allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / fs-writeback.c
blob2e1f1663493f6c8e87b9d4acd9d72b9c789160b1
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/spinlock.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/backing-dev.h>
24 #include <linux/buffer_head.h>
25 #include "internal.h"
27 /**
28 * __mark_inode_dirty - internal function
29 * @inode: inode to mark
30 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
31 * Mark an inode as dirty. Callers should use mark_inode_dirty or
32 * mark_inode_dirty_sync.
34 * Put the inode on the super block's dirty list.
36 * CAREFUL! We mark it dirty unconditionally, but move it onto the
37 * dirty list only if it is hashed or if it refers to a blockdev.
38 * If it was not hashed, it will never be added to the dirty list
39 * even if it is later hashed, as it will have been marked dirty already.
41 * In short, make sure you hash any inodes _before_ you start marking
42 * them dirty.
44 * This function *must* be atomic for the I_DIRTY_PAGES case -
45 * set_page_dirty() is called under spinlock in several places.
47 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
48 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
49 * the kernel-internal blockdev inode represents the dirtying time of the
50 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
51 * page->mapping->host, so the page-dirtying time is recorded in the internal
52 * blockdev inode.
54 void __mark_inode_dirty(struct inode *inode, int flags)
56 struct super_block *sb = inode->i_sb;
59 * Don't do this for I_DIRTY_PAGES - that doesn't actually
60 * dirty the inode itself
62 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
63 if (sb->s_op->dirty_inode)
64 sb->s_op->dirty_inode(inode);
68 * make sure that changes are seen by all cpus before we test i_state
69 * -- mikulas
71 smp_mb();
73 /* avoid the locking if we can */
74 if ((inode->i_state & flags) == flags)
75 return;
77 if (unlikely(block_dump)) {
78 struct dentry *dentry = NULL;
79 const char *name = "?";
81 if (!list_empty(&inode->i_dentry)) {
82 dentry = list_entry(inode->i_dentry.next,
83 struct dentry, d_alias);
84 if (dentry && dentry->d_name.name)
85 name = (const char *) dentry->d_name.name;
88 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
89 printk(KERN_DEBUG
90 "%s(%d): dirtied inode %lu (%s) on %s\n",
91 current->comm, current->pid, inode->i_ino,
92 name, inode->i_sb->s_id);
95 spin_lock(&inode_lock);
96 if ((inode->i_state & flags) != flags) {
97 const int was_dirty = inode->i_state & I_DIRTY;
99 inode->i_state |= flags;
102 * If the inode is locked, just update its dirty state.
103 * The unlocker will place the inode on the appropriate
104 * superblock list, based upon its state.
106 if (inode->i_state & I_LOCK)
107 goto out;
110 * Only add valid (hashed) inodes to the superblock's
111 * dirty list. Add blockdev inodes as well.
113 if (!S_ISBLK(inode->i_mode)) {
114 if (hlist_unhashed(&inode->i_hash))
115 goto out;
117 if (inode->i_state & (I_FREEING|I_CLEAR))
118 goto out;
121 * If the inode was already on s_dirty/s_io/s_more_io, don't
122 * reposition it (that would break s_dirty time-ordering).
124 if (!was_dirty) {
125 inode->dirtied_when = jiffies;
126 list_move(&inode->i_list, &sb->s_dirty);
129 out:
130 spin_unlock(&inode_lock);
133 EXPORT_SYMBOL(__mark_inode_dirty);
135 static int write_inode(struct inode *inode, int sync)
137 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
138 return inode->i_sb->s_op->write_inode(inode, sync);
139 return 0;
143 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
144 * furthest end of its superblock's dirty-inode list.
146 * Before stamping the inode's ->dirtied_when, we check to see whether it is
147 * already the most-recently-dirtied inode on the s_dirty list. If that is
148 * the case then the inode must have been redirtied while it was being written
149 * out and we don't reset its dirtied_when.
151 static void redirty_tail(struct inode *inode)
153 struct super_block *sb = inode->i_sb;
155 if (!list_empty(&sb->s_dirty)) {
156 struct inode *tail_inode;
158 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
159 if (!time_after_eq(inode->dirtied_when,
160 tail_inode->dirtied_when))
161 inode->dirtied_when = jiffies;
163 list_move(&inode->i_list, &sb->s_dirty);
167 * requeue inode for re-scanning after sb->s_io list is exhausted.
