allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / nfs / write.c
blobde5761b7379a8e27c9178abec9ca3392c69d8c30
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
23 #include <asm/uaccess.h>
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
31 #define MIN_POOL_WRITE (32)
32 #define MIN_POOL_COMMIT (4)
35 * Local function declarations
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 struct page *,
39 unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
50 struct nfs_write_data *nfs_commit_alloc(void)
52 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 if (p) {
55 memset(p, 0, sizeof(*p));
56 INIT_LIST_HEAD(&p->pages);
58 return p;
61 static void nfs_commit_rcu_free(struct rcu_head *head)
63 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
64 if (p && (p->pagevec != &p->page_array[0]))
65 kfree(p->pagevec);
66 mempool_free(p, nfs_commit_mempool);
69 void nfs_commit_free(struct nfs_write_data *wdata)
71 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
76 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
78 if (p) {
79 memset(p, 0, sizeof(*p));
80 INIT_LIST_HEAD(&p->pages);
81 p->npages = pagecount;
82 if (pagecount <= ARRAY_SIZE(p->page_array))
83 p->pagevec = p->page_array;
84 else {
85 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
86 if (!p->pagevec) {
87 mempool_free(p, nfs_wdata_mempool);
88 p = NULL;
92 return p;
95 static void nfs_writedata_rcu_free(struct rcu_head *head)
97 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
98 if (p && (p->pagevec != &p->page_array[0]))
99 kfree(p->pagevec);
100 mempool_free(p, nfs_wdata_mempool);
103 static void nfs_writedata_free(struct nfs_write_data *wdata)
105 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
108 void nfs_writedata_release(void *wdata)
110 nfs_writedata_free(wdata);
113 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 struct nfs_page *req = NULL;
117 if (PagePrivate(page)) {
118 req = (struct nfs_page *)page_private(page);
119 if (req != NULL)
120 kref_get(&req->wb_kref);
122 return req;
125 static struct nfs_page *nfs_page_find_request(struct page *page)
127 struct inode *inode = page->mapping->host;
128 struct nfs_page *req = NULL;
130 spin_lock(&inode->i_lock);
131 req = nfs_page_find_request_locked(page);
132 spin_unlock(&inode->i_lock);
133 return req;
136 /* Adjust the file length if we're writing beyond the end */
137 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 struct inode *inode = page->mapping->host;
140 loff_t end, i_size = i_size_read(inode);
141 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 if (i_size > 0 && page->index < end_index)
144 return;
145 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146 if (i_size >= end)
147 return;
148 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
149 i_size_write(inode, end);
152 /* A writeback failed: mark the page as bad, and invalidate the page cache */
153 static void nfs_set_pageerror(struct page *page)
155 SetPageError(page);
156 nfs_zap_mapping(page->mapping->host, page->mapping);
159 /* We can set the PG_uptodate flag if we see that a write request
160 * covers the full page.
162 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
164 if (PageUptodate(page))
165 return;
166 if (base != 0)
167 return;
168 if (count != nfs_page_length(page))
169 return;
170 if (count != PAGE_CACHE_SIZE)
171 zero_user_page(page, count, PAGE_CACHE_SIZE - count, KM_USER0);
172 SetPageUptodate(page);
175 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
176 unsigned int offset, unsigned int count)
178 struct nfs_page *req;
179 int ret;
181 for (;;) {
182 req = nfs_update_request(ctx, page, offset, count);
183 if (!IS_ERR(req))
184 break;
185 ret = PTR_ERR(req);
186 if (ret != -EBUSY)
187 return ret;
188 ret = nfs_wb_page(page->mapping->host, page);
189 if (ret != 0)
190 return ret;
192 /* Update file length */
193 nfs_grow_file(page, offset, count);
194 nfs_unlock_request(req);
195 return 0;
198 static int wb_priority(struct writeback_control *wbc)
200 if (wbc->for_reclaim)
201 return FLUSH_HIGHPRI | FLUSH_STABLE;
202 if (wbc->for_kupdate)
203 return FLUSH_LOWPRI;
204 return 0;
208 * NFS congestion control
211 int nfs_congestion_kb;
213 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
214 #define NFS_CONGESTION_OFF_THRESH \
215 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
217 static int nfs_set_page_writeback(struct page *page)
219 int ret = test_set_page_writeback(page);
221 if (!ret) {
222 struct inode *inode = page->mapping->host;
223 struct nfs_server *nfss = NFS_SERVER(inode);
225 if (atomic_long_inc_return(&nfss->writeback) >
226 NFS_CONGESTION_ON_THRESH)
227 set_bdi_congested(&nfss->backing_dev_info, WRITE);
229 return ret;
232 static void nfs_end_page_writeback(struct page *page)
234 struct inode *inode = page->mapping->host;
235 struct nfs_server *nfss = NFS_SERVER(inode);
237 end_page_writeback(page);
238 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
239 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
243 * Find an associated nfs write request, and prepare to flush it out
244 * Returns 1 if there was no write request, or if the request was
245 * already tagged by nfs_set_page_dirty.Returns 0 if the request
246 * was not tagged.
