allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / namespace.c
blobdeb4e995ebb57cc7bc928c6970748bcbf996fe18
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
33 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
34 #define HASH_SIZE (1UL << HASH_SHIFT)
36 /* spinlock for vfsmount related operations, inplace of dcache_lock */
37 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
39 static int event;
41 static struct list_head *mount_hashtable __read_mostly;
42 static struct kmem_cache *mnt_cache __read_mostly;
43 static struct rw_semaphore namespace_sem;
45 /* /sys/fs */
46 decl_subsys(fs, NULL, NULL);
47 EXPORT_SYMBOL_GPL(fs_subsys);
49 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
51 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
52 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
53 tmp = tmp + (tmp >> HASH_SHIFT);
54 return tmp & (HASH_SIZE - 1);
57 struct vfsmount *alloc_vfsmnt(const char *name)
59 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
60 if (mnt) {
61 atomic_set(&mnt->mnt_count, 1);
62 INIT_LIST_HEAD(&mnt->mnt_hash);
63 INIT_LIST_HEAD(&mnt->mnt_child);
64 INIT_LIST_HEAD(&mnt->mnt_mounts);
65 INIT_LIST_HEAD(&mnt->mnt_list);
66 INIT_LIST_HEAD(&mnt->mnt_expire);
67 INIT_LIST_HEAD(&mnt->mnt_share);
68 INIT_LIST_HEAD(&mnt->mnt_slave_list);
69 INIT_LIST_HEAD(&mnt->mnt_slave);
70 if (name) {
71 int size = strlen(name) + 1;
72 char *newname = kmalloc(size, GFP_KERNEL);
73 if (newname) {
74 memcpy(newname, name, size);
75 mnt->mnt_devname = newname;
79 return mnt;
82 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
84 mnt->mnt_sb = sb;
85 mnt->mnt_root = dget(sb->s_root);
86 return 0;
89 EXPORT_SYMBOL(simple_set_mnt);
91 void free_vfsmnt(struct vfsmount *mnt)
93 kfree(mnt->mnt_devname);
94 kmem_cache_free(mnt_cache, mnt);
98 * find the first or last mount at @dentry on vfsmount @mnt depending on
99 * @dir. If @dir is set return the first mount else return the last mount.
101 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
102 int dir)
104 struct list_head *head = mount_hashtable + hash(mnt, dentry);
105 struct list_head *tmp = head;
106 struct vfsmount *p, *found = NULL;
108 for (;;) {
109 tmp = dir ? tmp->next : tmp->prev;
110 p = NULL;
111 if (tmp == head)
112 break;
113 p = list_entry(tmp, struct vfsmount, mnt_hash);
114 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
115 found = p;
116 break;
119 return found;
123 * lookup_mnt increments the ref count before returning
124 * the vfsmount struct.
126 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
128 struct vfsmount *child_mnt;
129 spin_lock(&vfsmount_lock);
130 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
131 mntget(child_mnt);
132 spin_unlock(&vfsmount_lock);
133 return child_mnt;
136 static inline int check_mnt(struct vfsmount *mnt)
138 return mnt->mnt_ns == current->nsproxy->mnt_ns;
141 static void touch_mnt_namespace(struct mnt_namespace *ns)
143 if (ns) {
144 ns->event = ++event;
145 wake_up_interruptible(&ns->poll);
149 static void __touch_mnt_namespace(struct mnt_namespace *ns)
151 if (ns && ns->event != event) {
152 ns->event = event;
153 wake_up_interruptible(&ns->poll);
157 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
159 old_nd->dentry = mnt->mnt_mountpoint;
160 old_nd->mnt = mnt->mnt_parent;
161 mnt->mnt_parent = mnt;
162 mnt->mnt_mountpoint = mnt->mnt_root;
163 list_del_init(&mnt->mnt_child);
164 list_del_init(&mnt->mnt_hash);
165 old_nd->dentry->d_mounted--;
168 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
169 struct vfsmount *child_mnt)
171 child_mnt->mnt_parent = mntget(mnt);
172 child_mnt->mnt_mountpoint = dget(dentry);
173 dentry->d_mounted++;
176 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
178 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
179 list_add_tail(&mnt->mnt_hash, mount_hashtable +
180 hash(nd->mnt, nd->dentry));
181 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
185 * the caller must hold vfsmount_lock
187 static void commit_tree(struct vfsmount *mnt)
189 struct vfsmount *parent = mnt->mnt_parent;
190 struct vfsmount *m;
191 LIST_HEAD(head);
192 struct mnt_namespace *n = parent->mnt_ns;
194 BUG_ON(parent == mnt);
196 list_add_tail(&head, &mnt->mnt_list);
197 list_for_each_entry(m, &head, mnt_list)
198 m->mnt_ns = n;
199 list_splice(&head, n->list.prev);
201 list_add_tail(&mnt->mnt_hash, mount_hashtable +
202 hash(parent, mnt->mnt_mountpoint));
203 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
204 touch_mnt_namespace(n);
207 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
209 struct list_head *next = p->mnt_mounts.next;
210 if (next == &p->mnt_mounts) {
211 while (1) {
212 if (p == root)
213 return NULL;
214 next = p->mnt_child.next;
215 if (next != &p->mnt_parent->mnt_mounts)
216 break;
217 p = p->mnt_parent;
220 return list_entry(next, struct vfsmount, mnt_child);
223 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
225 struct list_head *prev = p->mnt_mounts.prev;
226 while (prev != &p->mnt_mounts) {
227 p = list_entry(prev, struct vfsmount, mnt_child);
228 prev = p->mnt_mounts.prev;
230 return p;
233 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
234 int flag)
236 struct super_block *sb = old->mnt_sb;
237 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
239 if (mnt) {
240 mnt->mnt_flags = old->mnt_flags;
241 atomic_inc(&sb->s_active);
242 mnt->mnt_sb = sb;
243 mnt->mnt_root = dget(root);
244 mnt->mnt_mountpoint = mnt->mnt_root;
245 mnt->mnt_parent = mnt;
247 if (flag & CL_SLAVE) {
248 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