169 static void requeue_io(struct inode *inode)
171 list_move(&inode->i_list, &inode->i_sb->s_more_io);
175 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
177 static void move_expired_inodes(struct list_head *delaying_queue,
178 struct list_head *dispatch_queue,
179 unsigned long *older_than_this)
181 while (!list_empty(delaying_queue)) {
182 struct inode *inode = list_entry(delaying_queue->prev,
183 struct inode, i_list);
184 if (older_than_this &&
185 time_after(inode->dirtied_when, *older_than_this))
186 break;
187 list_move(&inode->i_list, dispatch_queue);
192 * Queue all expired dirty inodes for io, eldest first.
194 static void queue_io(struct super_block *sb,
195 unsigned long *older_than_this)
197 list_splice_init(&sb->s_more_io, sb->s_io.prev);
198 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
201 int sb_has_dirty_inodes(struct super_block *sb)
203 return !list_empty(&sb->s_dirty) ||
204 !list_empty(&sb->s_io) ||
205 !list_empty(&sb->s_more_io);
207 EXPORT_SYMBOL(sb_has_dirty_inodes);
210 * Write a single inode's dirty pages and inode data out to disk.
211 * If `wait' is set, wait on the writeout.
213 * The whole writeout design is quite complex and fragile. We want to avoid
214 * starvation of particular inodes when others are being redirtied, prevent
215 * livelocks, etc.
217 * Called under inode_lock.
219 static int
220 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
222 unsigned dirty;
223 struct address_space *mapping = inode->i_mapping;
224 int wait = wbc->sync_mode == WB_SYNC_ALL;
225 int ret;
227 BUG_ON(inode->i_state & I_LOCK);
229 /* Set I_LOCK, reset I_DIRTY */
230 dirty = inode->i_state & I_DIRTY;
231 inode->i_state |= I_LOCK;
232 inode->i_state &= ~I_DIRTY;
234 spin_unlock(&inode_lock);
236 ret = do_writepages(mapping, wbc);
238 /* Don't write the inode if only I_DIRTY_PAGES was set */
239 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
240 int err = write_inode(inode, wait);
241 if (ret == 0)
242 ret = err;
245 if (wait) {
246 int err = filemap_fdatawait(mapping);
247 if (ret == 0)
248 ret = err;
251 spin_lock(&inode_lock);
252 inode->i_state &= ~I_LOCK;
253 if (!(inode->i_state & I_FREEING)) {
254 if (!(inode->i_state & I_DIRTY) &&
255 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
257 * We didn't write back all the pages. nfs_writepages()
258 * sometimes bales out without doing anything. Redirty
259 * the inode; Move it from s_io onto s_more_io/s_dirty.
262 * akpm: if the caller was the kupdate function we put
263 * this inode at the head of s_dirty so it gets first
264 * consideration. Otherwise, move it to the tail, for
265 * the reasons described there. I'm not really sure
266 * how much sense this makes. Presumably I had a good
267 * reasons for doing it this way, and I'd rather not
268 * muck with it at present.
270 if (wbc->for_kupdate) {
272 * For the kupdate function we move the inode
273 * to s_more_io so it will get more writeout as
274 * soon as the queue becomes uncongested.
276 inode->i_state |= I_DIRTY_PAGES;
277 if (wbc->nr_to_write <= 0) {
279 * slice used up: queue for next turn
281 requeue_io(inode);
282 } else {
284 * somehow blocked: retry later
286 redirty_tail(inode);
288 } else {
290 * Otherwise fully redirty the inode so that
291 * other inodes on this superblock will get some
292 * writeout. Otherwise heavy writing to one
293 * file would indefinitely suspend writeout of
294 * all the other files.
296 inode->i_state |= I_DIRTY_PAGES;
297 redirty_tail(inode);
299 } else if (inode->i_state & I_DIRTY) {
301 * Someone redirtied the inode while were writing back
302 * the pages.
304 redirty_tail(inode);
305 } else if (atomic_read(&inode->i_count)) {
307 * The inode is clean, inuse
309 list_move(&inode->i_list, &inode_in_use);
310 } else {
312 * The inode is clean, unused
314 list_move(&inode->i_list, &inode_unused);
317 wake_up_inode(inode);
318 return ret;
322 * Write out an inode's dirty pages. Called under inode_lock. Either the
323 * caller has ref on the inode (either via __iget or via syscall against an fd)
324 * or the inode has I_WILL_FREE set (via generic_forget_inode)
326 static int
327 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
329 wait_queue_head_t *wqh;
331 if (!atomic_read(&inode->i_count))
332 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
333 else
334 WARN_ON(inode->i_state & I_WILL_FREE);
336 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
337 struct address_space *mapping = inode->i_mapping;
338 int ret;
341 * We're skipping this inode because it's locked, and we're not
342 * doing writeback-for-data-integrity. Move it to s_more_io so
343 * that writeback can proceed with the other inodes on s_io.
