allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / pci / hotplug / cpqphp_ctrl.c
blob79ff6b4de3a61ea9f9b21262074625c49c563d52
1 /*
2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include "cpqphp.h"
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
48 static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending; /* = 0 */
53 /* things needed for the long_delay function */
54 static struct semaphore delay_sem;
55 static wait_queue_head_t delay_wait;
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
60 DECLARE_WAITQUEUE(wait, current);
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
67 down (&delay_sem);
69 init_waitqueue_head(&delay_wait);
71 add_wait_queue(&delay_wait, &wait);
72 msleep_interruptible(jiffies_to_msecs(delay));
73 remove_wait_queue(&delay_wait, &wait);
75 up(&delay_sem);
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
83 int hp_slot;
84 u8 rc = 0;
85 u16 temp_word;
86 struct pci_func *func;
87 struct event_info *taskInfo;
89 if (!change)
90 return 0;
92 /* Switch Change */
93 dbg("cpqsbd: Switch interrupt received.\n");
95 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 if (change & (0x1L << hp_slot)) {
97 /**********************************
98 * this one changed.
99 **********************************/
100 func = cpqhp_slot_find(ctrl->bus,
101 (hp_slot + ctrl->slot_device_offset), 0);
103 /* this is the structure that tells the worker thread
104 *what to do */
105 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 ctrl->next_event = (ctrl->next_event + 1) % 10;
107 taskInfo->hp_slot = hp_slot;
109 rc++;
111 temp_word = ctrl->ctrl_int_comp >> 16;
112 func->presence_save = (temp_word >> hp_slot) & 0x01;
113 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
115 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 /**********************************
117 * Switch opened
118 **********************************/
120 func->switch_save = 0;
122 taskInfo->event_type = INT_SWITCH_OPEN;
123 } else {
124 /**********************************
125 * Switch closed
126 **********************************/
128 func->switch_save = 0x10;
130 taskInfo->event_type = INT_SWITCH_CLOSE;
135 return rc;
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
145 struct slot *slot = ctrl->slot;
147 while (slot && (slot->device != device)) {
148 slot = slot->next;
151 return slot;
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
157 int hp_slot;
158 u8 rc = 0;
159 u8 temp_byte;
160 u16 temp_word;
161 struct pci_func *func;
162 struct event_info *taskInfo;
163 struct slot *p_slot;
165 if (!change)
166 return 0;
168 /**********************************
169 * Presence Change
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change );
174 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 if (change & (0x0101 << hp_slot)) {
176 /**********************************
177 * this one changed.
178 **********************************/
179 func = cpqhp_slot_find(ctrl->bus,
180 (hp_slot + ctrl->slot_device_offset), 0);
182 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 ctrl->next_event = (ctrl->next_event + 1) % 10;
184 taskInfo->hp_slot = hp_slot;
186 rc++;
188 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 if (!p_slot)
190 return 0;
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func->switch_save && (ctrl->push_button == 1)) {
195 temp_word = ctrl->ctrl_int_comp >> 16;
196 temp_byte = (temp_word >> hp_slot) & 0x01;
197 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
199 if (temp_byte != func->presence_save) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot);
204 taskInfo->event_type = INT_BUTTON_PRESS;
205 } else {
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot);
210 taskInfo->event_type = INT_BUTTON_RELEASE;
212 /* Cancel if we are still blinking */
213 if ((p_slot->state == BLINKINGON_STATE)
214 || (p_slot->state == BLINKINGOFF_STATE)) {
215 taskInfo->event_type = INT_BUTTON_CANCEL;
216 dbg("hp_slot %d button cancel\n", hp_slot);
217 } else if ((p_slot->state == POWERON_STATE)
218 || (p_slot->state == POWEROFF_STATE)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo->event_type = INT_BUTTON_IGNORE;
221 dbg("hp_slot %d button ignore\n", hp_slot);
224 } else {
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word = ctrl->ctrl_int_comp >> 16;
228 func->presence_save = (temp_word >> hp_slot) & 0x01;
229 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
231 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 /* Present */
234 taskInfo->event_type = INT_PRESENCE_ON;
235 } else {
236 /* Not Present */
237 taskInfo->event_type = INT_PRESENCE_OFF;
243 return rc;
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
249 int hp_slot;
250 u8 rc = 0;
251 struct pci_func *func;
252 struct event_info *taskInfo;
254 if (!change)
255 return 0;
257 /**********************************
258 * power fault
259 **********************************/
261 info("power fault interrupt\n");
263 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 if (change & (0x01 << hp_slot)) {
265 /**********************************
266 * this one changed.
267 **********************************/
268 func = cpqhp_slot_find(ctrl->bus,
269 (hp_slot + ctrl->slot_device_offset), 0);
271 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 ctrl->next_event = (ctrl->next_event + 1) % 10;
273 taskInfo->hp_slot = hp_slot;
275 rc++;
277 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
281 func->status = 0x00;
283 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 } else {
285 /**********************************
286 * power fault
287 **********************************/
288 taskInfo->event_type = INT_POWER_FAULT;
290 if (ctrl->rev < 4) {
291 amber_LED_on (ctrl, hp_slot);
292 green_LED_off (ctrl, hp_slot);
293 set_SOGO (ctrl);
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
299 /* FIXME
300 simulated_NMI(hp_slot, ctrl); */
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
304 * return */
305 /*FIXME
306 panic(msg_power_fault); */
307 } else {
308 /* set power fault status for this board */
309 func->status = 0xFF;
310 info("power fault bit %x set\n", hp_slot);
316 return rc;
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
325 static int sort_by_size(struct pci_resource **head)
327 struct pci_resource *current_res;
328 struct pci_resource *next_res;
329 int out_of_order = 1;
331 if (!(*head))
332 return 1;
334 if (!((*head)->next))
335 return 0;
337 while (out_of_order) {
338 out_of_order = 0;
340 /* Special case for swapping list head */
341 if (((*head)->next) &&
342 ((*head)->length > (*head)->next->length)) {
343 out_of_order++;
344 current_res = *head;
345 *head = (*head)->next;
346 current_res->next = (*head)->next;
347 (*head)->next = current_res;
350 current_res = *head;
352 while (current_res->next && current_res->next->next) {
353 if (current_res->next->length > current_res->next->next->length) {
354 out_of_order++;
355 next_res = current_res->next;
356 current_res->next = current_res->next->next;
357 current_res = current_res->next;
358 next_res->next = current_res->next;
359 current_res->next = next_res;
360 } else