247 * May also return an error if the user signalled nfs_wait_on_request().
249 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
250 struct page *page)
252 struct inode *inode = page->mapping->host;
253 struct nfs_inode *nfsi = NFS_I(inode);
254 struct nfs_page *req;
255 int ret;
257 spin_lock(&inode->i_lock);
258 for(;;) {
259 req = nfs_page_find_request_locked(page);
260 if (req == NULL) {
261 spin_unlock(&inode->i_lock);
262 return 1;
264 if (nfs_lock_request_dontget(req))
265 break;
266 /* Note: If we hold the page lock, as is the case in nfs_writepage,
267 * then the call to nfs_lock_request_dontget() will always
268 * succeed provided that someone hasn't already marked the
269 * request as dirty (in which case we don't care).
271 spin_unlock(&inode->i_lock);
272 ret = nfs_wait_on_request(req);
273 nfs_release_request(req);
274 if (ret != 0)
275 return ret;
276 spin_lock(&inode->i_lock);
278 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
279 /* This request is marked for commit */
280 spin_unlock(&inode->i_lock);
281 nfs_unlock_request(req);
282 nfs_pageio_complete(pgio);
283 return 1;
285 if (nfs_set_page_writeback(page) != 0) {
286 spin_unlock(&inode->i_lock);
287 BUG();
289 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
290 NFS_PAGE_TAG_LOCKED);
291 ret = test_bit(PG_NEED_FLUSH, &req->wb_flags);
292 spin_unlock(&inode->i_lock);
293 nfs_pageio_add_request(pgio, req);
294 return ret;
298 * Write an mmapped page to the server.
300 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
302 struct nfs_pageio_descriptor mypgio, *pgio;
303 struct nfs_open_context *ctx;
304 struct inode *inode = page->mapping->host;
305 unsigned offset;
306 int err;
308 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
309 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
311 if (wbc->for_writepages)
312 pgio = wbc->fs_private;
313 else {
314 nfs_pageio_init_write(&mypgio, inode, wb_priority(wbc));
315 pgio = &mypgio;
318 nfs_pageio_cond_complete(pgio, page->index);
320 err = nfs_page_async_flush(pgio, page);
321 if (err <= 0)
322 goto out;
323 err = 0;
324 offset = nfs_page_length(page);
325 if (!offset)
326 goto out;
328 nfs_pageio_cond_complete(pgio, page->index);
330 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE);
331 if (ctx == NULL) {
332 err = -EBADF;
333 goto out;
335 err = nfs_writepage_setup(ctx, page, 0, offset);
336 put_nfs_open_context(ctx);
337 if (err != 0)
338 goto out;
339 err = nfs_page_async_flush(pgio, page);
340 if (err > 0)
341 err = 0;
342 out:
343 if (!wbc->for_writepages)
344 nfs_pageio_complete(pgio);
345 return err;
348 int nfs_writepage(struct page *page, struct writeback_control *wbc)
350 int err;
352 err = nfs_writepage_locked(page, wbc);
353 unlock_page(page);
354 return err;
357 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
359 struct inode *inode = mapping->host;
360 struct nfs_pageio_descriptor pgio;
361 int err;
363 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
365 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
366 wbc->fs_private = &pgio;
367 err = generic_writepages(mapping, wbc);
368 nfs_pageio_complete(&pgio);
369 if (err)
370 return err;
371 if (pgio.pg_error)
372 return pgio.pg_error;
373 return 0;
377 * Insert a write request into an inode
379 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
381 struct nfs_inode *nfsi = NFS_I(inode);
382 int error;
384 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
385 BUG_ON(error);
386 if (!nfsi->npages) {
387 igrab(inode);
388 nfs_begin_data_update(inode);
389 if (nfs_have_delegation(inode, FMODE_WRITE))
390 nfsi->change_attr++;
392 SetPagePrivate(req->wb_page);
393 set_page_private(req->wb_page, (unsigned long)req);
394 if (PageDirty(req->wb_page))
395 set_bit(PG_NEED_FLUSH, &req->wb_flags);
396 nfsi->npages++;
397 kref_get(&req->wb_kref);
398 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
399 NFS_PAGE_TAG_LOCKED);
403 * Remove a write request from an inode
405 static void nfs_inode_remove_request(struct nfs_page *req)
407 struct inode *inode = req->wb_context->path.dentry->d_inode;
408 struct nfs_inode *nfsi = NFS_I(inode);
410 BUG_ON (!NFS_WBACK_BUSY(req));
412 spin_lock(&inode->i_lock);
413 set_page_private(req->wb_page, 0);
414 ClearPagePrivate(req->wb_page);
415 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
416 if (test_and_clear_bit(PG_NEED_FLUSH, &req->wb_flags))
417 __set_page_dirty_nobuffers(req->wb_page);
418 nfsi->npages--;
419 if (!nfsi->npages) {
420 spin_unlock(&inode->i_lock);
421 nfs_end_data_update(inode);
422 iput(inode);
423 } else
424 spin_unlock(&inode->i_lock);
425 nfs_clear_request(req);
426 nfs_release_request(req);
429 static void
430 nfs_redirty_request(struct nfs_page *req)
432 __set_page_dirty_nobuffers(req->wb_page);
436 * Check if a request is dirty
438 static inline int
439 nfs_dirty_request(struct nfs_page *req)
441 struct page *page = req->wb_page;
443 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
444 return 0;
445 return !PageWriteback(req->wb_page);
448 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
450 * Add a request to the inode's commit list.