344 * We'll have another go at writing back this inode when we
345 * completed a full scan of s_io.
347 requeue_io(inode);
350 * Even if we don't actually write the inode itself here,
351 * we can at least start some of the data writeout..
353 spin_unlock(&inode_lock);
354 ret = do_writepages(mapping, wbc);
355 spin_lock(&inode_lock);
356 return ret;
360 * It's a data-integrity sync. We must wait.
362 if (inode->i_state & I_LOCK) {
363 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
365 wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
366 do {
367 spin_unlock(&inode_lock);
368 __wait_on_bit(wqh, &wq, inode_wait,
369 TASK_UNINTERRUPTIBLE);
370 spin_lock(&inode_lock);
371 } while (inode->i_state & I_LOCK);
373 return __sync_single_inode(inode, wbc);
377 * Write out a superblock's list of dirty inodes. A wait will be performed
378 * upon no inodes, all inodes or the final one, depending upon sync_mode.
380 * If older_than_this is non-NULL, then only write out inodes which
381 * had their first dirtying at a time earlier than *older_than_this.
383 * If we're a pdlfush thread, then implement pdflush collision avoidance
384 * against the entire list.
386 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
387 * that it can be located for waiting on in __writeback_single_inode().
389 * Called under inode_lock.
391 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
392 * This function assumes that the blockdev superblock's inodes are backed by
393 * a variety of queues, so all inodes are searched. For other superblocks,
394 * assume that all inodes are backed by the same queue.
396 * FIXME: this linear search could get expensive with many fileystems. But
397 * how to fix? We need to go from an address_space to all inodes which share
398 * a queue with that address_space. (Easy: have a global "dirty superblocks"
399 * list).
401 * The inodes to be written are parked on sb->s_io. They are moved back onto
402 * sb->s_dirty as they are selected for writing. This way, none can be missed
403 * on the writer throttling path, and we get decent balancing between many
404 * throttled threads: we don't want them all piling up on __wait_on_inode.
406 static void
407 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
409 const unsigned long start = jiffies; /* livelock avoidance */
411 if (!wbc->for_kupdate || list_empty(&sb->s_io))
412 queue_io(sb, wbc->older_than_this);
414 while (!list_empty(&sb->s_io)) {
415 struct inode *inode = list_entry(sb->s_io.prev,
416 struct inode, i_list);
417 struct address_space *mapping = inode->i_mapping;
418 struct backing_dev_info *bdi = mapping->backing_dev_info;
419 long pages_skipped;
421 if (!bdi_cap_writeback_dirty(bdi)) {
422 redirty_tail(inode);
423 if (sb_is_blkdev_sb(sb)) {
425 * Dirty memory-backed blockdev: the ramdisk
426 * driver does this. Skip just this inode
428 continue;
431 * Dirty memory-backed inode against a filesystem other
432 * than the kernel-internal bdev filesystem. Skip the
433 * entire superblock.
435 break;
438 if (wbc->nonblocking && bdi_write_congested(bdi)) {
439 wbc->encountered_congestion = 1;
440 if (!sb_is_blkdev_sb(sb))
441 break; /* Skip a congested fs */
442 requeue_io(inode);
443 continue; /* Skip a congested blockdev */
446 if (wbc->bdi && bdi != wbc->bdi) {
447 if (!sb_is_blkdev_sb(sb))
448 break; /* fs has the wrong queue */
449 requeue_io(inode);
450 continue; /* blockdev has wrong queue */
453 /* Was this inode dirtied after sync_sb_inodes was called? */
454 if (time_after(inode->dirtied_when, start))
455 break;
457 /* Is another pdflush already flushing this queue? */
458 if (current_is_pdflush() && !writeback_acquire(bdi))
459 break;
461 BUG_ON(inode->i_state & I_FREEING);
462 __iget(inode);
463 pages_skipped = wbc->pages_skipped;
464 __writeback_single_inode(inode, wbc);
465 if (wbc->sync_mode == WB_SYNC_HOLD) {
466 inode->dirtied_when = jiffies;
467 list_move(&inode->i_list, &sb->s_dirty);
469 if (current_is_pdflush())
470 writeback_release(bdi);
471 if (wbc->pages_skipped != pages_skipped) {
473 * writeback is not making progress due to locked
474 * buffers. Skip this inode for now.