361 current_res = current_res->next;
363 } /* End of out_of_order loop */
365 return 0;
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
374 static int sort_by_max_size(struct pci_resource **head)
376 struct pci_resource *current_res;
377 struct pci_resource *next_res;
378 int out_of_order = 1;
380 if (!(*head))
381 return 1;
383 if (!((*head)->next))
384 return 0;
386 while (out_of_order) {
387 out_of_order = 0;
389 /* Special case for swapping list head */
390 if (((*head)->next) &&
391 ((*head)->length < (*head)->next->length)) {
392 out_of_order++;
393 current_res = *head;
394 *head = (*head)->next;
395 current_res->next = (*head)->next;
396 (*head)->next = current_res;
399 current_res = *head;
401 while (current_res->next && current_res->next->next) {
402 if (current_res->next->length < current_res->next->next->length) {
403 out_of_order++;
404 next_res = current_res->next;
405 current_res->next = current_res->next->next;
406 current_res = current_res->next;
407 next_res->next = current_res->next;
408 current_res->next = next_res;
409 } else
410 current_res = current_res->next;
412 } /* End of out_of_order loop */
414 return 0;
419 * do_pre_bridge_resource_split: find node of resources that are unused
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 struct pci_resource **orig_head, u32 alignment)
425 struct pci_resource *prevnode = NULL;
426 struct pci_resource *node;
427 struct pci_resource *split_node;
428 u32 rc;
429 u32 temp_dword;
430 dbg("do_pre_bridge_resource_split\n");
432 if (!(*head) || !(*orig_head))
433 return NULL;
435 rc = cpqhp_resource_sort_and_combine(head);
437 if (rc)
438 return NULL;
440 if ((*head)->base != (*orig_head)->base)
441 return NULL;
443 if ((*head)->length == (*orig_head)->length)
444 return NULL;
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
450 node = *head;
452 if (node->length & (alignment -1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
457 if (!split_node)
458 return NULL;
460 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
462 split_node->base = node->base;
463 split_node->length = temp_dword;
465 node->length -= temp_dword;
466 node->base += split_node->length;
468 /* Put it in the list */
469 *head = split_node;
470 split_node->next = node;
473 if (node->length < alignment)
474 return NULL;
476 /* Now unlink it */
477 if (*head == node) {
478 *head = node->next;
479 } else {
480 prevnode = *head;
481 while (prevnode->next != node)
482 prevnode = prevnode->next;
484 prevnode->next = node->next;
486 node->next = NULL;
488 return node;
493 * do_bridge_resource_split: find one node of resources that aren't in use
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
498 struct pci_resource *prevnode = NULL;
499 struct pci_resource *node;
500 u32 rc;
501 u32 temp_dword;
503 rc = cpqhp_resource_sort_and_combine(head);
505 if (rc)
506 return NULL;
508 node = *head;
510 while (node->next) {
511 prevnode = node;
512 node = node->next;
513 kfree(prevnode);
516 if (node->length < alignment)
517 goto error;
519 if (node->base & (alignment - 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword = (node->base | (alignment-1)) + 1;
522 if ((node->length - (temp_dword - node->base)) < alignment)
523 goto error;
525 node->length -= (temp_dword - node->base);
526 node->base = temp_dword;
529 if (node->length & (alignment - 1))
530 /* There's stuff in use after this node */
531 goto error;
533 return node;
534 error:
535 kfree(node);
536 return NULL;
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
552 struct pci_resource *prevnode;
553 struct pci_resource *node;
554 struct pci_resource *split_node;
555 u32 temp_dword;
557 if (!(*head))
558 return NULL;
560 if ( cpqhp_resource_sort_and_combine(head) )
561 return NULL;
563 if ( sort_by_size(head) )
564 return NULL;
566 for (node = *head; node; node = node->next) {
567 if (node->length < size)
568 continue;
570 if (node->base & (size - 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword = (node->base | (size-1)) + 1;
575 /* Short circuit if adjusted size is too small */
576 if ((node->length - (temp_dword - node->base)) < size)
577 continue;
579 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
581 if (!split_node)
582 return NULL;
584 split_node->base = node->base;
585 split_node->length = temp_dword - node->base;
586 node->base = temp_dword;
587 node->length -= split_node->length;
589 /* Put it in the list */
590 split_node->next = node->next;
591 node->next = split_node;
592 } /* End of non-aligned base */
594 /* Don't need to check if too small since we already did */
595 if (node->length > size) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
600 if (!split_node)
601 return NULL;
603 split_node->base = node->base + size;
604 split_node->length = node->length - size;
605 node->length = size;
607 /* Put it in the list */
608 split_node->next = node->next;
609 node->next = split_node;
610 } /* End of too big on top end */
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node->base & 0x300L)
614 continue;
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
618 if (*head == node) {
619 *head = node->next;
620 } else {
621 prevnode = *head;
622 while (prevnode->next != node)
623 prevnode = prevnode->next;
625 prevnode->next = node->next;
627 node->next = NULL;
628 break;
631 return node;
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
646 struct pci_resource *max;
647 struct pci_resource *temp;
648 struct pci_resource *split_node;
649 u32 temp_dword;
651 if (cpqhp_resource_sort_and_combine(head))
652 return NULL;
654 if (sort_by_max_size(head))
655 return NULL;
657 for (max = *head; max; max = max->next) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max->length < size)
661 continue;
663 if (max->base & (size - 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword = (max->base | (size-1)) + 1;
668 /* Short circuit if adjusted size is too small */
669 if ((max->length - (temp_dword - max->base)) < size)
670 continue;
672 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
674 if (!split_node)
675 return NULL;
677 split_node->base = max->base;
678 split_node->length = temp_dword - max->base;
679 max->base = temp_dword;
680 max->length -= split_node->length;
682 split_node->next = max->next;
683 max->next = split_node;
686 if ((max->base + max->length) & (size - 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
691 if (!split_node)
692 return NULL;
693 temp_dword = ((max->base + max->length) & ~(size - 1));
694 split_node->base = temp_dword;
695 split_node->length = max->length + max->base
696 - split_node->base;
697 max->length -= split_node->length;
699 split_node->next = max->next;
700 max->next = split_node;
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max->length < size)
705 continue;
707 /* Now take it out of the list */
708 temp = *head;
709 if (temp == max) {
710 *head = max->next;
711 } else {
712 while (temp && temp->next != max) {
713 temp = temp->next;
716 temp->next = max->next;
719 max->next = NULL;
720 break;
723 return max;
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
736 * size must be a power of two.