452 static void
453 nfs_mark_request_commit(struct nfs_page *req)
455 struct inode *inode = req->wb_context->path.dentry->d_inode;
456 struct nfs_inode *nfsi = NFS_I(inode);
458 spin_lock(&inode->i_lock);
459 nfsi->ncommit++;
460 set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
461 radix_tree_tag_set(&nfsi->nfs_page_tree,
462 req->wb_index,
463 NFS_PAGE_TAG_COMMIT);
464 spin_unlock(&inode->i_lock);
465 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
466 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
467 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
473 return data->verf.committed != NFS_FILE_SYNC;
476 static inline
477 int nfs_reschedule_unstable_write(struct nfs_page *req)
479 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
480 nfs_mark_request_commit(req);
481 return 1;
483 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
484 nfs_redirty_request(req);
485 return 1;
487 return 0;
489 #else
490 static inline void
491 nfs_mark_request_commit(struct nfs_page *req)
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
498 return 0;
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
504 return 0;
506 #endif
509 * Wait for a request to complete.
511 * Interruptible by signals only if mounted with intr flag.
513 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
515 struct nfs_inode *nfsi = NFS_I(inode);
516 struct nfs_page *req;
517 pgoff_t idx_end, next;
518 unsigned int res = 0;
519 int error;
521 if (npages == 0)
522 idx_end = ~0;
523 else
524 idx_end = idx_start + npages - 1;
526 next = idx_start;
527 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
528 if (req->wb_index > idx_end)
529 break;
531 next = req->wb_index + 1;
532 BUG_ON(!NFS_WBACK_BUSY(req));
534 kref_get(&req->wb_kref);
535 spin_unlock(&inode->i_lock);
536 error = nfs_wait_on_request(req);
537 nfs_release_request(req);
538 spin_lock(&inode->i_lock);
539 if (error < 0)
540 return error;
541 res++;
543 return res;
546 static void nfs_cancel_commit_list(struct list_head *head)
548 struct nfs_page *req;
550 while(!list_empty(head)) {
551 req = nfs_list_entry(head->next);
552 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
553 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
554 BDI_RECLAIMABLE);
555 nfs_list_remove_request(req);
556 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
557 nfs_inode_remove_request(req);
558 nfs_unlock_request(req);
562 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
564 * nfs_scan_commit - Scan an inode for commit requests
565 * @inode: NFS inode to scan
566 * @dst: destination list
567 * @idx_start: lower bound of page->index to scan.
568 * @npages: idx_start + npages sets the upper bound to scan.
570 * Moves requests from the inode's 'commit' request list.
571 * The requests are *not* checked to ensure that they form a contiguous set.
573 static int
574 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
576 struct nfs_inode *nfsi = NFS_I(inode);
577 int res = 0;
579 if (nfsi->ncommit != 0) {
580 res = nfs_scan_list(nfsi, dst, idx_start, npages,
581 NFS_PAGE_TAG_COMMIT);
582 nfsi->ncommit -= res;
584 return res;
586 #else
587 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
589 return 0;
591 #endif
594 * Try to update any existing write request, or create one if there is none.
595 * In order to match, the request's credentials must match those of
596 * the calling process.
598 * Note: Should always be called with the Page Lock held!
600 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
601 struct page *page, unsigned int offset, unsigned int bytes)
603 struct address_space *mapping = page->mapping;
604 struct inode *inode = mapping->host;
605 struct nfs_page *req, *new = NULL;
606 pgoff_t rqend, end;
608 end = offset + bytes;
610 for (;;) {
611 /* Loop over all inode entries and see if we find
612 * A request for the page we wish to update
614 spin_lock(&inode->i_lock);
615 req = nfs_page_find_request_locked(page);
616 if (req) {
617 if (!nfs_lock_request_dontget(req)) {
618 int error;
620 spin_unlock(&inode->i_lock);
621 error = nfs_wait_on_request(req);
622 nfs_release_request(req);
623 if (error < 0) {
624 if (new) {
625 radix_tree_preload_end();
626 nfs_release_request(new);
628 return ERR_PTR(error);
630 continue;
632 spin_unlock(&inode->i_lock);
633 if (new) {
634 radix_tree_preload_end();
635 nfs_release_request(new);
637 break;
640 if (new) {
641 nfs_lock_request_dontget(new);
642 nfs_inode_add_request(inode, new);
643 spin_unlock(&inode->i_lock);
644 radix_tree_preload_end();
645 return new;
647 spin_unlock(&inode->i_lock);
649 new = nfs_create_request(ctx, inode, page, offset, bytes);
650 if (IS_ERR(new))
651 return new;
652 if (radix_tree_preload(GFP_NOFS)) {
653 nfs_release_request(new);
654 return ERR_PTR(-ENOMEM);
658 /* We have a request for our page.
