allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / sbus / char / bbc_envctrl.c
bloba54e4140683aea238d28e48f50621e801c7d9450
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5 */
7 #include <linux/kthread.h>
8 #include <linux/delay.h>
9 #include <linux/kmod.h>
10 #include <asm/oplib.h>
11 #include <asm/ebus.h>
13 #include "bbc_i2c.h"
14 #include "max1617.h"
16 #undef ENVCTRL_TRACE
18 /* WARNING: Making changes to this driver is very dangerous.
19 * If you misprogram the sensor chips they can
20 * cut the power on you instantly.
23 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
24 * Both are implemented using max1617 i2c devices. Each max1617
25 * monitors 2 temperatures, one for one of the cpu dies and the other
26 * for the ambient temperature.
28 * The max1617 is capable of being programmed with power-off
29 * temperature values, one low limit and one high limit. These
30 * can be controlled independently for the cpu or ambient temperature.
31 * If a limit is violated, the power is simply shut off. The frequency
32 * with which the max1617 does temperature sampling can be controlled
33 * as well.
35 * Three fans exist inside the machine, all three are controlled with
36 * an i2c digital to analog converter. There is a fan directed at the
37 * two processor slots, another for the rest of the enclosure, and the
38 * third is for the power supply. The first two fans may be speed
39 * controlled by changing the voltage fed to them. The third fan may
40 * only be completely off or on. The third fan is meant to only be
41 * disabled/enabled when entering/exiting the lowest power-saving
42 * mode of the machine.
44 * An environmental control kernel thread periodically monitors all
45 * temperature sensors. Based upon the samples it will adjust the
46 * fan speeds to try and keep the system within a certain temperature
47 * range (the goal being to make the fans as quiet as possible without
48 * allowing the system to get too hot).
50 * If the temperature begins to rise/fall outside of the acceptable
51 * operating range, a periodic warning will be sent to the kernel log.
52 * The fans will be put on full blast to attempt to deal with this
53 * situation. After exceeding the acceptable operating range by a
54 * certain threshold, the kernel thread will shut down the system.
55 * Here, the thread is attempting to shut the machine down cleanly
56 * before the hardware based power-off event is triggered.
59 /* These settings are in Celsius. We use these defaults only
60 * if we cannot interrogate the cpu-fru SEEPROM.
62 struct temp_limits {
63 s8 high_pwroff, high_shutdown, high_warn;
64 s8 low_warn, low_shutdown, low_pwroff;
67 static struct temp_limits cpu_temp_limits[2] = {
68 { 100, 85, 80, 5, -5, -10 },
69 { 100, 85, 80, 5, -5, -10 },
72 static struct temp_limits amb_temp_limits[2] = {
73 { 65, 55, 40, 5, -5, -10 },
74 { 65, 55, 40, 5, -5, -10 },
77 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
79 struct bbc_cpu_temperature {
80 struct bbc_cpu_temperature *next;
82 struct bbc_i2c_client *client;
83 int index;
85 /* Current readings, and history. */
86 s8 curr_cpu_temp;
87 s8 curr_amb_temp;
88 s8 prev_cpu_temp;
89 s8 prev_amb_temp;
90 s8 avg_cpu_temp;
91 s8 avg_amb_temp;
93 int sample_tick;
95 enum fan_action fan_todo[2];
96 #define FAN_AMBIENT 0
97 #define FAN_CPU 1
100 struct bbc_cpu_temperature *all_bbc_temps;
102 struct bbc_fan_control {
103 struct bbc_fan_control *next;
105 struct bbc_i2c_client *client;
106 int index;
108 int psupply_fan_on;
109 int cpu_fan_speed;
110 int system_fan_speed;
113 struct bbc_fan_control *all_bbc_fans;
115 #define CPU_FAN_REG 0xf0
116 #define SYS_FAN_REG 0xf2
117 #define PSUPPLY_FAN_REG 0xf4
119 #define FAN_SPEED_MIN 0x0c
120 #define FAN_SPEED_MAX 0x3f
122 #define PSUPPLY_FAN_ON 0x1f
123 #define PSUPPLY_FAN_OFF 0x00
125 static void set_fan_speeds(struct bbc_fan_control *fp)
127 /* Put temperatures into range so we don't mis-program
128 * the hardware.