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
740 struct pci_resource *prevnode;
741 struct pci_resource *node;
742 struct pci_resource *split_node;
743 u32 temp_dword;
745 if (cpqhp_resource_sort_and_combine(head))
746 return NULL;
748 if (sort_by_size(head))
749 return NULL;
751 for (node = *head; node; node = node->next) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__, size, node, node->base, node->length);
754 if (node->length < size)
755 continue;
757 if (node->base & (size - 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword = (node->base | (size-1)) + 1;
763 /* Short circuit if adjusted size is too small */
764 if ((node->length - (temp_dword - node->base)) < size)
765 continue;
767 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
769 if (!split_node)
770 return NULL;
772 split_node->base = node->base;
773 split_node->length = temp_dword - node->base;
774 node->base = temp_dword;
775 node->length -= split_node->length;
777 split_node->next = node->next;
778 node->next = split_node;
779 } /* End of non-aligned base */
781 /* Don't need to check if too small since we already did */
782 if (node->length > size) {
783 dbg("%s: too big\n", __FUNCTION__);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
788 if (!split_node)
789 return NULL;
791 split_node->base = node->base + size;
792 split_node->length = node->length - size;
793 node->length = size;
795 /* Put it in the list */
796 split_node->next = node->next;
797 node->next = split_node;
798 } /* End of too big on top end */
800 dbg("%s: got one!!!\n", __FUNCTION__);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
803 if (*head == node) {
804 *head = node->next;
805 } else {
806 prevnode = *head;
807 while (prevnode->next != node)
808 prevnode = prevnode->next;
810 prevnode->next = node->next;
812 node->next = NULL;
813 break;
815 return node;
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
827 * returns 0 if success
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
831 struct pci_resource *node1;
832 struct pci_resource *node2;
833 int out_of_order = 1;
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
837 if (!(*head))
838 return 1;
840 dbg("*head->next = %p\n",(*head)->next);
842 if (!(*head)->next)
843 return 0; /* only one item on the list, already sorted! */
845 dbg("*head->base = 0x%x\n",(*head)->base);
846 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 while (out_of_order) {
848 out_of_order = 0;
850 /* Special case for swapping list head */
851 if (((*head)->next) &&
852 ((*head)->base > (*head)->next->base)) {
853 node1 = *head;
854 (*head) = (*head)->next;
855 node1->next = (*head)->next;
856 (*head)->next = node1;
857 out_of_order++;
860 node1 = (*head);
862 while (node1->next && node1->next->next) {
863 if (node1->next->base > node1->next->next->base) {
864 out_of_order++;
865 node2 = node1->next;
866 node1->next = node1->next->next;
867 node1 = node1->next;
868 node2->next = node1->next;
869 node1->next = node2;
870 } else
871 node1 = node1->next;
873 } /* End of out_of_order loop */
875 node1 = *head;
877 while (node1 && node1->next) {
878 if ((node1->base + node1->length) == node1->next->base) {
879 /* Combine */
880 dbg("8..\n");
881 node1->length += node1->next->length;
882 node2 = node1->next;
883 node1->next = node1->next->next;
884 kfree(node2);
885 } else
886 node1 = node1->next;
889 return 0;
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
895 struct controller *ctrl = data;
896 u8 schedule_flag = 0;
897 u8 reset;
898 u16 misc;
899 u32 Diff;
900 u32 temp_dword;
903 misc = readw(ctrl->hpc_reg + MISC);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc & 0x000C)) {
908 return IRQ_NONE;
911 if (misc & 0x0004) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
916 /* Clear the interrupt */
917 misc |= 0x0004;
918 writew(misc, ctrl->hpc_reg + MISC);
920 /* Read to clear posted writes */
921 misc = readw(ctrl->hpc_reg + MISC);
923 dbg ("%s - waking up\n", __FUNCTION__);
924 wake_up_interruptible(&ctrl->queue);
927 if (misc & 0x0008) {
928 /* General-interrupt-input interrupt Pending */
929 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
931 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
933 /* Clear the interrupt */
934 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
936 /* Read it back to clear any posted writes */
937 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
939 if (!Diff)
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
943 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
948 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 if (reset & 0x40) {
950 /* Bus reset has completed */
951 reset &= 0xCF;
952 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 wake_up_interruptible(&ctrl->queue);
957 if (schedule_flag) {
958 up(&event_semaphore);
959 dbg("Signal event_semaphore\n");
961 return IRQ_HANDLED;
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
969 * Returns pointer to the new node or NULL if unsuccessful
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
973 struct pci_func *new_slot;
974 struct pci_func *next;
976 new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
978 if (new_slot == NULL) {
979 /* I'm not dead yet!
980 * You will be. */
981 return new_slot;
984 memset(new_slot, 0, sizeof(struct pci_func));
986 new_slot->next = NULL;
987 new_slot->configured = 1;
989 if (cpqhp_slot_list[busnumber] == NULL) {
990 cpqhp_slot_list[busnumber] = new_slot;
991 } else {
992 next = cpqhp_slot_list[busnumber];
993 while (next->next != NULL)
994 next = next->next;
995 next->next = new_slot;
997 return new_slot;
1002 * slot_remove - Removes a node from the linked list of slots.
1003 * @old_slot: slot to remove
1005 * Returns 0 if successful, !0 otherwise.
1007 static int slot_remove(struct pci_func * old_slot)
1009 struct pci_func *next;
1011 if (old_slot == NULL)
1012 return 1;
1014 next = cpqhp_slot_list[old_slot->bus];
1016 if (next == NULL) {
1017 return 1;
1020 if (next == old_slot) {
1021 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022 cpqhp_destroy_board_resources(old_slot);
1023 kfree(old_slot);
1024 return 0;
1027 while ((next->next != old_slot) && (next->next != NULL)) {
1028 next = next->next;
1031 if (next->next == old_slot) {
1032 next->next = old_slot->next;
1033 cpqhp_destroy_board_resources(old_slot);
1034 kfree(old_slot);
1035 return 0;
1036 } else
1037 return 2;
1042 * bridge_slot_remove - Removes a node from the linked list of slots.
1043 * @bridge: bridge to remove
1045 * Returns 0 if successful, !0 otherwise.
1047 static int bridge_slot_remove(struct pci_func *bridge)
1049 u8 subordinateBus, secondaryBus;
1050 u8 tempBus;
1051 struct pci_func *next;
1053 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1056 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057 next = cpqhp_slot_list[tempBus];
1059 while (!slot_remove(next)) {
1060 next = cpqhp_slot_list[tempBus];
1064 next = cpqhp_slot_list[bridge->bus];
1066 if (next == NULL)
1067 return 1;
1069 if (next == bridge) {
1070 cpqhp_slot_list[bridge->bus] = bridge->next;
1071 goto out;
1074 while ((next->next != bridge) && (next->next != NULL))
1075 next = next->next;
1077 if (next->next != bridge)
1078 return 2;
1079 next->next = bridge->next;
1080 out:
1081 kfree(bridge);
1082 return 0;
1087 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088 * @bus: bus to find
1089 * @device: device to find
1090 * @index: is 0 for first function found, 1 for the second...
1092 * Returns pointer to the node if successful, %NULL otherwise.
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1096 int found = -1;
1097 struct pci_func *func;
1099 func = cpqhp_slot_list[bus];
1101 if ((func == NULL) || ((func->device == device) && (index == 0)))
1102 return func;
1104 if (func->device == device)
1105 found++;
1107 while (func->next != NULL) {
1108 func = func->next;
1110 if (func->device == device)
1111 found++;
1113 if (found == index)
1114 return func;
1117 return NULL;
1121 /* DJZ: I don't think is_bridge will work as is.
1122 * FIXME */
1123 static int is_bridge(struct pci_func * func)
1125 /* Check the header type */
1126 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127 return 1;
1128 else
1129 return 0;
1134 * set_controller_speed - set the frequency and/or mode of a specific
1135 * controller segment.
1137 * @ctrl: controller to change frequency/mode for.
1138 * @adapter_speed: the speed of the adapter we want to match.
1139 * @hp_slot: the slot number where the adapter is installed.