659 * If the creds don't match, or the
660 * page addresses don't match,
661 * tell the caller to wait on the conflicting
662 * request.
664 rqend = req->wb_offset + req->wb_bytes;
665 if (req->wb_context != ctx
666 || req->wb_page != page
667 || !nfs_dirty_request(req)
668 || offset > rqend || end < req->wb_offset) {
669 nfs_unlock_request(req);
670 return ERR_PTR(-EBUSY);
673 /* Okay, the request matches. Update the region */
674 if (offset < req->wb_offset) {
675 req->wb_offset = offset;
676 req->wb_pgbase = offset;
677 req->wb_bytes = rqend - req->wb_offset;
680 if (end > rqend)
681 req->wb_bytes = end - req->wb_offset;
683 return req;
686 int nfs_flush_incompatible(struct file *file, struct page *page)
688 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
689 struct nfs_page *req;
690 int do_flush, status;
692 * Look for a request corresponding to this page. If there
693 * is one, and it belongs to another file, we flush it out
694 * before we try to copy anything into the page. Do this
695 * due to the lack of an ACCESS-type call in NFSv2.
696 * Also do the same if we find a request from an existing
697 * dropped page.
699 do {
700 req = nfs_page_find_request(page);
701 if (req == NULL)
702 return 0;
703 do_flush = req->wb_page != page || req->wb_context != ctx
704 || !nfs_dirty_request(req);
705 nfs_release_request(req);
706 if (!do_flush)
707 return 0;
708 status = nfs_wb_page(page->mapping->host, page);
709 } while (status == 0);
710 return status;
714 * If the page cache is marked as unsafe or invalid, then we can't rely on
715 * the PageUptodate() flag. In this case, we will need to turn off
716 * write optimisations that depend on the page contents being correct.
718 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
720 return PageUptodate(page) &&
721 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
725 * Update and possibly write a cached page of an NFS file.
727 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
728 * things with a page scheduled for an RPC call (e.g. invalidate it).
730 int nfs_updatepage(struct file *file, struct page *page,
731 unsigned int offset, unsigned int count)
733 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
734 struct inode *inode = page->mapping->host;
735 int status = 0;
737 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
739 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n",
740 file->f_path.dentry->d_parent->d_name.name,
741 file->f_path.dentry->d_name.name, count,
742 (long long)(page_offset(page) +offset));
744 /* If we're not using byte range locks, and we know the page
745 * is up to date, it may be more efficient to extend the write
746 * to cover the entire page in order to avoid fragmentation
747 * inefficiencies.
749 if (nfs_write_pageuptodate(page, inode) &&
750 inode->i_flock == NULL &&
751 !(file->f_flags & O_SYNC)) {
752 count = max(count + offset, nfs_page_length(page));
753 offset = 0;
756 status = nfs_writepage_setup(ctx, page, offset, count);
757 __set_page_dirty_nobuffers(page);
759 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n",
760 status, (long long)i_size_read(inode));
761 if (status < 0)
762 nfs_set_pageerror(page);
763 return status;
766 static void nfs_writepage_release(struct nfs_page *req)
769 if (PageError(req->wb_page)) {
770 nfs_end_page_writeback(req->wb_page);
771 nfs_inode_remove_request(req);
772 } else if (!nfs_reschedule_unstable_write(req)) {
773 /* Set the PG_uptodate flag */
774 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
775 nfs_end_page_writeback(req->wb_page);
776 nfs_inode_remove_request(req);
777 } else
778 nfs_end_page_writeback(req->wb_page);
779 nfs_clear_page_tag_locked(req);
782 static inline int flush_task_priority(int how)
784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 case FLUSH_HIGHPRI:
786 return RPC_PRIORITY_HIGH;
787 case FLUSH_LOWPRI:
788 return RPC_PRIORITY_LOW;
790 return RPC_PRIORITY_NORMAL;
794 * Set up the argument/result storage required for the RPC call.