476 redirty_tail(inode);
478 spin_unlock(&inode_lock);
479 iput(inode);
480 cond_resched();
481 spin_lock(&inode_lock);
482 if (wbc->nr_to_write <= 0) {
483 wbc->more_io = 1;
484 break;
486 if (!list_empty(&sb->s_more_io))
487 wbc->more_io = 1;
489 return; /* Leave any unwritten inodes on s_io */
493 * Start writeback of dirty pagecache data against all unlocked inodes.
495 * Note:
496 * We don't need to grab a reference to superblock here. If it has non-empty
497 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
498 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
499 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
500 * inode from superblock lists we are OK.
502 * If `older_than_this' is non-zero then only flush inodes which have a
503 * flushtime older than *older_than_this.
505 * If `bdi' is non-zero then we will scan the first inode against each
506 * superblock until we find the matching ones. One group will be the dirty
507 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
508 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
509 * super-efficient but we're about to do a ton of I/O...
511 void
512 writeback_inodes(struct writeback_control *wbc)
514 struct super_block *sb;
516 might_sleep();
517 spin_lock(&sb_lock);
518 restart:
519 sb = sb_entry(super_blocks.prev);
520 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
521 if (sb_has_dirty_inodes(sb)) {
522 /* we're making our own get_super here */
523 sb->s_count++;
524 spin_unlock(&sb_lock);
526 * If we can't get the readlock, there's no sense in
527 * waiting around, most of the time the FS is going to
528 * be unmounted by the time it is released.
530 if (down_read_trylock(&sb->s_umount)) {
531 if (sb->s_root) {
532 spin_lock(&inode_lock);
533 sync_sb_inodes(sb, wbc);
534 spin_unlock(&inode_lock);
536 up_read(&sb->s_umount);
538 spin_lock(&sb_lock);
539 if (__put_super_and_need_restart(sb))
540 goto restart;
542 if (wbc->nr_to_write <= 0)
543 break;
545 spin_unlock(&sb_lock);
549 * writeback and wait upon the filesystem's dirty inodes. The caller will
550 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
551 * used to park the written inodes on sb->s_dirty for the wait pass.
553 * A finite limit is set on the number of pages which will be written.
554 * To prevent infinite livelock of sys_sync().
556 * We add in the number of potentially dirty inodes, because each inode write
557 * can dirty pagecache in the underlying blockdev.
559 void sync_inodes_sb(struct super_block *sb, int wait)
561 struct writeback_control wbc = {
562 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
563 .range_start = 0,
564 .range_end = LLONG_MAX,
566 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
567 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
569 wbc.nr_to_write = nr_dirty + nr_unstable +
570 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
571 nr_dirty + nr_unstable;
572 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
573 spin_lock(&inode_lock);
574 sync_sb_inodes(sb, &wbc);
575 spin_unlock(&inode_lock);
579 * Rather lame livelock avoidance.
581 static void set_sb_syncing(int val)
583 struct super_block *sb;
584 spin_lock(&sb_lock);
585 sb = sb_entry(super_blocks.prev);
586 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
587 sb->s_syncing = val;
589 spin_unlock(&sb_lock);
593 * sync_inodes - writes all inodes to disk
594 * @wait: wait for completion
596 * sync_inodes() goes through each super block's dirty inode list, writes the
597 * inodes out, waits on the writeout and puts the inodes back on the normal
598 * list.
600 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
601 * part of the sync functions is that the blockdev "superblock" is processed
602 * last. This is because the write_inode() function of a typical fs will
603 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
604 * What we want to do is to perform all that dirtying first, and then write
605 * back all those inode blocks via the blockdev mapping in one sweep. So the
606 * additional (somewhat redundant) sync_blockdev() calls here are to make
607 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
608 * outstanding dirty inodes, the writeback goes block-at-a-time within the
609 * filesystem's write_inode(). This is extremely slow.
611 static void __sync_inodes(int wait)
613 struct super_block *sb;
615 spin_lock(&sb_lock);
616 restart:
617 list_for_each_entry(sb, &super_blocks, s_list) {
618 if (sb->s_syncing)
619 continue;
620 sb->s_syncing = 1;
621 sb->s_count++;
622 spin_unlock(&sb_lock);
623 down_read(&sb->s_umount);
624 if (sb->s_root) {
625 sync_inodes_sb(sb, wait);
626 sync_blockdev(sb->s_bdev);
628 up_read(&sb->s_umount);
629 spin_lock(&sb_lock);
630 if (__put_super_and_need_restart(sb))
631 goto restart;
633 spin_unlock(&sb_lock);
636 void sync_inodes(int wait)
638 set_sb_syncing(0);
639 __sync_inodes(0);
641 if (wait) {
642 set_sb_syncing(0);
643 __sync_inodes(1);
648 * write_inode_now - write an inode to disk
649 * @inode: inode to write to disk
650 * @sync: whether the write should be synchronous or not
652 * This function commits an inode to disk immediately if it is dirty. This is
653 * primarily needed by knfsd.