249 mnt->mnt_master = old;
250 CLEAR_MNT_SHARED(mnt);
251 } else {
252 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
253 list_add(&mnt->mnt_share, &old->mnt_share);
254 if (IS_MNT_SLAVE(old))
255 list_add(&mnt->mnt_slave, &old->mnt_slave);
256 mnt->mnt_master = old->mnt_master;
258 if (flag & CL_MAKE_SHARED)
259 set_mnt_shared(mnt);
261 /* stick the duplicate mount on the same expiry list
262 * as the original if that was on one */
263 if (flag & CL_EXPIRE) {
264 spin_lock(&vfsmount_lock);
265 if (!list_empty(&old->mnt_expire))
266 list_add(&mnt->mnt_expire, &old->mnt_expire);
267 spin_unlock(&vfsmount_lock);
270 return mnt;
273 static inline void __mntput(struct vfsmount *mnt)
275 struct super_block *sb = mnt->mnt_sb;
276 dput(mnt->mnt_root);
277 free_vfsmnt(mnt);
278 deactivate_super(sb);
281 void mntput_no_expire(struct vfsmount *mnt)
283 repeat:
284 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
285 if (likely(!mnt->mnt_pinned)) {
286 spin_unlock(&vfsmount_lock);
287 __mntput(mnt);
288 return;
290 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
291 mnt->mnt_pinned = 0;
292 spin_unlock(&vfsmount_lock);
293 acct_auto_close_mnt(mnt);
294 security_sb_umount_close(mnt);
295 goto repeat;
299 EXPORT_SYMBOL(mntput_no_expire);
301 void mnt_pin(struct vfsmount *mnt)
303 spin_lock(&vfsmount_lock);
304 mnt->mnt_pinned++;
305 spin_unlock(&vfsmount_lock);
308 EXPORT_SYMBOL(mnt_pin);
310 void mnt_unpin(struct vfsmount *mnt)
312 spin_lock(&vfsmount_lock);
313 if (mnt->mnt_pinned) {
314 atomic_inc(&mnt->mnt_count);
315 mnt->mnt_pinned--;
317 spin_unlock(&vfsmount_lock);
320 EXPORT_SYMBOL(mnt_unpin);
322 /* iterator */
323 static void *m_start(struct seq_file *m, loff_t *pos)
325 struct mnt_namespace *n = m->private;
326 struct list_head *p;
327 loff_t l = *pos;
329 down_read(&namespace_sem);
330 list_for_each(p, &n->list)
331 if (!l--)
332 return list_entry(p, struct vfsmount, mnt_list);
333 return NULL;
336 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
338 struct mnt_namespace *n = m->private;
339 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
340 (*pos)++;
341 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
344 static void m_stop(struct seq_file *m, void *v)
346 up_read(&namespace_sem);
349 static inline void mangle(struct seq_file *m, const char *s)
351 seq_escape(m, s, " \t\n\\");
354 static int show_vfsmnt(struct seq_file *m, void *v)
356 struct vfsmount *mnt = v;
357 int err = 0;
358 static struct proc_fs_info {
359 int flag;
360 char *str;
361 } fs_info[] = {
362 { MS_SYNCHRONOUS, ",sync" },
363 { MS_DIRSYNC, ",dirsync" },
364 { MS_MANDLOCK, ",mand" },
365 { 0, NULL }
367 static struct proc_fs_info mnt_info[] = {
368 { MNT_NOSUID, ",nosuid" },
369 { MNT_NODEV, ",nodev" },
370 { MNT_NOEXEC, ",noexec" },
371 { MNT_NOATIME, ",noatime" },
372 { MNT_NODIRATIME, ",nodiratime" },
373 { MNT_RELATIME, ",relatime" },
374 { 0, NULL }
376 struct proc_fs_info *fs_infop;
378 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
379 seq_putc(m, ' ');
380 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
381 seq_putc(m, ' ');
382 mangle(m, mnt->mnt_sb->s_type->name);
383 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
384 seq_putc(m, '.');
385 mangle(m, mnt->mnt_sb->s_subtype);
387 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
388 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
389 if (mnt->mnt_sb->s_flags & fs_infop->flag)
390 seq_puts(m, fs_infop->str);
392 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
393 if (mnt->mnt_flags & fs_infop->flag)
394 seq_puts(m, fs_infop->str);
396 if (mnt->mnt_sb->s_op->show_options)
397 err = mnt->mnt_sb->s_op->show_options(m, mnt);
398 seq_puts(m, " 0 0\n");
399 return err;
402 struct seq_operations mounts_op = {
403 .start = m_start,
404 .next = m_next,
405 .stop = m_stop,
406 .show = show_vfsmnt
409 static int show_vfsstat(struct seq_file *m, void *v)
411 struct vfsmount *mnt = v;
412 int err = 0;
414 /* device */
415 if (mnt->mnt_devname) {
416 seq_puts(m, "device ");
417 mangle(m, mnt->mnt_devname);
418 } else
419 seq_puts(m, "no device");
421 /* mount point */
422 seq_puts(m, " mounted on ");
423 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
424 seq_putc(m, ' ');
426 /* file system type */
427 seq_puts(m, "with fstype ");
428 mangle(m, mnt->mnt_sb->s_type->name);
430 /* optional statistics */
431 if (mnt->mnt_sb->s_op->show_stats) {
432 seq_putc(m, ' ');
433 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
436 seq_putc(m, '\n');
437 return err;
440 struct seq_operations mountstats_op = {
441 .start = m_start,
442 .next = m_next,
443 .stop = m_stop,
444 .show = show_vfsstat,
448 * may_umount_tree - check if a mount tree is busy
449 * @mnt: root of mount tree
451 * This is called to check if a tree of mounts has any
452 * open files, pwds, chroots or sub mounts that are
453 * busy.
455 int may_umount_tree(struct vfsmount *mnt)
457 int actual_refs = 0;
458 int minimum_refs = 0;
459 struct vfsmount *p;
461 spin_lock(&vfsmount_lock);
462 for (p = mnt; p; p = next_mnt(p, mnt)) {
463 actual_refs += atomic_read(&p->mnt_count);
464 minimum_refs += 2;
466 spin_unlock(&vfsmount_lock);
468 if (actual_refs > minimum_refs)
469 return 0;
471 return 1;
474 EXPORT_SYMBOL(may_umount_tree);
477 * may_umount - check if a mount point is busy
478 * @mnt: root of mount
480 * This is called to check if a mount point has any
481 * open files, pwds, chroots or sub mounts. If the
482 * mount has sub mounts this will return busy
483 * regardless of whether the sub mounts are busy.