796 static void nfs_write_rpcsetup(struct nfs_page *req,
797 struct nfs_write_data *data,
798 const struct rpc_call_ops *call_ops,
799 unsigned int count, unsigned int offset,
800 int how)
802 struct inode *inode;
803 int flags;
805 /* Set up the RPC argument and reply structs
806 * NB: take care not to mess about with data->commit et al. */
808 data->req = req;
809 data->inode = inode = req->wb_context->path.dentry->d_inode;
810 data->cred = req->wb_context->cred;
812 data->args.fh = NFS_FH(inode);
813 data->args.offset = req_offset(req) + offset;
814 data->args.pgbase = req->wb_pgbase + offset;
815 data->args.pages = data->pagevec;
816 data->args.count = count;
817 data->args.context = req->wb_context;
819 data->res.fattr = &data->fattr;
820 data->res.count = count;
821 data->res.verf = &data->verf;
822 nfs_fattr_init(&data->fattr);
824 /* Set up the initial task struct. */
825 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
826 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
827 NFS_PROTO(inode)->write_setup(data, how);
829 data->task.tk_priority = flush_task_priority(how);
830 data->task.tk_cookie = (unsigned long)inode;
832 dprintk("NFS: %5u initiated write call "
833 "(req %s/%Ld, %u bytes @ offset %Lu)\n",
834 data->task.tk_pid,
835 inode->i_sb->s_id,
836 (long long)NFS_FILEID(inode),
837 count,
838 (unsigned long long)data->args.offset);
841 static void nfs_execute_write(struct nfs_write_data *data)
843 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
844 sigset_t oldset;
846 rpc_clnt_sigmask(clnt, &oldset);
847 rpc_execute(&data->task);
848 rpc_clnt_sigunmask(clnt, &oldset);
852 * Generate multiple small requests to write out a single
853 * contiguous dirty area on one page.
855 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
857 struct nfs_page *req = nfs_list_entry(head->next);
858 struct page *page = req->wb_page;
859 struct nfs_write_data *data;
860 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
861 unsigned int offset;
862 int requests = 0;
863 LIST_HEAD(list);
865 nfs_list_remove_request(req);
867 nbytes = count;
868 do {
869 size_t len = min(nbytes, wsize);
871 data = nfs_writedata_alloc(1);
872 if (!data)
873 goto out_bad;
874 list_add(&data->pages, &list);
875 requests++;
876 nbytes -= len;
877 } while (nbytes != 0);
878 atomic_set(&req->wb_complete, requests);
880 ClearPageError(page);
881 offset = 0;
882 nbytes = count;
883 do {
884 data = list_entry(list.next, struct nfs_write_data, pages);
885 list_del_init(&data->pages);
887 data->pagevec[0] = page;
889 if (nbytes < wsize)
890 wsize = nbytes;
891 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
892 wsize, offset, how);
893 offset += wsize;
894 nbytes -= wsize;
895 nfs_execute_write(data);
896 } while (nbytes != 0);
898 return 0;
900 out_bad:
901 while (!list_empty(&list)) {
902 data = list_entry(list.next, struct nfs_write_data, pages);
903 list_del(&data->pages);
904 nfs_writedata_release(data);
906 nfs_redirty_request(req);
907 nfs_end_page_writeback(req->wb_page);
908 nfs_clear_page_tag_locked(req);
909 return -ENOMEM;
913 * Create an RPC task for the given write request and kick it.
914 * The page must have been locked by the caller.
916 * It may happen that the page we're passed is not marked dirty.
917 * This is the case if nfs_updatepage detects a conflicting request
918 * that has been written but not committed.
920 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
922 struct nfs_page *req;
923 struct page **pages;
924 struct nfs_write_data *data;
926 data = nfs_writedata_alloc(npages);
927 if (!data)
928 goto out_bad;
930 pages = data->pagevec;
931 while (!list_empty(head)) {
932 req = nfs_list_entry(head->next);
933 nfs_list_remove_request(req);
934 nfs_list_add_request(req, &data->pages);
935 ClearPageError(req->wb_page);
936 *pages++ = req->wb_page;
938 req = nfs_list_entry(data->pages.next);
940 /* Set up the argument struct */
941 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
943 nfs_execute_write(data);
944 return 0;
945 out_bad:
946 while (!list_empty(head)) {
947 req = nfs_list_entry(head->next);
948 nfs_list_remove_request(req);
949 nfs_redirty_request(req);
950 nfs_end_page_writeback(req->wb_page);
951 nfs_clear_page_tag_locked(req);
953 return -ENOMEM;
956 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
957 struct inode *inode, int ioflags)
959 int wsize = NFS_SERVER(inode)->wsize;
961 if (wsize < PAGE_CACHE_SIZE)
962 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
963 else
964 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
968 * Handle a write reply that flushed part of a page.
970 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
972 struct nfs_write_data *data = calldata;
973 struct nfs_page *req = data->req;
974 struct page *page = req->wb_page;
976 dprintk("NFS: write (%s/%Ld %d@%Ld)",
977 req->wb_context->path.dentry->d_inode->i_sb->s_id,
978 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
979 req->wb_bytes,
980 (long long)req_offset(req));
982 if (nfs_writeback_done(task, data) != 0)
983 return;
985 if (task->tk_status < 0) {
986 nfs_set_pageerror(page);
987 req->wb_context->error = task->tk_status;
988 dprintk(", error = %d\n", task->tk_status);
989 goto out;
992 if (nfs_write_need_commit(data)) {
993 struct inode *inode = page->mapping->host;
995 spin_lock(&inode->i_lock);
996 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
997 /* Do nothing we need to resend the writes */
998 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
999 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1000 dprintk(" defer commit\n");
1001 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1002 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1003 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1004 dprintk(" server reboot detected\n");
1006 spin_unlock(&inode->i_lock);
1007 } else
1008 dprintk(" OK\n");
1010 out:
1011 if (atomic_dec_and_test(&req->wb_complete))
1012 nfs_writepage_release(req);
1015 static const struct rpc_call_ops nfs_write_partial_ops = {
1016 .rpc_call_done = nfs_writeback_done_partial,
1017 .rpc_release = nfs_writedata_release,
1021 * Handle a write reply that flushes a whole page.