130 if (fp->cpu_fan_speed < FAN_SPEED_MIN)
131 fp->cpu_fan_speed = FAN_SPEED_MIN;
132 if (fp->cpu_fan_speed > FAN_SPEED_MAX)
133 fp->cpu_fan_speed = FAN_SPEED_MAX;
134 if (fp->system_fan_speed < FAN_SPEED_MIN)
135 fp->system_fan_speed = FAN_SPEED_MIN;
136 if (fp->system_fan_speed > FAN_SPEED_MAX)
137 fp->system_fan_speed = FAN_SPEED_MAX;
138 #ifdef ENVCTRL_TRACE
139 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
140 fp->index,
141 fp->cpu_fan_speed, fp->system_fan_speed);
142 #endif
144 bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
145 bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
146 bbc_i2c_writeb(fp->client,
147 (fp->psupply_fan_on ?
148 PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
149 PSUPPLY_FAN_REG);
152 static void get_current_temps(struct bbc_cpu_temperature *tp)
154 tp->prev_amb_temp = tp->curr_amb_temp;
155 bbc_i2c_readb(tp->client,
156 (unsigned char *) &tp->curr_amb_temp,
157 MAX1617_AMB_TEMP);
158 tp->prev_cpu_temp = tp->curr_cpu_temp;
159 bbc_i2c_readb(tp->client,
160 (unsigned char *) &tp->curr_cpu_temp,
161 MAX1617_CPU_TEMP);
162 #ifdef ENVCTRL_TRACE
163 printk("temp%d: cpu(%d C) amb(%d C)\n",
164 tp->index,
165 (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
166 #endif
170 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
172 static int shutting_down = 0;
173 static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
174 char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
175 char *type = "???";
176 s8 val = -1;
178 if (shutting_down != 0)
179 return;
181 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
182 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
183 type = "ambient";
184 val = tp->curr_amb_temp;
185 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
186 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
187 type = "CPU";
188 val = tp->curr_cpu_temp;
191 printk(KERN_CRIT "temp%d: Outside of safe %s "
192 "operating temperature, %d C.\n",
193 tp->index, type, val);
195 printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
197 shutting_down = 1;
198 if (call_usermodehelper("/sbin/shutdown", argv, envp, 0) < 0)
199 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
202 #define WARN_INTERVAL (30 * HZ)
204 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
206 int ret = 0;
208 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
209 if (tp->curr_amb_temp >=
210 amb_temp_limits[tp->index].high_warn) {
211 printk(KERN_WARNING "temp%d: "
212 "Above safe ambient operating temperature, %d C.\n",
213 tp->index, (int) tp->curr_amb_temp);
214 ret = 1;
215 } else if (tp->curr_amb_temp <
216 amb_temp_limits[tp->index].low_warn) {
217 printk(KERN_WARNING "temp%d: "
218 "Below safe ambient operating temperature, %d C.\n",
219 tp->index, (int) tp->curr_amb_temp);
220 ret = 1;
222 if (ret)
223 *last_warn = jiffies;
224 } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
225 tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
226 ret = 1;
228 /* Now check the shutdown limits. */
229 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
230 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
231 do_envctrl_shutdown(tp);
232 ret = 1;
235 if (ret) {
236 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
237 } else if ((tick & (8 - 1)) == 0) {
238 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
239 s8 amb_goal_lo;
241 amb_goal_lo = amb_goal_hi - 3;
243 /* We do not try to avoid 'too cold' events. Basically we
244 * only try to deal with over-heating and fan noise reduction.
246 if (tp->avg_amb_temp < amb_goal_hi) {
247 if (tp->avg_amb_temp >= amb_goal_lo)
248 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
249 else
250 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
251 } else {
252 tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
254 } else {
255 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
259 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
261 int ret = 0;
263 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
264 if (tp->curr_cpu_temp >=
265 cpu_temp_limits[tp->index].high_warn) {
266 printk(KERN_WARNING "temp%d: "
267 "Above safe CPU operating temperature, %d C.\n",
268 tp->index, (int) tp->curr_cpu_temp);
269 ret = 1;
270 } else if (tp->curr_cpu_temp <
271 cpu_temp_limits[tp->index].low_warn) {
272 printk(KERN_WARNING "temp%d: "
273 "Below safe CPU operating temperature, %d C.\n",
274 tp->index, (int) tp->curr_cpu_temp);
275 ret = 1;
277 if (ret)
278 *last_warn = jiffies;
279 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
280 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
281 ret = 1;
283 /* Now check the shutdown limits. */
284 if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
285 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
286 do_envctrl_shutdown(tp);
287 ret = 1;
290 if (ret) {
291 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
292 } else if ((tick & (8 - 1)) == 0) {
293 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
294 s8 cpu_goal_lo;
296 cpu_goal_lo = cpu_goal_hi - 3;
298 /* We do not try to avoid 'too cold' events. Basically we
299 * only try to deal with over-heating and fan noise reduction.