485 * Doesn't take quota and stuff into account. IOW, in some cases it will
486 * give false negatives. The main reason why it's here is that we need
487 * a non-destructive way to look for easily umountable filesystems.
489 int may_umount(struct vfsmount *mnt)
491 int ret = 1;
492 spin_lock(&vfsmount_lock);
493 if (propagate_mount_busy(mnt, 2))
494 ret = 0;
495 spin_unlock(&vfsmount_lock);
496 return ret;
499 EXPORT_SYMBOL(may_umount);
501 void release_mounts(struct list_head *head)
503 struct vfsmount *mnt;
504 while (!list_empty(head)) {
505 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
506 list_del_init(&mnt->mnt_hash);
507 if (mnt->mnt_parent != mnt) {
508 struct dentry *dentry;
509 struct vfsmount *m;
510 spin_lock(&vfsmount_lock);
511 dentry = mnt->mnt_mountpoint;
512 m = mnt->mnt_parent;
513 mnt->mnt_mountpoint = mnt->mnt_root;
514 mnt->mnt_parent = mnt;
515 spin_unlock(&vfsmount_lock);
516 dput(dentry);
517 mntput(m);
519 mntput(mnt);
523 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
525 struct vfsmount *p;
527 for (p = mnt; p; p = next_mnt(p, mnt))
528 list_move(&p->mnt_hash, kill);
530 if (propagate)
531 propagate_umount(kill);
533 list_for_each_entry(p, kill, mnt_hash) {
534 list_del_init(&p->mnt_expire);
535 list_del_init(&p->mnt_list);
536 __touch_mnt_namespace(p->mnt_ns);
537 p->mnt_ns = NULL;
538 list_del_init(&p->mnt_child);
539 if (p->mnt_parent != p)
540 p->mnt_mountpoint->d_mounted--;
541 change_mnt_propagation(p, MS_PRIVATE);
545 static int do_umount(struct vfsmount *mnt, int flags)
547 struct super_block *sb = mnt->mnt_sb;
548 int retval;
549 LIST_HEAD(umount_list);
551 retval = security_sb_umount(mnt, flags);
552 if (retval)
553 return retval;
556 * Allow userspace to request a mountpoint be expired rather than
557 * unmounting unconditionally. Unmount only happens if:
558 * (1) the mark is already set (the mark is cleared by mntput())
559 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
561 if (flags & MNT_EXPIRE) {
562 if (mnt == current->fs->rootmnt ||
563 flags & (MNT_FORCE | MNT_DETACH))
564 return -EINVAL;
566 if (atomic_read(&mnt->mnt_count) != 2)
567 return -EBUSY;
569 if (!xchg(&mnt->mnt_expiry_mark, 1))
570 return -EAGAIN;
574 * If we may have to abort operations to get out of this
575 * mount, and they will themselves hold resources we must
576 * allow the fs to do things. In the Unix tradition of
577 * 'Gee thats tricky lets do it in userspace' the umount_begin
578 * might fail to complete on the first run through as other tasks
579 * must return, and the like. Thats for the mount program to worry
580 * about for the moment.
583 lock_kernel();
584 if (sb->s_op->umount_begin)
585 sb->s_op->umount_begin(mnt, flags);
586 unlock_kernel();
589 * No sense to grab the lock for this test, but test itself looks
590 * somewhat bogus. Suggestions for better replacement?
591 * Ho-hum... In principle, we might treat that as umount + switch
592 * to rootfs. GC would eventually take care of the old vfsmount.
593 * Actually it makes sense, especially if rootfs would contain a
594 * /reboot - static binary that would close all descriptors and
595 * call reboot(9). Then init(8) could umount root and exec /reboot.
597 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
599 * Special case for "unmounting" root ...
600 * we just try to remount it readonly.
602 down_write(&sb->s_umount);
603 if (!(sb->s_flags & MS_RDONLY)) {
604 lock_kernel();
605 DQUOT_OFF(sb);
606 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
607 unlock_kernel();
609 up_write(&sb->s_umount);
610 return retval;
613 down_write(&namespace_sem);
614 spin_lock(&vfsmount_lock);
615 event++;
617 retval = -EBUSY;
618 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
619 if (!list_empty(&mnt->mnt_list))
620 umount_tree(mnt, 1, &umount_list);
621 retval = 0;
623 spin_unlock(&vfsmount_lock);
624 if (retval)
625 security_sb_umount_busy(mnt);
626 up_write(&namespace_sem);
627 release_mounts(&umount_list);
628 return retval;
632 * Now umount can handle mount points as well as block devices.
633 * This is important for filesystems which use unnamed block devices.
635 * We now support a flag for forced unmount like the other 'big iron'
636 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
639 asmlinkage long sys_umount(char __user * name, int flags)
641 struct nameidata nd;
642 int retval;
644 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
645 if (retval)
646 goto out;
647 retval = -EINVAL;
648 if (nd.dentry != nd.mnt->mnt_root)
649 goto dput_and_out;
650 if (!check_mnt(nd.mnt))
651 goto dput_and_out;
653 retval = -EPERM;
654 if (!capable(CAP_SYS_ADMIN))
655 goto dput_and_out;
657 retval = do_umount(nd.mnt, flags);
658 dput_and_out:
659 path_release_on_umount(&nd);
660 out:
661 return retval;
664 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
667 * The 2.0 compatible umount. No flags.