1141 * Returns 0 if we successfully change frequency and/or mode to match the
1142 * adapter speed.
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1147 struct slot *slot;
1148 u8 reg;
1149 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150 u16 reg16;
1151 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1153 if (ctrl->speed == adapter_speed)
1154 return 0;
1156 /* We don't allow freq/mode changes if we find another adapter running
1157 * in another slot on this controller */
1158 for(slot = ctrl->slot; slot; slot = slot->next) {
1159 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1160 continue;
1161 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1162 continue;
1163 if (slot->hotplug_slot->info->adapter_status == 0)
1164 continue;
1165 /* If another adapter is running on the same segment but at a
1166 * lower speed/mode, we allow the new adapter to function at
1167 * this rate if supported */
1168 if (ctrl->speed < adapter_speed)
1169 return 0;
1171 return 1;
1174 /* If the controller doesn't support freq/mode changes and the
1175 * controller is running at a higher mode, we bail */
1176 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177 return 1;
1179 /* But we allow the adapter to run at a lower rate if possible */
1180 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181 return 0;
1183 /* We try to set the max speed supported by both the adapter and
1184 * controller */
1185 if (ctrl->speed_capability < adapter_speed) {
1186 if (ctrl->speed == ctrl->speed_capability)
1187 return 0;
1188 adapter_speed = ctrl->speed_capability;
1191 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1194 set_SOGO(ctrl);
1195 wait_for_ctrl_irq(ctrl);
1197 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198 reg = 0xF5;
1199 else
1200 reg = 0xF4;
1201 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1203 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 reg16 &= ~0x000F;
1205 switch(adapter_speed) {
1206 case(PCI_SPEED_133MHz_PCIX):
1207 reg = 0x75;
1208 reg16 |= 0xB;
1209 break;
1210 case(PCI_SPEED_100MHz_PCIX):
1211 reg = 0x74;
1212 reg16 |= 0xA;
1213 break;
1214 case(PCI_SPEED_66MHz_PCIX):
1215 reg = 0x73;
1216 reg16 |= 0x9;
1217 break;
1218 case(PCI_SPEED_66MHz):
1219 reg = 0x73;
1220 reg16 |= 0x1;
1221 break;
1222 default: /* 33MHz PCI 2.2 */
1223 reg = 0x71;
1224 break;
1227 reg16 |= 0xB << 12;
1228 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1230 mdelay(5);
1232 /* Reenable interrupts */
1233 writel(0, ctrl->hpc_reg + INT_MASK);
1235 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1237 /* Restart state machine */
1238 reg = ~0xF;
1239 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1242 /* Only if mode change...*/
1243 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1245 set_SOGO(ctrl);
1247 wait_for_ctrl_irq(ctrl);
1248 mdelay(1100);
1250 /* Restore LED/Slot state */
1251 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1254 set_SOGO(ctrl);
1255 wait_for_ctrl_irq(ctrl);
1257 ctrl->speed = adapter_speed;
1258 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1260 info("Successfully changed frequency/mode for adapter in slot %d\n",
1261 slot->number);
1262 return 0;
1265 /* the following routines constitute the bulk of the
1266 hotplug controller logic
1271 * board_replaced - Called after a board has been replaced in the system.
1273 * This is only used if we don't have resources for hot add
1274 * Turns power on for the board
1275 * Checks to see if board is the same
1276 * If board is same, reconfigures it
1277 * If board isn't same, turns it back off.
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1282 u8 hp_slot;
1283 u8 temp_byte;
1284 u8 adapter_speed;
1285 u32 rc = 0;
1287 hp_slot = func->device - ctrl->slot_device_offset;
1289 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1290 /**********************************
1291 * The switch is open.
1292 **********************************/
1293 rc = INTERLOCK_OPEN;
1294 } else if (is_slot_enabled (ctrl, hp_slot)) {
1295 /**********************************
1296 * The board is already on
1297 **********************************/
1298 rc = CARD_FUNCTIONING;
1299 } else {
1300 mutex_lock(&ctrl->crit_sect);
1302 /* turn on board without attaching to the bus */
1303 enable_slot_power (ctrl, hp_slot);
1305 set_SOGO(ctrl);
1307 /* Wait for SOBS to be unset */
1308 wait_for_ctrl_irq (ctrl);
1310 /* Change bits in slot power register to force another shift out
1311 * NOTE: this is to work around the timer bug */
1312 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1313 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1314 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1316 set_SOGO(ctrl);
1318 /* Wait for SOBS to be unset */
1319 wait_for_ctrl_irq (ctrl);
1321 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1322 if (ctrl->speed != adapter_speed)
1323 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1324 rc = WRONG_BUS_FREQUENCY;
1326 /* turn off board without attaching to the bus */
1327 disable_slot_power (ctrl, hp_slot);
1329 set_SOGO(ctrl);
1331 /* Wait for SOBS to be unset */
1332 wait_for_ctrl_irq (ctrl);
1334 mutex_unlock(&ctrl->crit_sect);
1336 if (rc)
1337 return rc;
1339 mutex_lock(&ctrl->crit_sect);
1341 slot_enable (ctrl, hp_slot);
1342 green_LED_blink (ctrl, hp_slot);
1344 amber_LED_off (ctrl, hp_slot);
1346 set_SOGO(ctrl);
1348 /* Wait for SOBS to be unset */
1349 wait_for_ctrl_irq (ctrl);
1351 mutex_unlock(&ctrl->crit_sect);
1353 /* Wait for ~1 second because of hot plug spec */
1354 long_delay(1*HZ);
1356 /* Check for a power fault */
1357 if (func->status == 0xFF) {
1358 /* power fault occurred, but it was benign */
1359 rc = POWER_FAILURE;
1360 func->status = 0;
1361 } else
1362 rc = cpqhp_valid_replace(ctrl, func);
1364 if (!rc) {
1365 /* It must be the same board */
1367 rc = cpqhp_configure_board(ctrl, func);
1369 /* If configuration fails, turn it off
1370 * Get slot won't work for devices behind
1371 * bridges, but in this case it will always be
1372 * called for the "base" bus/dev/func of an
1373 * adapter. */
1375 mutex_lock(&ctrl->crit_sect);
1377 amber_LED_on (ctrl, hp_slot);
1378 green_LED_off (ctrl, hp_slot);
1379 slot_disable (ctrl, hp_slot);
1381 set_SOGO(ctrl);
1383 /* Wait for SOBS to be unset */
1384 wait_for_ctrl_irq (ctrl);
1386 mutex_unlock(&ctrl->crit_sect);
1388 if (rc)
1389 return rc;
1390 else
1391 return 1;
1393 } else {
1394 /* Something is wrong
1396 * Get slot won't work for devices behind bridges, but
1397 * in this case it will always be called for the "base"
1398 * bus/dev/func of an adapter. */
1400 mutex_lock(&ctrl->crit_sect);
1402 amber_LED_on (ctrl, hp_slot);
1403 green_LED_off (ctrl, hp_slot);
1404 slot_disable (ctrl, hp_slot);
1406 set_SOGO(ctrl);
1408 /* Wait for SOBS to be unset */
1409 wait_for_ctrl_irq (ctrl);
1411 mutex_unlock(&ctrl->crit_sect);
1415 return rc;
1421 * board_added - Called after a board has been added to the system.