1023 * FIXME: There is an inherent race with invalidate_inode_pages and
1024 * writebacks since the page->count is kept > 1 for as long
1025 * as the page has a write request pending.
1027 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1029 struct nfs_write_data *data = calldata;
1030 struct nfs_page *req;
1031 struct page *page;
1033 if (nfs_writeback_done(task, data) != 0)
1034 return;
1036 /* Update attributes as result of writeback. */
1037 while (!list_empty(&data->pages)) {
1038 req = nfs_list_entry(data->pages.next);
1039 nfs_list_remove_request(req);
1040 page = req->wb_page;
1042 dprintk("NFS: write (%s/%Ld %d@%Ld)",
1043 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1044 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1045 req->wb_bytes,
1046 (long long)req_offset(req));
1048 if (task->tk_status < 0) {
1049 nfs_set_pageerror(page);
1050 req->wb_context->error = task->tk_status;
1051 dprintk(", error = %d\n", task->tk_status);
1052 goto remove_request;
1055 if (nfs_write_need_commit(data)) {
1056 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1057 nfs_mark_request_commit(req);
1058 nfs_end_page_writeback(page);
1059 dprintk(" marked for commit\n");
1060 goto next;
1062 /* Set the PG_uptodate flag? */
1063 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1064 dprintk(" OK\n");
1065 remove_request:
1066 nfs_end_page_writeback(page);
1067 nfs_inode_remove_request(req);
1068 next:
1069 nfs_clear_page_tag_locked(req);
1073 static const struct rpc_call_ops nfs_write_full_ops = {
1074 .rpc_call_done = nfs_writeback_done_full,
1075 .rpc_release = nfs_writedata_release,
1080 * This function is called when the WRITE call is complete.
1082 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1084 struct nfs_writeargs *argp = &data->args;
1085 struct nfs_writeres *resp = &data->res;
1086 int status;
1088 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1089 task->tk_pid, task->tk_status);
1092 * ->write_done will attempt to use post-op attributes to detect
1093 * conflicting writes by other clients. A strict interpretation
1094 * of close-to-open would allow us to continue caching even if
1095 * another writer had changed the file, but some applications
1096 * depend on tighter cache coherency when writing.
1098 status = NFS_PROTO(data->inode)->write_done(task, data);
1099 if (status != 0)
1100 return status;
1101 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1103 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1104 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1105 /* We tried a write call, but the server did not
1106 * commit data to stable storage even though we
1107 * requested it.
1108 * Note: There is a known bug in Tru64 < 5.0 in which
1109 * the server reports NFS_DATA_SYNC, but performs
1110 * NFS_FILE_SYNC. We therefore implement this checking
1111 * as a dprintk() in order to avoid filling syslog.
1113 static unsigned long complain;
1115 if (time_before(complain, jiffies)) {
1116 dprintk("NFS: faulty NFS server %s:"
1117 " (committed = %d) != (stable = %d)\n",
1118 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1119 resp->verf->committed, argp->stable);
1120 complain = jiffies + 300 * HZ;
1123 #endif
1124 /* Is this a short write? */
1125 if (task->tk_status >= 0 && resp->count < argp->count) {
1126 static unsigned long complain;
1128 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1130 /* Has the server at least made some progress? */
1131 if (resp->count != 0) {
1132 /* Was this an NFSv2 write or an NFSv3 stable write? */
1133 if (resp->verf->committed != NFS_UNSTABLE) {
1134 /* Resend from where the server left off */
1135 argp->offset += resp->count;
1136 argp->pgbase += resp->count;
1137 argp->count -= resp->count;
1138 } else {
1139 /* Resend as a stable write in order to avoid
1140 * headaches in the case of a server crash.
1142 argp->stable = NFS_FILE_SYNC;
1144 rpc_restart_call(task);
1145 return -EAGAIN;
1147 if (time_before(complain, jiffies)) {
1148 printk(KERN_WARNING
1149 "NFS: Server wrote zero bytes, expected %u.\n",
1150 argp->count);
1151 complain = jiffies + 300 * HZ;
1153 /* Can't do anything about it except throw an error. */
1154 task->tk_status = -EIO;
1156 return 0;
1160 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1161 void nfs_commit_release(void *wdata)
1163 nfs_commit_free(wdata);
1167 * Set up the argument/result storage required for the RPC call.