669 asmlinkage long sys_oldumount(char __user * name)
671 return sys_umount(name, 0);
674 #endif
676 static int mount_is_safe(struct nameidata *nd)
678 if (capable(CAP_SYS_ADMIN))
679 return 0;
680 return -EPERM;
681 #ifdef notyet
682 if (S_ISLNK(nd->dentry->d_inode->i_mode))
683 return -EPERM;
684 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
685 if (current->uid != nd->dentry->d_inode->i_uid)
686 return -EPERM;
688 if (vfs_permission(nd, MAY_WRITE))
689 return -EPERM;
690 return 0;
691 #endif
694 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
696 while (1) {
697 if (d == dentry)
698 return 1;
699 if (d == NULL || d == d->d_parent)
700 return 0;
701 d = d->d_parent;
705 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
706 int flag)
708 struct vfsmount *res, *p, *q, *r, *s;
709 struct nameidata nd;
711 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
712 return NULL;
714 res = q = clone_mnt(mnt, dentry, flag);
715 if (!q)
716 goto Enomem;
717 q->mnt_mountpoint = mnt->mnt_mountpoint;
719 p = mnt;
720 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
721 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
722 continue;
724 for (s = r; s; s = next_mnt(s, r)) {
725 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
726 s = skip_mnt_tree(s);
727 continue;
729 while (p != s->mnt_parent) {
730 p = p->mnt_parent;
731 q = q->mnt_parent;
733 p = s;
734 nd.mnt = q;
735 nd.dentry = p->mnt_mountpoint;
736 q = clone_mnt(p, p->mnt_root, flag);
737 if (!q)
738 goto Enomem;
739 spin_lock(&vfsmount_lock);
740 list_add_tail(&q->mnt_list, &res->mnt_list);
741 attach_mnt(q, &nd);
742 spin_unlock(&vfsmount_lock);
745 return res;
746 Enomem:
747 if (res) {
748 LIST_HEAD(umount_list);
749 spin_lock(&vfsmount_lock);
750 umount_tree(res, 0, &umount_list);
751 spin_unlock(&vfsmount_lock);
752 release_mounts(&umount_list);
754 return NULL;
758 * @source_mnt : mount tree to be attached
759 * @nd : place the mount tree @source_mnt is attached
760 * @parent_nd : if non-null, detach the source_mnt from its parent and
761 * store the parent mount and mountpoint dentry.
762 * (done when source_mnt is moved)
764 * NOTE: in the table below explains the semantics when a source mount
765 * of a given type is attached to a destination mount of a given type.
766 * ---------------------------------------------------------------------------
767 * | BIND MOUNT OPERATION |
768 * |**************************************************************************
769 * | source-->| shared | private | slave | unbindable |
770 * | dest | | | | |
771 * | | | | | | |
772 * | v | | | | |
773 * |**************************************************************************
774 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
775 * | | | | | |
776 * |non-shared| shared (+) | private | slave (*) | invalid |
777 * ***************************************************************************
778 * A bind operation clones the source mount and mounts the clone on the
779 * destination mount.
781 * (++) the cloned mount is propagated to all the mounts in the propagation
782 * tree of the destination mount and the cloned mount is added to
783 * the peer group of the source mount.
784 * (+) the cloned mount is created under the destination mount and is marked
785 * as shared. The cloned mount is added to the peer group of the source
786 * mount.
787 * (+++) the mount is propagated to all the mounts in the propagation tree
788 * of the destination mount and the cloned mount is made slave
789 * of the same master as that of the source mount. The cloned mount
790 * is marked as 'shared and slave'.
791 * (*) the cloned mount is made a slave of the same master as that of the
792 * source mount.
794 * ---------------------------------------------------------------------------
795 * | MOVE MOUNT OPERATION |
796 * |**************************************************************************
797 * | source-->| shared | private | slave | unbindable |
798 * | dest | | | | |
799 * | | | | | | |
800 * | v | | | | |
801 * |**************************************************************************
802 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
803 * | | | | | |
804 * |non-shared| shared (+*) | private | slave (*) | unbindable |
805 * ***************************************************************************
807 * (+) the mount is moved to the destination. And is then propagated to
808 * all the mounts in the propagation tree of the destination mount.
809 * (+*) the mount is moved to the destination.
810 * (+++) the mount is moved to the destination and is then propagated to
811 * all the mounts belonging to the destination mount's propagation tree.
812 * the mount is marked as 'shared and slave'.
813 * (*) the mount continues to be a slave at the new location.
815 * if the source mount is a tree, the operations explained above is
816 * applied to each mount in the tree.
817 * Must be called without spinlocks held, since this function can sleep
818 * in allocations.
820 static int attach_recursive_mnt(struct vfsmount *source_mnt,
821 struct nameidata *nd, struct nameidata *parent_nd)
823 LIST_HEAD(tree_list);
824 struct vfsmount *dest_mnt = nd->mnt;
825 struct dentry *dest_dentry = nd->dentry;
826 struct vfsmount *child, *p;
828 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
829 return -EINVAL;
831 if (IS_MNT_SHARED(dest_mnt)) {
832 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
833 set_mnt_shared(p);
836 spin_lock(&vfsmount_lock);
837 if (parent_nd) {
838 detach_mnt(source_mnt, parent_nd);
839 attach_mnt(source_mnt, nd);
840 touch_mnt_namespace(current->nsproxy->mnt_ns);
841 } else {
842 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
843 commit_tree(source_mnt);
846 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
847 list_del_init(&child->mnt_hash);
848 commit_tree(child);
850 spin_unlock(&vfsmount_lock);
851 return 0;
854 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
856 int err;
857 if (mnt->mnt_sb->s_flags & MS_NOUSER)
858 return -EINVAL;
860 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
861 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
862 return -ENOTDIR;
864 err = -ENOENT;
865 mutex_lock(&nd->dentry->d_inode->i_mutex);
866 if (IS_DEADDIR(nd->dentry->d_inode))
867 goto out_unlock;
869 err = security_sb_check_sb(mnt, nd);
870 if (err)
871 goto out_unlock;
873 err = -ENOENT;
874 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
875 err = attach_recursive_mnt(mnt, nd, NULL);
876 out_unlock:
877 mutex_unlock(&nd->dentry->d_inode->i_mutex);
878 if (!err)
879 security_sb_post_addmount(mnt, nd);
880 return err;
884 * recursively change the type of the mountpoint.
886 static int do_change_type(struct nameidata *nd, int flag)
888 struct vfsmount *m, *mnt = nd->mnt;
889 int recurse = flag & MS_REC;
890 int type = flag & ~MS_REC;
892 if (!capable(CAP_SYS_ADMIN))
893 return -EPERM;
895 if (nd->dentry != nd->mnt->mnt_root)
896 return -EINVAL;
898 down_write(&namespace_sem);
899 spin_lock(&vfsmount_lock);
900 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
901 change_mnt_propagation(m, type);
902 spin_unlock(&vfsmount_lock);
903 up_write(&namespace_sem);
904 return 0;
908 * do loopback mount.