1423 * Turns power on for the board
1424 * Configures board
1427 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1429 u8 hp_slot;
1430 u8 temp_byte;
1431 u8 adapter_speed;
1432 int index;
1433 u32 temp_register = 0xFFFFFFFF;
1434 u32 rc = 0;
1435 struct pci_func *new_slot = NULL;
1436 struct slot *p_slot;
1437 struct resource_lists res_lists;
1439 hp_slot = func->device - ctrl->slot_device_offset;
1440 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1441 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1443 mutex_lock(&ctrl->crit_sect);
1445 /* turn on board without attaching to the bus */
1446 enable_slot_power(ctrl, hp_slot);
1448 set_SOGO(ctrl);
1450 /* Wait for SOBS to be unset */
1451 wait_for_ctrl_irq (ctrl);
1453 /* Change bits in slot power register to force another shift out
1454 * NOTE: this is to work around the timer bug */
1455 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1456 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1457 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1459 set_SOGO(ctrl);
1461 /* Wait for SOBS to be unset */
1462 wait_for_ctrl_irq (ctrl);
1464 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1465 if (ctrl->speed != adapter_speed)
1466 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1467 rc = WRONG_BUS_FREQUENCY;
1469 /* turn off board without attaching to the bus */
1470 disable_slot_power (ctrl, hp_slot);
1472 set_SOGO(ctrl);
1474 /* Wait for SOBS to be unset */
1475 wait_for_ctrl_irq(ctrl);
1477 mutex_unlock(&ctrl->crit_sect);
1479 if (rc)
1480 return rc;
1482 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1484 /* turn on board and blink green LED */
1486 dbg("%s: before down\n", __FUNCTION__);
1487 mutex_lock(&ctrl->crit_sect);
1488 dbg("%s: after down\n", __FUNCTION__);
1490 dbg("%s: before slot_enable\n", __FUNCTION__);
1491 slot_enable (ctrl, hp_slot);
1493 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1494 green_LED_blink (ctrl, hp_slot);
1496 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1497 amber_LED_off (ctrl, hp_slot);
1499 dbg("%s: before set_SOGO\n", __FUNCTION__);
1500 set_SOGO(ctrl);
1502 /* Wait for SOBS to be unset */
1503 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1504 wait_for_ctrl_irq (ctrl);
1505 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1507 dbg("%s: before up\n", __FUNCTION__);
1508 mutex_unlock(&ctrl->crit_sect);
1509 dbg("%s: after up\n", __FUNCTION__);
1511 /* Wait for ~1 second because of hot plug spec */
1512 dbg("%s: before long_delay\n", __FUNCTION__);
1513 long_delay(1*HZ);
1514 dbg("%s: after long_delay\n", __FUNCTION__);
1516 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1517 /* Check for a power fault */
1518 if (func->status == 0xFF) {
1519 /* power fault occurred, but it was benign */
1520 temp_register = 0xFFFFFFFF;
1521 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1522 rc = POWER_FAILURE;
1523 func->status = 0;
1524 } else {
1525 /* Get vendor/device ID u32 */
1526 ctrl->pci_bus->number = func->bus;
1527 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1528 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1529 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1531 if (rc != 0) {
1532 /* Something's wrong here */
1533 temp_register = 0xFFFFFFFF;
1534 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1536 /* Preset return code. It will be changed later if things go okay. */
1537 rc = NO_ADAPTER_PRESENT;
1540 /* All F's is an empty slot or an invalid board */
1541 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1542 res_lists.io_head = ctrl->io_head;
1543 res_lists.mem_head = ctrl->mem_head;
1544 res_lists.p_mem_head = ctrl->p_mem_head;
1545 res_lists.bus_head = ctrl->bus_head;
1546 res_lists.irqs = NULL;
1548 rc = configure_new_device(ctrl, func, 0, &res_lists);
1550 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1551 ctrl->io_head = res_lists.io_head;
1552 ctrl->mem_head = res_lists.mem_head;
1553 ctrl->p_mem_head = res_lists.p_mem_head;
1554 ctrl->bus_head = res_lists.bus_head;
1556 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1557 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1558 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1559 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1561 if (rc) {
1562 mutex_lock(&ctrl->crit_sect);
1564 amber_LED_on (ctrl, hp_slot);
1565 green_LED_off (ctrl, hp_slot);
1566 slot_disable (ctrl, hp_slot);
1568 set_SOGO(ctrl);
1570 /* Wait for SOBS to be unset */
1571 wait_for_ctrl_irq (ctrl);
1573 mutex_unlock(&ctrl->crit_sect);
1574 return rc;
1575 } else {
1576 cpqhp_save_slot_config(ctrl, func);
1580 func->status = 0;
1581 func->switch_save = 0x10;
1582 func->is_a_board = 0x01;
1584 /* next, we will instantiate the linux pci_dev structures (with
1585 * appropriate driver notification, if already present) */
1586 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1587 index = 0;
1588 do {
1589 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1590 if (new_slot && !new_slot->pci_dev) {
1591 cpqhp_configure_device(ctrl, new_slot);
1593 } while (new_slot);
1595 mutex_lock(&ctrl->crit_sect);
1597 green_LED_on (ctrl, hp_slot);
1599 set_SOGO(ctrl);
1601 /* Wait for SOBS to be unset */
1602 wait_for_ctrl_irq (ctrl);
1604 mutex_unlock(&ctrl->crit_sect);
1605 } else {
1606 mutex_lock(&ctrl->crit_sect);
1608 amber_LED_on (ctrl, hp_slot);
1609 green_LED_off (ctrl, hp_slot);
1610 slot_disable (ctrl, hp_slot);
1612 set_SOGO(ctrl);
1614 /* Wait for SOBS to be unset */
1615 wait_for_ctrl_irq (ctrl);
1617 mutex_unlock(&ctrl->crit_sect);
1619 return rc;
1621 return 0;
1626 * remove_board - Turns off slot and LED's
1629 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1631 int index;
1632 u8 skip = 0;
1633 u8 device;
1634 u8 hp_slot;
1635 u8 temp_byte;
1636 u32 rc;
1637 struct resource_lists res_lists;
1638 struct pci_func *temp_func;
1640 if (cpqhp_unconfigure_device(func))
1641 return 1;
1643 device = func->device;
1645 hp_slot = func->device - ctrl->slot_device_offset;
1646 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1648 /* When we get here, it is safe to change base address registers.