1169 static void nfs_commit_rpcsetup(struct list_head *head,
1170 struct nfs_write_data *data,
1171 int how)
1173 struct nfs_page *first;
1174 struct inode *inode;
1175 int flags;
1177 /* Set up the RPC argument and reply structs
1178 * NB: take care not to mess about with data->commit et al. */
1180 list_splice_init(head, &data->pages);
1181 first = nfs_list_entry(data->pages.next);
1182 inode = first->wb_context->path.dentry->d_inode;
1184 data->inode = inode;
1185 data->cred = first->wb_context->cred;
1187 data->args.fh = NFS_FH(data->inode);
1188 /* Note: we always request a commit of the entire inode */
1189 data->args.offset = 0;
1190 data->args.count = 0;
1191 data->res.count = 0;
1192 data->res.fattr = &data->fattr;
1193 data->res.verf = &data->verf;
1194 nfs_fattr_init(&data->fattr);
1196 /* Set up the initial task struct. */
1197 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1198 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1199 NFS_PROTO(inode)->commit_setup(data, how);
1201 data->task.tk_priority = flush_task_priority(how);
1202 data->task.tk_cookie = (unsigned long)inode;
1204 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1208 * Commit dirty pages
1210 static int
1211 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1213 struct nfs_write_data *data;
1214 struct nfs_page *req;
1216 data = nfs_commit_alloc();
1218 if (!data)
1219 goto out_bad;
1221 /* Set up the argument struct */
1222 nfs_commit_rpcsetup(head, data, how);
1224 nfs_execute_write(data);
1225 return 0;
1226 out_bad:
1227 while (!list_empty(head)) {
1228 req = nfs_list_entry(head->next);
1229 nfs_list_remove_request(req);
1230 nfs_mark_request_commit(req);
1231 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1232 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1233 BDI_RECLAIMABLE);
1234 nfs_clear_page_tag_locked(req);
1236 return -ENOMEM;
1240 * COMMIT call returned
1242 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1244 struct nfs_write_data *data = calldata;
1245 struct nfs_page *req;
1247 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1248 task->tk_pid, task->tk_status);
1250 /* Call the NFS version-specific code */
1251 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1252 return;
1254 while (!list_empty(&data->pages)) {
1255 req = nfs_list_entry(data->pages.next);
1256 nfs_list_remove_request(req);
1257 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1258 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1259 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1260 BDI_RECLAIMABLE);
1262 dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1263 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1264 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1265 req->wb_bytes,
1266 (long long)req_offset(req));
1267 if (task->tk_status < 0) {
1268 req->wb_context->error = task->tk_status;
1269 nfs_inode_remove_request(req);
1270 dprintk(", error = %d\n", task->tk_status);
1271 goto next;
1274 /* Okay, COMMIT succeeded, apparently. Check the verifier
1275 * returned by the server against all stored verfs. */
1276 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1277 /* We have a match */
1278 /* Set the PG_uptodate flag */
1279 nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1280 req->wb_bytes);
1281 nfs_inode_remove_request(req);
1282 dprintk(" OK\n");
1283 goto next;
1285 /* We have a mismatch. Write the page again */
1286 dprintk(" mismatch\n");
1287 nfs_redirty_request(req);
1288 next:
1289 nfs_clear_page_tag_locked(req);
1293 static const struct rpc_call_ops nfs_commit_ops = {
1294 .rpc_call_done = nfs_commit_done,
1295 .rpc_release = nfs_commit_release,
1298 int nfs_commit_inode(struct inode *inode, int how)
1300 LIST_HEAD(head);
1301 int res;
1303 spin_lock(&inode->i_lock);
1304 res = nfs_scan_commit(inode, &head, 0, 0);
1305 spin_unlock(&inode->i_lock);
1306 if (res) {
1307 int error = nfs_commit_list(inode, &head, how);
1308 if (error < 0)
1309 return error;
1311 return res;
1313 #else
1314 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1316 return 0;
1318 #endif
1320 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1322 struct inode *inode = mapping->host;
1323 pgoff_t idx_start, idx_end;
1324 unsigned int npages = 0;
1325 LIST_HEAD(head);
1326 int nocommit = how & FLUSH_NOCOMMIT;
1327 long pages, ret;
1329 /* FIXME */
1330 if (wbc->range_cyclic)
1331 idx_start = 0;
1332 else {
1333 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1334 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1335 if (idx_end > idx_start) {
1336 pgoff_t l_npages = 1 + idx_end - idx_start;
1337 npages = l_npages;
1338 if (sizeof(npages) != sizeof(l_npages) &&
1339 (pgoff_t)npages != l_npages)
1340 npages = 0;
1343 how &= ~FLUSH_NOCOMMIT;
1344 spin_lock(&inode->i_lock);
1345 do {
1346 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1347 if (ret != 0)
1348 continue;
1349 if (nocommit)
1350 break;
1351 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1352 if (pages == 0)
1353 break;
1354 if (how & FLUSH_INVALIDATE) {
1355 spin_unlock(&inode->i_lock);
1356 nfs_cancel_commit_list(&head);
1357 ret = pages;
1358 spin_lock(&inode->i_lock);
1359 continue;
1361 pages += nfs_scan_commit(inode, &head, 0, 0);
1362 spin_unlock(&inode->i_lock);
1363 ret = nfs_commit_list(inode, &head, how);
1364 spin_lock(&inode->i_lock);
1366 } while (ret >= 0);
1367 spin_unlock(&inode->i_lock);
1368 return ret;
1372 * flush the inode to disk.