910 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
912 struct nameidata old_nd;
913 struct vfsmount *mnt = NULL;
914 int err = mount_is_safe(nd);
915 if (err)
916 return err;
917 if (!old_name || !*old_name)
918 return -EINVAL;
919 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
920 if (err)
921 return err;
923 down_write(&namespace_sem);
924 err = -EINVAL;
925 if (IS_MNT_UNBINDABLE(old_nd.mnt))
926 goto out;
928 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
929 goto out;
931 err = -ENOMEM;
932 if (recurse)
933 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
934 else
935 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
937 if (!mnt)
938 goto out;
940 err = graft_tree(mnt, nd);
941 if (err) {
942 LIST_HEAD(umount_list);
943 spin_lock(&vfsmount_lock);
944 umount_tree(mnt, 0, &umount_list);
945 spin_unlock(&vfsmount_lock);
946 release_mounts(&umount_list);
949 out:
950 up_write(&namespace_sem);
951 path_release(&old_nd);
952 return err;
956 * change filesystem flags. dir should be a physical root of filesystem.
957 * If you've mounted a non-root directory somewhere and want to do remount
958 * on it - tough luck.
960 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
961 void *data)
963 int err;
964 struct super_block *sb = nd->mnt->mnt_sb;
966 if (!capable(CAP_SYS_ADMIN))
967 return -EPERM;
969 if (!check_mnt(nd->mnt))
970 return -EINVAL;
972 if (nd->dentry != nd->mnt->mnt_root)
973 return -EINVAL;
975 down_write(&sb->s_umount);
976 err = do_remount_sb(sb, flags, data, 0);
977 if (!err)
978 nd->mnt->mnt_flags = mnt_flags;
979 up_write(&sb->s_umount);
980 if (!err)
981 security_sb_post_remount(nd->mnt, flags, data);
982 return err;
985 static inline int tree_contains_unbindable(struct vfsmount *mnt)
987 struct vfsmount *p;
988 for (p = mnt; p; p = next_mnt(p, mnt)) {
989 if (IS_MNT_UNBINDABLE(p))
990 return 1;
992 return 0;
995 static int do_move_mount(struct nameidata *nd, char *old_name)
997 struct nameidata old_nd, parent_nd;
998 struct vfsmount *p;
999 int err = 0;
1000 if (!capable(CAP_SYS_ADMIN))
1001 return -EPERM;
1002 if (!old_name || !*old_name)
1003 return -EINVAL;
1004 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1005 if (err)
1006 return err;
1008 down_write(&namespace_sem);
1009 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1011 err = -EINVAL;
1012 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1013 goto out;
1015 err = -ENOENT;
1016 mutex_lock(&nd->dentry->d_inode->i_mutex);
1017 if (IS_DEADDIR(nd->dentry->d_inode))
1018 goto out1;
1020 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1021 goto out1;
1023 err = -EINVAL;
1024 if (old_nd.dentry != old_nd.mnt->mnt_root)
1025 goto out1;
1027 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1028 goto out1;
1030 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1031 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1032 goto out1;
1034 * Don't move a mount residing in a shared parent.
1036 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1037 goto out1;
1039 * Don't move a mount tree containing unbindable mounts to a destination
1040 * mount which is shared.
1042 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1043 goto out1;
1044 err = -ELOOP;
1045 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1046 if (p == old_nd.mnt)
1047 goto out1;
1049 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1050 goto out1;
1052 spin_lock(&vfsmount_lock);
1053 /* if the mount is moved, it should no longer be expire
1054 * automatically */
1055 list_del_init(&old_nd.mnt->mnt_expire);
1056 spin_unlock(&vfsmount_lock);
1057 out1:
1058 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1059 out:
1060 up_write(&namespace_sem);
1061 if (!err)
1062 path_release(&parent_nd);
1063 path_release(&old_nd);
1064 return err;
1068 * create a new mount for userspace and request it to be added into the
1069 * namespace's tree
1071 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1072 int mnt_flags, char *name, void *data)
1074 struct vfsmount *mnt;
1076 if (!type || !memchr(type, 0, PAGE_SIZE))
1077 return -EINVAL;
1079 /* we need capabilities... */
1080 if (!capable(CAP_SYS_ADMIN))
1081 return -EPERM;
1083 mnt = do_kern_mount(type, flags, name, data);
1084 if (IS_ERR(mnt))
1085 return PTR_ERR(mnt);
1087 return do_add_mount(mnt, nd, mnt_flags, NULL);
1091 * add a mount into a namespace's mount tree
1092 * - provide the option of adding the new mount to an expiration list
1094 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1095 int mnt_flags, struct list_head *fslist)
1097 int err;
1099 down_write(&namespace_sem);
1100 /* Something was mounted here while we slept */
1101 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1103 err = -EINVAL;
1104 if (!check_mnt(nd->mnt))
1105 goto unlock;
1107 /* Refuse the same filesystem on the same mount point */
1108 err = -EBUSY;
1109 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1110 nd->mnt->mnt_root == nd->dentry)
1111 goto unlock;
1113 err = -EINVAL;
1114 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1115 goto unlock;
1117 newmnt->mnt_flags = mnt_flags;
1118 if ((err = graft_tree(newmnt, nd)))
1119 goto unlock;
1121 if (fslist) {
1122 /* add to the specified expiration list */
1123 spin_lock(&vfsmount_lock);
1124 list_add_tail(&newmnt->mnt_expire, fslist);
1125 spin_unlock(&vfsmount_lock);
1127 up_write(&namespace_sem);
1128 return 0;
1130 unlock:
1131 up_write(&namespace_sem);
1132 mntput(newmnt);
1133 return err;
1136 EXPORT_SYMBOL_GPL(do_add_mount);
1138 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1139 struct list_head *umounts)
1141 spin_lock(&vfsmount_lock);
1144 * Check if mount is still attached, if not, let whoever holds it deal
1145 * with the sucker
1147 if (mnt->mnt_parent == mnt) {
1148 spin_unlock(&vfsmount_lock);
1149 return;
1153 * Check that it is still dead: the count should now be 2 - as
1154 * contributed by the vfsmount parent and the mntget above