301 if (tp->avg_cpu_temp < cpu_goal_hi) {
302 if (tp->avg_cpu_temp >= cpu_goal_lo)
303 tp->fan_todo[FAN_CPU] = FAN_SAME;
304 else
305 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
306 } else {
307 tp->fan_todo[FAN_CPU] = FAN_FASTER;
309 } else {
310 tp->fan_todo[FAN_CPU] = FAN_SAME;
314 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
316 tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
317 tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
319 analyze_ambient_temp(tp, last_warn, tp->sample_tick);
320 analyze_cpu_temp(tp, last_warn, tp->sample_tick);
322 tp->sample_tick++;
325 static enum fan_action prioritize_fan_action(int which_fan)
327 struct bbc_cpu_temperature *tp;
328 enum fan_action decision = FAN_STATE_MAX;
330 /* Basically, prioritize what the temperature sensors
331 * recommend we do, and perform that action on all the
332 * fans.
334 for (tp = all_bbc_temps; tp; tp = tp->next) {
335 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
336 decision = FAN_FULLBLAST;
337 break;
339 if (tp->fan_todo[which_fan] == FAN_SAME &&
340 decision != FAN_FASTER)
341 decision = FAN_SAME;
342 else if (tp->fan_todo[which_fan] == FAN_FASTER)
343 decision = FAN_FASTER;
344 else if (decision != FAN_FASTER &&
345 decision != FAN_SAME &&
346 tp->fan_todo[which_fan] == FAN_SLOWER)
347 decision = FAN_SLOWER;
349 if (decision == FAN_STATE_MAX)
350 decision = FAN_SAME;
352 return decision;
355 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
357 enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
358 int ret;
360 if (decision == FAN_SAME)
361 return 0;
363 ret = 1;
364 if (decision == FAN_FULLBLAST) {
365 if (fp->system_fan_speed >= FAN_SPEED_MAX)
366 ret = 0;
367 else
368 fp->system_fan_speed = FAN_SPEED_MAX;
369 } else {
370 if (decision == FAN_FASTER) {
371 if (fp->system_fan_speed >= FAN_SPEED_MAX)
372 ret = 0;
373 else
374 fp->system_fan_speed += 2;
375 } else {
376 int orig_speed = fp->system_fan_speed;
378 if (orig_speed <= FAN_SPEED_MIN ||
379 orig_speed <= (fp->cpu_fan_speed - 3))
380 ret = 0;
381 else
382 fp->system_fan_speed -= 1;
386 return ret;
389 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
391 enum fan_action decision = prioritize_fan_action(FAN_CPU);
392 int ret;
394 if (decision == FAN_SAME)
395 return 0;
397 ret = 1;
398 if (decision == FAN_FULLBLAST) {
399 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
400 ret = 0;
401 else
402 fp->cpu_fan_speed = FAN_SPEED_MAX;
403 } else {
404 if (decision == FAN_FASTER) {
405 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
406 ret = 0;
407 else {
408 fp->cpu_fan_speed += 2;
409 if (fp->system_fan_speed <
410 (fp->cpu_fan_speed - 3))
411 fp->system_fan_speed =
412 fp->cpu_fan_speed - 3;
414 } else {
415 if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
416 ret = 0;
417 else
418 fp->cpu_fan_speed -= 1;
422 return ret;
425 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
427 int new;
429 new = maybe_new_ambient_fan_speed(fp);
430 new |= maybe_new_cpu_fan_speed(fp);
432 if (new)
433 set_fan_speeds(fp);
436 static void fans_full_blast(void)
438 struct bbc_fan_control *fp;
440 /* Since we will not be monitoring things anymore, put
441 * the fans on full blast.