1649 * We will attempt to save the base address register lengths */
1650 if (replace_flag || !ctrl->add_support)
1651 rc = cpqhp_save_base_addr_length(ctrl, func);
1652 else if (!func->bus_head && !func->mem_head &&
1653 !func->p_mem_head && !func->io_head) {
1654 /* Here we check to see if we've saved any of the board's
1655 * resources already. If so, we'll skip the attempt to
1656 * determine what's being used. */
1657 index = 0;
1658 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1659 while (temp_func) {
1660 if (temp_func->bus_head || temp_func->mem_head
1661 || temp_func->p_mem_head || temp_func->io_head) {
1662 skip = 1;
1663 break;
1665 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1668 if (!skip)
1669 rc = cpqhp_save_used_resources(ctrl, func);
1671 /* Change status to shutdown */
1672 if (func->is_a_board)
1673 func->status = 0x01;
1674 func->configured = 0;
1676 mutex_lock(&ctrl->crit_sect);
1678 green_LED_off (ctrl, hp_slot);
1679 slot_disable (ctrl, hp_slot);
1681 set_SOGO(ctrl);
1683 /* turn off SERR for slot */
1684 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1685 temp_byte &= ~(0x01 << hp_slot);
1686 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1688 /* Wait for SOBS to be unset */
1689 wait_for_ctrl_irq (ctrl);
1691 mutex_unlock(&ctrl->crit_sect);
1693 if (!replace_flag && ctrl->add_support) {
1694 while (func) {
1695 res_lists.io_head = ctrl->io_head;
1696 res_lists.mem_head = ctrl->mem_head;
1697 res_lists.p_mem_head = ctrl->p_mem_head;
1698 res_lists.bus_head = ctrl->bus_head;
1700 cpqhp_return_board_resources(func, &res_lists);
1702 ctrl->io_head = res_lists.io_head;
1703 ctrl->mem_head = res_lists.mem_head;
1704 ctrl->p_mem_head = res_lists.p_mem_head;
1705 ctrl->bus_head = res_lists.bus_head;
1707 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1708 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1709 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1710 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1712 if (is_bridge(func)) {
1713 bridge_slot_remove(func);
1714 } else
1715 slot_remove(func);
1717 func = cpqhp_slot_find(ctrl->bus, device, 0);
1720 /* Setup slot structure with entry for empty slot */
1721 func = cpqhp_slot_create(ctrl->bus);
1723 if (func == NULL)
1724 return 1;
1726 func->bus = ctrl->bus;
1727 func->device = device;
1728 func->function = 0;
1729 func->configured = 0;
1730 func->switch_save = 0x10;
1731 func->is_a_board = 0;
1732 func->p_task_event = NULL;
1735 return 0;
1738 static void pushbutton_helper_thread(unsigned long data)
1740 pushbutton_pending = data;
1741 up(&event_semaphore);
1745 /* this is the main worker thread */
1746 static int event_thread(void* data)
1748 struct controller *ctrl;
1749 lock_kernel();
1750 daemonize("phpd_event");
1752 unlock_kernel();
1754 while (1) {
1755 dbg("!!!!event_thread sleeping\n");
1756 down_interruptible (&event_semaphore);
1757 dbg("event_thread woken finished = %d\n", event_finished);
1758 if (event_finished) break;
1759 /* Do stuff here */
1760 if (pushbutton_pending)
1761 cpqhp_pushbutton_thread(pushbutton_pending);
1762 else
1763 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1764 interrupt_event_handler(ctrl);
1766 dbg("event_thread signals exit\n");
1767 up(&event_exit);
1768 return 0;
1772 int cpqhp_event_start_thread(void)
1774 int pid;
1776 /* initialize our semaphores */
1777 init_MUTEX(&delay_sem);
1778 init_MUTEX_LOCKED(&event_semaphore);
1779 init_MUTEX_LOCKED(&event_exit);
1780 event_finished=0;
1782 pid = kernel_thread(event_thread, NULL, 0);
1783 if (pid < 0) {
1784 err ("Can't start up our event thread\n");
1785 return -1;
1787 dbg("Our event thread pid = %d\n", pid);
1788 return 0;
1792 void cpqhp_event_stop_thread(void)
1794 event_finished = 1;
1795 dbg("event_thread finish command given\n");
1796 up(&event_semaphore);
1797 dbg("wait for event_thread to exit\n");
1798 down(&event_exit);
1802 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1804 struct hotplug_slot_info *info;
1805 int result;
1807 info = kmalloc(sizeof(*info), GFP_KERNEL);
1808 if (!info)
1809 return -ENOMEM;
1811 info->power_status = get_slot_enabled(ctrl, slot);
1812 info->attention_status = cpq_get_attention_status(ctrl, slot);
1813 info->latch_status = cpq_get_latch_status(ctrl, slot);
1814 info->adapter_status = get_presence_status(ctrl, slot);
1815 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1816 kfree (info);
1817 return result;
1820 static void interrupt_event_handler(struct controller *ctrl)
1822 int loop = 0;
1823 int change = 1;
1824 struct pci_func *func;
1825 u8 hp_slot;
1826 struct slot *p_slot;
1828 while (change) {
1829 change = 0;
1831 for (loop = 0; loop < 10; loop++) {
1832 /* dbg("loop %d\n", loop); */
1833 if (ctrl->event_queue[loop].event_type != 0) {
1834 hp_slot = ctrl->event_queue[loop].hp_slot;
1836 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1837 if (!func)
1838 return;
1840 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1841 if (!p_slot)
1842 return;
1844 dbg("hp_slot %d, func %p, p_slot %p\n",
1845 hp_slot, func, p_slot);
1847 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1848 dbg("button pressed\n");
1849 } else if (ctrl->event_queue[loop].event_type ==
1850 INT_BUTTON_CANCEL) {
1851 dbg("button cancel\n");
1852 del_timer(&p_slot->task_event);
1854 mutex_lock(&ctrl->crit_sect);
1856 if (p_slot->state == BLINKINGOFF_STATE) {
1857 /* slot is on */
1858 dbg("turn on green LED\n");
1859 green_LED_on (ctrl, hp_slot);
1860 } else if (p_slot->state == BLINKINGON_STATE) {
1861 /* slot is off */
1862 dbg("turn off green LED\n");
1863 green_LED_off (ctrl, hp_slot);
1866 info(msg_button_cancel, p_slot->number);
1868 p_slot->state = STATIC_STATE;
1870 amber_LED_off (ctrl, hp_slot);
1872 set_SOGO(ctrl);
1874 /* Wait for SOBS to be unset */
1875 wait_for_ctrl_irq (ctrl);
1877 mutex_unlock(&ctrl->crit_sect);
1879 /*** button Released (No action on press...) */
1880 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1881 dbg("button release\n");
1883 if (is_slot_enabled (ctrl, hp_slot)) {
1884 dbg("slot is on\n");
1885 p_slot->state = BLINKINGOFF_STATE;
1886 info(msg_button_off, p_slot->number);
1887 } else {
1888 dbg("slot is off\n");
1889 p_slot->state = BLINKINGON_STATE;
1890 info(msg_button_on, p_slot->number);
1892 mutex_lock(&ctrl->crit_sect);
1894 dbg("blink green LED and turn off amber\n");
1896 amber_LED_off (ctrl, hp_slot);
1897 green_LED_blink (ctrl, hp_slot);
1899 set_SOGO(ctrl);
1901 /* Wait for SOBS to be unset */
1902 wait_for_ctrl_irq (ctrl);
1904 mutex_unlock(&ctrl->crit_sect);
1905 init_timer(&p_slot->task_event);
1906 p_slot->hp_slot = hp_slot;
1907 p_slot->ctrl = ctrl;
1908 /* p_slot->physical_slot = physical_slot; */
1909 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1910 p_slot->task_event.function = pushbutton_helper_thread;
1911 p_slot->task_event.data = (u32) p_slot;
1913 dbg("add_timer p_slot = %p\n", p_slot);
1914 add_timer(&p_slot->task_event);
1916 /***********POWER FAULT */
1917 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1918 dbg("power fault\n");
1919 } else {
1920 /* refresh notification */
1921 if (p_slot)
1922 update_slot_info(ctrl, p_slot);
1925 ctrl->event_queue[loop].event_type = 0;
1927 change = 1;
1929 } /* End of FOR loop */
1932 return;
1937 * cpqhp_pushbutton_thread
1939 * Scheduled procedure to handle blocking stuff for the pushbuttons
1940 * Handles all pending events and exits.