1156 if (!propagate_mount_busy(mnt, 2)) {
1157 /* delete from the namespace */
1158 touch_mnt_namespace(mnt->mnt_ns);
1159 list_del_init(&mnt->mnt_list);
1160 mnt->mnt_ns = NULL;
1161 umount_tree(mnt, 1, umounts);
1162 spin_unlock(&vfsmount_lock);
1163 } else {
1165 * Someone brought it back to life whilst we didn't have any
1166 * locks held so return it to the expiration list
1168 list_add_tail(&mnt->mnt_expire, mounts);
1169 spin_unlock(&vfsmount_lock);
1174 * go through the vfsmounts we've just consigned to the graveyard to
1175 * - check that they're still dead
1176 * - delete the vfsmount from the appropriate namespace under lock
1177 * - dispose of the corpse
1179 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1181 struct mnt_namespace *ns;
1182 struct vfsmount *mnt;
1184 while (!list_empty(graveyard)) {
1185 LIST_HEAD(umounts);
1186 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1187 list_del_init(&mnt->mnt_expire);
1189 /* don't do anything if the namespace is dead - all the
1190 * vfsmounts from it are going away anyway */
1191 ns = mnt->mnt_ns;
1192 if (!ns || !ns->root)
1193 continue;
1194 get_mnt_ns(ns);
1196 spin_unlock(&vfsmount_lock);
1197 down_write(&namespace_sem);
1198 expire_mount(mnt, mounts, &umounts);
1199 up_write(&namespace_sem);
1200 release_mounts(&umounts);
1201 mntput(mnt);
1202 put_mnt_ns(ns);
1203 spin_lock(&vfsmount_lock);
1208 * process a list of expirable mountpoints with the intent of discarding any
1209 * mountpoints that aren't in use and haven't been touched since last we came
1210 * here
1212 void mark_mounts_for_expiry(struct list_head *mounts)
1214 struct vfsmount *mnt, *next;
1215 LIST_HEAD(graveyard);
1217 if (list_empty(mounts))
1218 return;
1220 spin_lock(&vfsmount_lock);
1222 /* extract from the expiration list every vfsmount that matches the
1223 * following criteria:
1224 * - only referenced by its parent vfsmount
1225 * - still marked for expiry (marked on the last call here; marks are
1226 * cleared by mntput())
1228 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1229 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1230 atomic_read(&mnt->mnt_count) != 1)
1231 continue;
1233 mntget(mnt);
1234 list_move(&mnt->mnt_expire, &graveyard);
1237 expire_mount_list(&graveyard, mounts);
1239 spin_unlock(&vfsmount_lock);
1242 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1245 * Ripoff of 'select_parent()'
1247 * search the list of submounts for a given mountpoint, and move any
1248 * shrinkable submounts to the 'graveyard' list.
1250 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1252 struct vfsmount *this_parent = parent;
1253 struct list_head *next;
1254 int found = 0;
1256 repeat:
1257 next = this_parent->mnt_mounts.next;
1258 resume:
1259 while (next != &this_parent->mnt_mounts) {
1260 struct list_head *tmp = next;
1261 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1263 next = tmp->next;
1264 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1265 continue;
1267 * Descend a level if the d_mounts list is non-empty.
1269 if (!list_empty(&mnt->mnt_mounts)) {
1270 this_parent = mnt;
1271 goto repeat;
1274 if (!propagate_mount_busy(mnt, 1)) {
1275 mntget(mnt);
1276 list_move_tail(&mnt->mnt_expire, graveyard);
1277 found++;
1281 * All done at this level ... ascend and resume the search
1283 if (this_parent != parent) {
1284 next = this_parent->mnt_child.next;
1285 this_parent = this_parent->mnt_parent;
1286 goto resume;
1288 return found;
1292 * process a list of expirable mountpoints with the intent of discarding any
1293 * submounts of a specific parent mountpoint
1295 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1297 LIST_HEAD(graveyard);
1298 int found;
1300 spin_lock(&vfsmount_lock);
1302 /* extract submounts of 'mountpoint' from the expiration list */
1303 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1304 expire_mount_list(&graveyard, mounts);
1306 spin_unlock(&vfsmount_lock);
1309 EXPORT_SYMBOL_GPL(shrink_submounts);
1312 * Some copy_from_user() implementations do not return the exact number of
1313 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1314 * Note that this function differs from copy_from_user() in that it will oops
1315 * on bad values of `to', rather than returning a short copy.
1317 static long exact_copy_from_user(void *to, const void __user * from,
1318 unsigned long n)
1320 char *t = to;
1321 const char __user *f = from;
1322 char c;
1324 if (!access_ok(VERIFY_READ, from, n))
1325 return n;
1327 while (n) {
1328 if (__get_user(c, f)) {
1329 memset(t, 0, n);
1330 break;
1332 *t++ = c;
1333 f++;
1334 n--;
1336 return n;
1339 int copy_mount_options(const void __user * data, unsigned long *where)
1341 int i;
1342 unsigned long page;
1343 unsigned long size;
1345 *where = 0;
1346 if (!data)
1347 return 0;
1349 if (!(page = __get_free_page(GFP_KERNEL)))
1350 return -ENOMEM;
1352 /* We only care that *some* data at the address the user
1353 * gave us is valid. Just in case, we'll zero
1354 * the remainder of the page.
1356 /* copy_from_user cannot cross TASK_SIZE ! */
1357 size = TASK_SIZE - (unsigned long)data;
1358 if (size > PAGE_SIZE)
1359 size = PAGE_SIZE;
1361 i = size - exact_copy_from_user((void *)page, data, size);
1362 if (!i) {
1363 free_page(page);
1364 return -EFAULT;
1366 if (i != PAGE_SIZE)
1367 memset((char *)page + i, 0, PAGE_SIZE - i);
1368 *where = page;
1369 return 0;
1373 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1374 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1376 * data is a (void *) that can point to any structure up to
1377 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1378 * information (or be NULL).
1380 * Pre-0.97 versions of mount() didn't have a flags word.
1381 * When the flags word was introduced its top half was required
1382 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1383 * Therefore, if this magic number is present, it carries no information
1384 * and must be discarded.