443 for (fp = all_bbc_fans; fp; fp = fp->next) {
444 fp->cpu_fan_speed = FAN_SPEED_MAX;
445 fp->system_fan_speed = FAN_SPEED_MAX;
446 fp->psupply_fan_on = 1;
447 set_fan_speeds(fp);
451 #define POLL_INTERVAL (5 * 1000)
452 static unsigned long last_warning_jiffies;
453 static struct task_struct *kenvctrld_task;
455 static int kenvctrld(void *__unused)
457 printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
458 last_warning_jiffies = jiffies - WARN_INTERVAL;
459 for (;;) {
460 struct bbc_cpu_temperature *tp;
461 struct bbc_fan_control *fp;
463 msleep_interruptible(POLL_INTERVAL);
464 if (kthread_should_stop())
465 break;
467 for (tp = all_bbc_temps; tp; tp = tp->next) {
468 get_current_temps(tp);
469 analyze_temps(tp, &last_warning_jiffies);
471 for (fp = all_bbc_fans; fp; fp = fp->next)
472 maybe_new_fan_speeds(fp);
474 printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
476 fans_full_blast();
478 return 0;
481 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
483 struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
485 if (!tp)
486 return;
487 memset(tp, 0, sizeof(*tp));
488 tp->client = bbc_i2c_attach(echild);
489 if (!tp->client) {
490 kfree(tp);
491 return;
494 tp->index = temp_idx;
496 struct bbc_cpu_temperature **tpp = &all_bbc_temps;
497 while (*tpp)
498 tpp = &((*tpp)->next);
499 tp->next = NULL;
500 *tpp = tp;
503 /* Tell it to convert once every 5 seconds, clear all cfg
504 * bits.
506 bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
507 bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
509 /* Program the hard temperature limits into the chip. */
510 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
511 MAX1617_WR_AMB_HIGHLIM);
512 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
513 MAX1617_WR_AMB_LOWLIM);
514 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
515 MAX1617_WR_CPU_HIGHLIM);
516 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
517 MAX1617_WR_CPU_LOWLIM);
519 get_current_temps(tp);
520 tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
521 tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
523 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
524 tp->fan_todo[FAN_CPU] = FAN_SAME;
527 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
529 struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
531 if (!fp)
532 return;
533 memset(fp, 0, sizeof(*fp));
534 fp->client = bbc_i2c_attach(echild);
535 if (!fp->client) {
536 kfree(fp);
537 return;
540 fp->index = fan_idx;
543 struct bbc_fan_control **fpp = &all_bbc_fans;
544 while (*fpp)
545 fpp = &((*fpp)->next);
546 fp->next = NULL;
547 *fpp = fp;
550 /* The i2c device controlling the fans is write-only.
551 * So the only way to keep track of the current power
552 * level fed to the fans is via software. Choose half
553 * power for cpu/system and 'on' fo the powersupply fan
554 * and set it now.
556 fp->psupply_fan_on = 1;
557 fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
558 fp->cpu_fan_speed += FAN_SPEED_MIN;
559 fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
560 fp->system_fan_speed += FAN_SPEED_MIN;
562 set_fan_speeds(fp);
565 int bbc_envctrl_init(void)
567 struct linux_ebus_child *echild;
568 int temp_index = 0;
569 int fan_index = 0;
570 int devidx = 0;
572 while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
573 if (!strcmp(echild->prom_node->name, "temperature"))
574 attach_one_temp(echild, temp_index++);
575 if (!strcmp(echild->prom_node->name, "fan-control"))
576 attach_one_fan(echild, fan_index++);
578 if (temp_index != 0 && fan_index != 0) {
579 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
580 if (IS_ERR(kenvctrld_task))
581 return PTR_ERR(kenvctrld_task);
584 return 0;
587 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
589 bbc_i2c_detach(tp->client);
590 kfree(tp);
593 static void destroy_one_fan(struct bbc_fan_control *fp)
595 bbc_i2c_detach(fp->client);
596 kfree(fp);
599 void bbc_envctrl_cleanup(void)
601 struct bbc_cpu_temperature *tp;
602 struct bbc_fan_control *fp;
604 kthread_stop(kenvctrld_task);
606 tp = all_bbc_temps;
607 while (tp != NULL) {
608 struct bbc_cpu_temperature *next = tp->next;
609 destroy_one_temp(tp);
610 tp = next;
612 all_bbc_temps = NULL;
614 fp = all_bbc_fans;
615 while (fp != NULL) {
616 struct bbc_fan_control *next = fp->next;
617 destroy_one_fan(fp);
618 fp = next;
620 all_bbc_fans = NULL;