1943 void cpqhp_pushbutton_thread(unsigned long slot)
1945 u8 hp_slot;
1946 u8 device;
1947 struct pci_func *func;
1948 struct slot *p_slot = (struct slot *) slot;
1949 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1951 pushbutton_pending = 0;
1952 hp_slot = p_slot->hp_slot;
1954 device = p_slot->device;
1956 if (is_slot_enabled(ctrl, hp_slot)) {
1957 p_slot->state = POWEROFF_STATE;
1958 /* power Down board */
1959 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1960 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1961 if (!func) {
1962 dbg("Error! func NULL in %s\n", __FUNCTION__);
1963 return ;
1966 if (func != NULL && ctrl != NULL) {
1967 if (cpqhp_process_SS(ctrl, func) != 0) {
1968 amber_LED_on (ctrl, hp_slot);
1969 green_LED_on (ctrl, hp_slot);
1971 set_SOGO(ctrl);
1973 /* Wait for SOBS to be unset */
1974 wait_for_ctrl_irq (ctrl);
1978 p_slot->state = STATIC_STATE;
1979 } else {
1980 p_slot->state = POWERON_STATE;
1981 /* slot is off */
1983 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1984 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1985 if (!func) {
1986 dbg("Error! func NULL in %s\n", __FUNCTION__);
1987 return ;
1990 if (func != NULL && ctrl != NULL) {
1991 if (cpqhp_process_SI(ctrl, func) != 0) {
1992 amber_LED_on(ctrl, hp_slot);
1993 green_LED_off(ctrl, hp_slot);
1995 set_SOGO(ctrl);
1997 /* Wait for SOBS to be unset */
1998 wait_for_ctrl_irq (ctrl);
2002 p_slot->state = STATIC_STATE;
2005 return;
2009 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2011 u8 device, hp_slot;
2012 u16 temp_word;
2013 u32 tempdword;
2014 int rc;
2015 struct slot* p_slot;
2016 int physical_slot = 0;
2018 tempdword = 0;
2020 device = func->device;
2021 hp_slot = device - ctrl->slot_device_offset;
2022 p_slot = cpqhp_find_slot(ctrl, device);
2023 if (p_slot)
2024 physical_slot = p_slot->number;
2026 /* Check to see if the interlock is closed */
2027 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2029 if (tempdword & (0x01 << hp_slot)) {
2030 return 1;
2033 if (func->is_a_board) {
2034 rc = board_replaced(func, ctrl);
2035 } else {
2036 /* add board */
2037 slot_remove(func);
2039 func = cpqhp_slot_create(ctrl->bus);
2040 if (func == NULL)
2041 return 1;
2043 func->bus = ctrl->bus;
2044 func->device = device;
2045 func->function = 0;
2046 func->configured = 0;
2047 func->is_a_board = 1;
2049 /* We have to save the presence info for these slots */
2050 temp_word = ctrl->ctrl_int_comp >> 16;
2051 func->presence_save = (temp_word >> hp_slot) & 0x01;
2052 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2054 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2055 func->switch_save = 0;
2056 } else {
2057 func->switch_save = 0x10;
2060 rc = board_added(func, ctrl);
2061 if (rc) {
2062 if (is_bridge(func)) {
2063 bridge_slot_remove(func);
2064 } else
2065 slot_remove(func);
2067 /* Setup slot structure with entry for empty slot */
2068 func = cpqhp_slot_create(ctrl->bus);
2070 if (func == NULL)
2071 return 1;
2073 func->bus = ctrl->bus;
2074 func->device = device;
2075 func->function = 0;
2076 func->configured = 0;
2077 func->is_a_board = 0;
2079 /* We have to save the presence info for these slots */
2080 temp_word = ctrl->ctrl_int_comp >> 16;
2081 func->presence_save = (temp_word >> hp_slot) & 0x01;
2082 func->presence_save |=
2083 (temp_word >> (hp_slot + 7)) & 0x02;
2085 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2086 func->switch_save = 0;
2087 } else {
2088 func->switch_save = 0x10;
2093 if (rc) {
2094 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2097 if (p_slot)
2098 update_slot_info(ctrl, p_slot);
2100 return rc;
2104 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2106 u8 device, class_code, header_type, BCR;
2107 u8 index = 0;
2108 u8 replace_flag;
2109 u32 rc = 0;
2110 unsigned int devfn;
2111 struct slot* p_slot;
2112 struct pci_bus *pci_bus = ctrl->pci_bus;
2113 int physical_slot=0;
2115 device = func->device;
2116 func = cpqhp_slot_find(ctrl->bus, device, index++);
2117 p_slot = cpqhp_find_slot(ctrl, device);
2118 if (p_slot) {
2119 physical_slot = p_slot->number;
2122 /* Make sure there are no video controllers here */
2123 while (func && !rc) {
2124 pci_bus->number = func->bus;
2125 devfn = PCI_DEVFN(func->device, func->function);
2127 /* Check the Class Code */
2128 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2129 if (rc)
2130 return rc;
2132 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2133 /* Display/Video adapter (not supported) */
2134 rc = REMOVE_NOT_SUPPORTED;
2135 } else {
2136 /* See if it's a bridge */
2137 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2138 if (rc)
2139 return rc;
2141 /* If it's a bridge, check the VGA Enable bit */
2142 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2143 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2144 if (rc)
2145 return rc;
2147 /* If the VGA Enable bit is set, remove isn't
2148 * supported */
2149 if (BCR & PCI_BRIDGE_CTL_VGA) {
2150 rc = REMOVE_NOT_SUPPORTED;
2155 func = cpqhp_slot_find(ctrl->bus, device, index++);
2158 func = cpqhp_slot_find(ctrl->bus, device, 0);
2159 if ((func != NULL) && !rc) {
2160 /* FIXME: Replace flag should be passed into process_SS */
2161 replace_flag = !(ctrl->add_support);
2162 rc = remove_board(func, replace_flag, ctrl);
2163 } else if (!rc) {
2164 rc = 1;
2167 if (p_slot)
2168 update_slot_info(ctrl, p_slot);
2170 return rc;
2174 * switch_leds: switch the leds, go from one site to the other.