655 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
657 int write_inode_now(struct inode *inode, int sync)
659 int ret;
660 struct writeback_control wbc = {
661 .nr_to_write = LONG_MAX,
662 .sync_mode = WB_SYNC_ALL,
663 .range_start = 0,
664 .range_end = LLONG_MAX,
667 if (!mapping_cap_writeback_dirty(inode->i_mapping))
668 wbc.nr_to_write = 0;
670 might_sleep();
671 spin_lock(&inode_lock);
672 ret = __writeback_single_inode(inode, &wbc);
673 spin_unlock(&inode_lock);
674 if (sync)
675 wait_on_inode(inode);
676 return ret;
678 EXPORT_SYMBOL(write_inode_now);
681 * sync_inode - write an inode and its pages to disk.
682 * @inode: the inode to sync
683 * @wbc: controls the writeback mode
685 * sync_inode() will write an inode and its pages to disk. It will also
686 * correctly update the inode on its superblock's dirty inode lists and will
687 * update inode->i_state.
689 * The caller must have a ref on the inode.
691 int sync_inode(struct inode *inode, struct writeback_control *wbc)
693 int ret;
695 spin_lock(&inode_lock);
696 ret = __writeback_single_inode(inode, wbc);
697 spin_unlock(&inode_lock);
698 return ret;
700 EXPORT_SYMBOL(sync_inode);
703 * generic_osync_inode - flush all dirty data for a given inode to disk
704 * @inode: inode to write
705 * @mapping: the address_space that should be flushed
706 * @what: what to write and wait upon
708 * This can be called by file_write functions for files which have the
709 * O_SYNC flag set, to flush dirty writes to disk.
711 * @what is a bitmask, specifying which part of the inode's data should be
712 * written and waited upon.
714 * OSYNC_DATA: i_mapping's dirty data
715 * OSYNC_METADATA: the buffers at i_mapping->private_list
716 * OSYNC_INODE: the inode itself
719 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
721 int err = 0;
722 int need_write_inode_now = 0;
723 int err2;
725 if (what & OSYNC_DATA)
726 err = filemap_fdatawrite(mapping);
727 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
728 err2 = sync_mapping_buffers(mapping);
729 if (!err)
730 err = err2;
732 if (what & OSYNC_DATA) {
733 err2 = filemap_fdatawait(mapping);
734 if (!err)
735 err = err2;
738 spin_lock(&inode_lock);
739 if ((inode->i_state & I_DIRTY) &&
740 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
741 need_write_inode_now = 1;
742 spin_unlock(&inode_lock);
744 if (need_write_inode_now) {
745 err2 = write_inode_now(inode, 1);
746 if (!err)
747 err = err2;
749 else
750 wait_on_inode(inode);
752 return err;
755 EXPORT_SYMBOL(generic_osync_inode);
758 * writeback_acquire: attempt to get exclusive writeback access to a device
759 * @bdi: the device's backing_dev_info structure
761 * It is a waste of resources to have more than one pdflush thread blocked on
762 * a single request queue. Exclusion at the request_queue level is obtained
763 * via a flag in the request_queue's backing_dev_info.state.
765 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
766 * unless they implement their own. Which is somewhat inefficient, as this
767 * may prevent concurrent writeback against multiple devices.
769 int writeback_acquire(struct backing_dev_info *bdi)
771 return !test_and_set_bit(BDI_pdflush, &bdi->state);
775 * writeback_in_progress: determine whether there is writeback in progress
776 * @bdi: the device's backing_dev_info structure.
778 * Determine whether there is writeback in progress against a backing device.
780 int writeback_in_progress(struct backing_dev_info *bdi)
782 return test_bit(BDI_pdflush, &bdi->state);
786 * writeback_release: relinquish exclusive writeback access against a device.
787 * @bdi: the device's backing_dev_info structure
789 void writeback_release(struct backing_dev_info *bdi)
791 BUG_ON(!writeback_in_progress(bdi));
792 clear_bit(BDI_pdflush, &bdi->state);