i_size) {
2904 error = generic_cont_expand(inode, attr->ia_size);
2905 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2906 int err;
2907 struct reiserfs_transaction_handle th;
2908 /* we're changing at most 2 bitmaps, inode + super */
2909 err = journal_begin(&th, inode->i_sb, 4);
2910 if (!err) {
2911 reiserfs_discard_prealloc(&th, inode);
2912 err = journal_end(&th, inode->i_sb, 4);
2914 if (err)
2915 error = err;
2917 if (error)
2918 goto out;
2920 * file size is changed, ctime and mtime are
2921 * to be updated
2923 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2927 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2928 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2929 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2930 /* stat data of format v3.5 has 16 bit uid and gid */
2931 error = -EINVAL;
2932 goto out;
2935 error = inode_change_ok(inode, attr);
2936 if (!error) {
2937 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2938 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2939 error = reiserfs_chown_xattrs(inode, attr);
2941 if (!error) {
2942 struct reiserfs_transaction_handle th;
2943 int jbegin_count =
2945 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2946 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2949 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2950 error =
2951 journal_begin(&th, inode->i_sb,
2952 jbegin_count);
2953 if (error)
2954 goto out;
2955 error =
2956 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2957 if (error) {
2958 journal_end(&th, inode->i_sb,
2959 jbegin_count);
2960 goto out;
2962 /* Update corresponding info in inode so that everything is in
2963 * one transaction */
2964 if (attr->ia_valid & ATTR_UID)
2965 inode->i_uid = attr->ia_uid;
2966 if (attr->ia_valid & ATTR_GID)
2967 inode->i_gid = attr->ia_gid;
2968 mark_inode_dirty(inode);
2969 error =
2970 journal_end(&th, inode->i_sb, jbegin_count);
2973 if (!error)
2974 error = inode_setattr(inode, attr);
2977 if (!error && reiserfs_posixacl(inode->i_sb)) {
2978 if (attr->ia_valid & ATTR_MODE)
2979 error = reiserfs_acl_chmod(inode);
2982 out:
2983 reiserfs_write_unlock(inode->i_sb);
2984 return error;
2987 const struct address_space_operations reiserfs_address_space_operations = {
2988 .writepage = reiserfs_writepage,
2989 .readpage = reiserfs_readpage,
2990 .readpages = reiserfs_readpages,
2991 .releasepage = reiserfs_releasepage,
2992 .invalidatepage = reiserfs_invalidatepage,
2993 .sync_page = block_sync_page,
2994 .prepare_write = reiserfs_prepare_write,
2995 .commit_write = reiserfs_commit_write,
2996 .bmap = reiserfs_aop_bmap,
2997 .direct_IO = reiserfs_direct_IO,
2998 .set_page_dirty = reiserfs_set_page_dirty,