1386 long do_mount(char *dev_name, char *dir_name, char *type_page,
1387 unsigned long flags, void *data_page)
1389 struct nameidata nd;
1390 int retval = 0;
1391 int mnt_flags = 0;
1393 /* Discard magic */
1394 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1395 flags &= ~MS_MGC_MSK;
1397 /* Basic sanity checks */
1399 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1400 return -EINVAL;
1401 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1402 return -EINVAL;
1404 if (data_page)
1405 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1407 /* Separate the per-mountpoint flags */
1408 if (flags & MS_NOSUID)
1409 mnt_flags |= MNT_NOSUID;
1410 if (flags & MS_NODEV)
1411 mnt_flags |= MNT_NODEV;
1412 if (flags & MS_NOEXEC)
1413 mnt_flags |= MNT_NOEXEC;
1414 if (flags & MS_NOATIME)
1415 mnt_flags |= MNT_NOATIME;
1416 if (flags & MS_NODIRATIME)
1417 mnt_flags |= MNT_NODIRATIME;
1418 if (flags & MS_RELATIME)
1419 mnt_flags |= MNT_RELATIME;
1421 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1422 MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1424 /* ... and get the mountpoint */
1425 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1426 if (retval)
1427 return retval;
1429 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1430 if (retval)
1431 goto dput_out;
1433 if (flags & MS_REMOUNT)
1434 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1435 data_page);
1436 else if (flags & MS_BIND)
1437 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1438 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1439 retval = do_change_type(&nd, flags);
1440 else if (flags & MS_MOVE)
1441 retval = do_move_mount(&nd, dev_name);
1442 else
1443 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1444 dev_name, data_page);
1445 dput_out:
1446 path_release(&nd);
1447 return retval;
1451 * Allocate a new namespace structure and populate it with contents
1452 * copied from the namespace of the passed in task structure.
1454 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1455 struct fs_struct *fs)
1457 struct mnt_namespace *new_ns;
1458 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1459 struct vfsmount *p, *q;
1461 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1462 if (!new_ns)
1463 return NULL;
1465 atomic_set(&new_ns->count, 1);
1466 INIT_LIST_HEAD(&new_ns->list);
1467 init_waitqueue_head(&new_ns->poll);
1468 new_ns->event = 0;
1470 down_write(&namespace_sem);
1471 /* First pass: copy the tree topology */
1472 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1473 CL_COPY_ALL | CL_EXPIRE);
1474 if (!new_ns->root) {
1475 up_write(&namespace_sem);
1476 kfree(new_ns);
1477 return NULL;
1479 spin_lock(&vfsmount_lock);
1480 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1481 spin_unlock(&vfsmount_lock);
1484 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1485 * as belonging to new namespace. We have already acquired a private
1486 * fs_struct, so tsk->fs->lock is not needed.
1488 p = mnt_ns->root;
1489 q = new_ns->root;
1490 while (p) {
1491 q->mnt_ns = new_ns;
1492 if (fs) {
1493 if (p == fs->rootmnt) {
1494 rootmnt = p;
1495 fs->rootmnt = mntget(q);
1497 if (p == fs->pwdmnt) {
1498 pwdmnt = p;
1499 fs->pwdmnt = mntget(q);
1501 if (p == fs->altrootmnt) {
1502 altrootmnt = p;
1503 fs->altrootmnt = mntget(q);
1506 p = next_mnt(p, mnt_ns->root);
1507 q = next_mnt(q, new_ns->root);
1509 up_write(&namespace_sem);
1511 if (rootmnt)
1512 mntput(rootmnt);
1513 if (pwdmnt)
1514 mntput(pwdmnt);
1515 if (altrootmnt)
1516 mntput(altrootmnt);
1518 return new_ns;
1521 struct mnt_namespace *copy_mnt_ns(int flags, struct mnt_namespace *ns,
1522 struct fs_struct *new_fs)
1524 struct mnt_namespace *new_ns;
1526 BUG_ON(!ns);
1527 get_mnt_ns(ns);
1529 if (!(flags & CLONE_NEWNS))
1530 return ns;
1532 new_ns = dup_mnt_ns(ns, new_fs);
1534 put_mnt_ns(ns);
1535 return new_ns;
1538 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1539 char __user * type, unsigned long flags,
1540 void __user * data)
1542 int retval;
1543 unsigned long data_page;
1544 unsigned long type_page;
1545 unsigned long dev_page;
1546 char *dir_page;
1548 retval = copy_mount_options(type, &type_page);
1549 if (retval < 0)
1550 return retval;
1552 dir_page = getname(dir_name);
1553 retval = PTR_ERR(dir_page);
1554 if (IS_ERR(dir_page))
1555 goto out1;
1557 retval = copy_mount_options(dev_name, &dev_page);
1558 if (retval < 0)
1559 goto out2;
1561 retval = copy_mount_options(data, &data_page);
1562 if (retval < 0)
1563 goto out3;
1565 lock_kernel();
1566 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1567 flags, (void *)data_page);
1568 unlock_kernel();
1569 free_page(data_page);
1571 out3:
1572 free_page(dev_page);
1573 out2:
1574 putname(dir_page);
1575 out1:
1576 free_page(type_page);
1577 return retval;
1581 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1582 * It can block. Requires the big lock held.
1584 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1585 struct dentry *dentry)
1587 struct dentry *old_root;
1588 struct vfsmount *old_rootmnt;
1589 write_lock(&fs->lock);
1590 old_root = fs->root;
1591 old_rootmnt = fs->rootmnt;
1592 fs->rootmnt = mntget(mnt);
1593 fs->root = dget(dentry);
1594 write_unlock(&fs->lock);
1595 if (old_root) {
1596 dput(old_root);
1597 mntput(old_rootmnt);
1602 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1603 * It can block. Requires the big lock held.
1605 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1606 struct dentry *dentry)
1608 struct dentry *old_pwd;
1609 struct vfsmount *old_pwdmnt;
1611 write_lock(&fs->lock);
1612 old_pwd = fs->pwd;
1613 old_pwdmnt = fs->pwdmnt;
1614 fs->pwdmnt = mntget(mnt);
1615 fs->pwd = dget(dentry);
1616 write_unlock(&fs->lock);
1618 if (old_pwd) {
1619 dput(old_pwd);
1620 mntput(old_pwdmnt);
1624 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1626 struct task_struct *g, *p;
1627 struct fs_struct *fs;
1629 read_lock(&tasklist_lock);
1630 do_each_thread(g, p) {
1631 task_lock(p);
1632 fs = p->fs;
1633 if (fs) {
1634 atomic_inc(&fs->count);
1635 task_unlock(p);
1636 if (fs->root == old_nd->dentry
1637 && fs->rootmnt == old_nd->mnt)
1638 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1639 if (fs->pwd == old_nd->dentry
1640 && fs->pwdmnt == old_nd->mnt)
1641 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1642 put_fs_struct(fs);
1643 } else
1644 task_unlock(p);
1645 } while_each_thread(g, p);
1646 read_unlock(&tasklist_lock);
1650 * pivot_root Semantics:
1651 * Moves the root file system of the current process to the directory put_old,
1652 * makes new_root as the new root file system of the current process, and sets
1653 * root/cwd of all processes which had them on the current root to new_root.