1374 int nfs_wb_all(struct inode *inode)
1376 struct address_space *mapping = inode->i_mapping;
1377 struct writeback_control wbc = {
1378 .bdi = mapping->backing_dev_info,
1379 .sync_mode = WB_SYNC_ALL,
1380 .nr_to_write = LONG_MAX,
1381 .for_writepages = 1,
1382 .range_cyclic = 1,
1384 int ret;
1386 ret = nfs_writepages(mapping, &wbc);
1387 if (ret < 0)
1388 goto out;
1389 ret = nfs_sync_mapping_wait(mapping, &wbc, 0);
1390 if (ret >= 0)
1391 return 0;
1392 out:
1393 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1394 return ret;
1397 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how)
1399 struct writeback_control wbc = {
1400 .bdi = mapping->backing_dev_info,
1401 .sync_mode = WB_SYNC_ALL,
1402 .nr_to_write = LONG_MAX,
1403 .range_start = range_start,
1404 .range_end = range_end,
1405 .for_writepages = 1,
1407 int ret;
1409 ret = nfs_writepages(mapping, &wbc);
1410 if (ret < 0)
1411 goto out;
1412 ret = nfs_sync_mapping_wait(mapping, &wbc, how);
1413 if (ret >= 0)
1414 return 0;
1415 out:
1416 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1417 return ret;
1420 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how)
1422 loff_t range_start = page_offset(page);
1423 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1424 struct writeback_control wbc = {
1425 .bdi = page->mapping->backing_dev_info,
1426 .sync_mode = WB_SYNC_ALL,
1427 .nr_to_write = LONG_MAX,
1428 .range_start = range_start,
1429 .range_end = range_end,
1431 int ret;
1433 BUG_ON(!PageLocked(page));
1434 if (clear_page_dirty_for_io(page)) {
1435 ret = nfs_writepage_locked(page, &wbc);
1436 if (ret < 0)
1437 goto out;
1439 if (!PagePrivate(page))
1440 return 0;
1441 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1442 if (ret >= 0)
1443 return 0;
1444 out:
1445 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1446 return ret;
1450 * Write back all requests on one page - we do this before reading it.
1452 int nfs_wb_page(struct inode *inode, struct page* page)
1454 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1457 int nfs_set_page_dirty(struct page *page)
1459 struct address_space *mapping = page->mapping;
1460 struct inode *inode;
1461 struct nfs_page *req;
1462 int ret;
1464 if (!mapping)
1465 goto out_raced;
1466 inode = mapping->host;
1467 if (!inode)
1468 goto out_raced;
1469 spin_lock(&inode->i_lock);
1470 req = nfs_page_find_request_locked(page);
1471 if (req != NULL) {
1472 /* Mark any existing write requests for flushing */
1473 ret = !test_and_set_bit(PG_NEED_FLUSH, &req->wb_flags);
1474 spin_unlock(&inode->i_lock);
1475 nfs_release_request(req);
1476 return ret;
1478 ret = __set_page_dirty_nobuffers(page);
1479 spin_unlock(&inode->i_lock);
1480 return ret;
1481 out_raced:
1482 return !TestSetPageDirty(page);
1486 int __init nfs_init_writepagecache(void)
1488 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1489 sizeof(struct nfs_write_data),
1490 0, SLAB_HWCACHE_ALIGN,
1491 NULL, NULL);
1492 if (nfs_wdata_cachep == NULL)
1493 return -ENOMEM;
1495 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1496 nfs_wdata_cachep);
1497 if (nfs_wdata_mempool == NULL)
1498 return -ENOMEM;
1500 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1501 nfs_wdata_cachep);
1502 if (nfs_commit_mempool == NULL)
1503 return -ENOMEM;
1506 * NFS congestion size, scale with available memory.
1508 * 64MB: 8192k
1509 * 128MB: 11585k
1510 * 256MB: 16384k
1511 * 512MB: 23170k
1512 * 1GB: 32768k
1513 * 2GB: 46340k
1514 * 4GB: 65536k
1515 * 8GB: 92681k
1516 * 16GB: 131072k
1518 * This allows larger machines to have larger/more transfers.
1519 * Limit the default to 256M
1521 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1522 if (nfs_congestion_kb > 256*1024)
1523 nfs_congestion_kb = 256*1024;
1525 return 0;
1528 void nfs_destroy_writepagecache(void)
1530 mempool_destroy(nfs_commit_mempool);
1531 mempool_destroy(nfs_wdata_mempool);
1532 kmem_cache_destroy(nfs_wdata_cachep);