1655 * Restrictions:
1656 * The new_root and put_old must be directories, and must not be on the
1657 * same file system as the current process root. The put_old must be
1658 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1659 * pointed to by put_old must yield the same directory as new_root. No other
1660 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1662 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1663 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1664 * in this situation.
1666 * Notes:
1667 * - we don't move root/cwd if they are not at the root (reason: if something
1668 * cared enough to change them, it's probably wrong to force them elsewhere)
1669 * - it's okay to pick a root that isn't the root of a file system, e.g.
1670 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1671 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1672 * first.
1674 asmlinkage long sys_pivot_root(const char __user * new_root,
1675 const char __user * put_old)
1677 struct vfsmount *tmp;
1678 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1679 int error;
1681 if (!capable(CAP_SYS_ADMIN))
1682 return -EPERM;
1684 lock_kernel();
1686 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1687 &new_nd);
1688 if (error)
1689 goto out0;
1690 error = -EINVAL;
1691 if (!check_mnt(new_nd.mnt))
1692 goto out1;
1694 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1695 if (error)
1696 goto out1;
1698 error = security_sb_pivotroot(&old_nd, &new_nd);
1699 if (error) {
1700 path_release(&old_nd);
1701 goto out1;
1704 read_lock(&current->fs->lock);
1705 user_nd.mnt = mntget(current->fs->rootmnt);
1706 user_nd.dentry = dget(current->fs->root);
1707 read_unlock(&current->fs->lock);
1708 down_write(&namespace_sem);
1709 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1710 error = -EINVAL;
1711 if (IS_MNT_SHARED(old_nd.mnt) ||
1712 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1713 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1714 goto out2;
1715 if (!check_mnt(user_nd.mnt))
1716 goto out2;
1717 error = -ENOENT;
1718 if (IS_DEADDIR(new_nd.dentry->d_inode))
1719 goto out2;
1720 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1721 goto out2;
1722 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1723 goto out2;
1724 error = -EBUSY;
1725 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1726 goto out2; /* loop, on the same file system */
1727 error = -EINVAL;
1728 if (user_nd.mnt->mnt_root != user_nd.dentry)
1729 goto out2; /* not a mountpoint */
1730 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1731 goto out2; /* not attached */
1732 if (new_nd.mnt->mnt_root != new_nd.dentry)
1733 goto out2; /* not a mountpoint */
1734 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1735 goto out2; /* not attached */
1736 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1737 spin_lock(&vfsmount_lock);
1738 if (tmp != new_nd.mnt) {
1739 for (;;) {
1740 if (tmp->mnt_parent == tmp)
1741 goto out3; /* already mounted on put_old */
1742 if (tmp->mnt_parent == new_nd.mnt)
1743 break;
1744 tmp = tmp->mnt_parent;
1746 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1747 goto out3;
1748 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1749 goto out3;
1750 detach_mnt(new_nd.mnt, &parent_nd);
1751 detach_mnt(user_nd.mnt, &root_parent);
1752 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1753 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1754 touch_mnt_namespace(current->nsproxy->mnt_ns);
1755 spin_unlock(&vfsmount_lock);
1756 chroot_fs_refs(&user_nd, &new_nd);
1757 security_sb_post_pivotroot(&user_nd, &new_nd);
1758 error = 0;
1759 path_release(&root_parent);
1760 path_release(&parent_nd);
1761 out2:
1762 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1763 up_write(&namespace_sem);
1764 path_release(&user_nd);
1765 path_release(&old_nd);
1766 out1:
1767 path_release(&new_nd);
1768 out0:
1769 unlock_kernel();
1770 return error;
1771 out3:
1772 spin_unlock(&vfsmount_lock);
1773 goto out2;
1776 static void __init init_mount_tree(void)
1778 struct vfsmount *mnt;
1779 struct mnt_namespace *ns;
1781 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1782 if (IS_ERR(mnt))
1783 panic("Can't create rootfs");
1784 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1785 if (!ns)
1786 panic("Can't allocate initial namespace");
1787 atomic_set(&ns->count, 1);
1788 INIT_LIST_HEAD(&ns->list);
1789 init_waitqueue_head(&ns->poll);
1790 ns->event = 0;
1791 list_add(&mnt->mnt_list, &ns->list);
1792 ns->root = mnt;
1793 mnt->mnt_ns = ns;
1795 init_task.nsproxy->mnt_ns = ns;
1796 get_mnt_ns(ns);
1798 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1799 set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1802 void __init mnt_init(unsigned long mempages)
1804 unsigned u;
1805 int err;
1807 init_rwsem(&namespace_sem);
1809 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1810 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1812 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1814 if (!mount_hashtable)
1815 panic("Failed to allocate mount hash table\n");
1817 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1819 for (u = 0; u < HASH_SIZE; u++)
1820 INIT_LIST_HEAD(&mount_hashtable[u]);
1822 err = sysfs_init();
1823 if (err)
1824 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1825 __FUNCTION__, err);
1826 err = subsystem_register(&fs_subsys);
1827 if (err)
1828 printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1829 __FUNCTION__, err);
1830 init_rootfs();
1831 init_mount_tree();
1834 void __put_mnt_ns(struct mnt_namespace *ns)
1836 struct vfsmount *root = ns->root;
1837 LIST_HEAD(umount_list);
1838 ns->root = NULL;
1839 spin_unlock(&vfsmount_lock);
1840 down_write(&namespace_sem);
1841 spin_lock(&vfsmount_lock);
1842 umount_tree(root, 0, &umount_list);
1843 spin_unlock(&vfsmount_lock);
1844 up_write(&namespace_sem);
1845 release_mounts(&umount_list);
1846 kfree(ns);