2175 * @ctrl: controller to use
2176 * @num_of_slots: number of slots to use
2177 * @direction: 1 to start from the left side, 0 to start right.
2179 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2180 u32 *work_LED, const int direction)
2182 int loop;
2184 for (loop = 0; loop < num_of_slots; loop++) {
2185 if (direction)
2186 *work_LED = *work_LED >> 1;
2187 else
2188 *work_LED = *work_LED << 1;
2189 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2191 set_SOGO(ctrl);
2193 /* Wait for SOGO interrupt */
2194 wait_for_ctrl_irq(ctrl);
2196 /* Get ready for next iteration */
2197 long_delay((2*HZ)/10);
2202 * hardware_test - runs hardware tests
2204 * For hot plug ctrl folks to play with.
2205 * test_num is the number written to the "test" file in sysfs
2208 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2210 u32 save_LED;
2211 u32 work_LED;
2212 int loop;
2213 int num_of_slots;
2215 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2217 switch (test_num) {
2218 case 1:
2219 /* Do stuff here! */
2221 /* Do that funky LED thing */
2222 /* so we can restore them later */
2223 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2224 work_LED = 0x01010101;
2225 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2226 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2227 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2228 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2230 work_LED = 0x01010000;
2231 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2232 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2233 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2234 work_LED = 0x00000101;
2235 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2237 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2239 work_LED = 0x01010000;
2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 for (loop = 0; loop < num_of_slots; loop++) {
2242 set_SOGO(ctrl);
2244 /* Wait for SOGO interrupt */
2245 wait_for_ctrl_irq (ctrl);
2247 /* Get ready for next iteration */
2248 long_delay((3*HZ)/10);
2249 work_LED = work_LED >> 16;
2250 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2252 set_SOGO(ctrl);
2254 /* Wait for SOGO interrupt */
2255 wait_for_ctrl_irq (ctrl);
2257 /* Get ready for next iteration */
2258 long_delay((3*HZ)/10);
2259 work_LED = work_LED << 16;
2260 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2261 work_LED = work_LED << 1;
2262 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2265 /* put it back the way it was */
2266 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2268 set_SOGO(ctrl);
2270 /* Wait for SOBS to be unset */
2271 wait_for_ctrl_irq (ctrl);
2272 break;
2273 case 2:
2274 /* Do other stuff here! */
2275 break;
2276 case 3:
2277 /* and more... */
2278 break;
2280 return 0;
2285 * configure_new_device - Configures the PCI header information of one board.
2287 * @ctrl: pointer to controller structure
2288 * @func: pointer to function structure
2289 * @behind_bridge: 1 if this is a recursive call, 0 if not
2290 * @resources: pointer to set of resource lists
2292 * Returns 0 if success
2295 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2296 u8 behind_bridge, struct resource_lists * resources)
2298 u8 temp_byte, function, max_functions, stop_it;
2299 int rc;
2300 u32 ID;
2301 struct pci_func *new_slot;
2302 int index;
2304 new_slot = func;
2306 dbg("%s\n", __FUNCTION__);
2307 /* Check for Multi-function device */
2308 ctrl->pci_bus->number = func->bus;
2309 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2310 if (rc) {
2311 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2312 return rc;
2315 if (temp_byte & 0x80) /* Multi-function device */
2316 max_functions = 8;
2317 else
2318 max_functions = 1;
2320 function = 0;
2322 do {
2323 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2325 if (rc) {
2326 dbg("configure_new_function failed %d\n",rc);
2327 index = 0;
2329 while (new_slot) {
2330 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2332 if (new_slot)
2333 cpqhp_return_board_resources(new_slot, resources);
2336 return rc;
2339 function++;
2341 stop_it = 0;
2343 /* The following loop skips to the next present function
2344 * and creates a board structure */
2346 while ((function < max_functions) && (!stop_it)) {
2347 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2349 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2350 function++;
2351 } else { /* There's something there */
2352 /* Setup slot structure. */
2353 new_slot = cpqhp_slot_create(func->bus);
2355 if (new_slot == NULL)
2356 return 1;
2358 new_slot->bus = func->bus;
2359 new_slot->device = func->device;
2360 new_slot->function = function;
2361 new_slot->is_a_board = 1;
2362 new_slot->status = 0;
2364 stop_it++;
2368 } while (function < max_functions);
2369 dbg("returning from configure_new_device\n");
2371 return 0;
2376 Configuration logic that involves the hotplug data structures and
2377 their bookkeeping
2382 * configure_new_function - Configures the PCI header information of one device
2384 * @ctrl: pointer to controller structure
2385 * @func: pointer to function structure
2386 * @behind_bridge: 1 if this is a recursive call, 0 if not
2387 * @resources: pointer to set of resource lists
2389 * Calls itself recursively for bridged devices.
2390 * Returns 0 if success
2393 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2394 u8 behind_bridge,
2395 struct resource_lists *resources)
2397 int cloop;
2398 u8 IRQ = 0;
2399 u8 temp_byte;
2400 u8 device;
2401 u8 class_code;
2402 u16 command;
2403 u16 temp_word;
2404 u32 temp_dword;
2405 u32 rc;
2406 u32 temp_register;
2407 u32 base;
2408 u32 ID;
2409 unsigned int devfn;
2410 struct pci_resource *mem_node;
2411 struct pci_resource *p_mem_node;
2412 struct pci_resource *io_node;
2413 struct pci_resource *bus_node;
2414 struct pci_resource *hold_mem_node;
2415 struct pci_resource *hold_p_mem_node;
2416 struct pci_resource *hold_IO_node;
2417 struct pci_resource *hold_bus_node;
2418 struct irq_mapping irqs;
2419 struct pci_func *new_slot;
2420 struct pci_bus *pci_bus;
2421 struct resource_lists temp_resources;
2423 pci_bus = ctrl->pci_bus;
2424 pci_bus->number = func->bus;
2425 devfn = PCI_DEVFN(func->device, func->function);
2427 /* Check for Bridge */
2428 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2429 if (rc)
2430 return rc;
2432 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2433 /* set Primary bus */
2434 dbg("set Primary bus = %d\n", func->bus);
2435 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2436 if (rc)
2437 return rc;
2439 /* find range of busses to use */
2440 dbg("find ranges of buses to use\n");
2441 bus_node = get_max_resource(&(resources->bus_head), 1);
2443 /* If we don't have any busses to allocate, we can't continue */
2444 if (!bus_node)
2445 return -ENOMEM;
2447 /* set Secondary bus */
2448 temp_byte = bus_node->base;
2449 dbg("set Secondary bus = %d\n", bus_node->base);
2450 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2451 if (rc)
2452 return rc;
2454 /* set subordinate bus */
2455 temp_byte = bus_node->base + bus_node->length - 1;
2456 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2457 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2458 if (rc)
2459 return rc;
2461 /* set subordinate Latency Timer and base Latency Timer */
2462 temp_byte = 0x40;
2463 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2464 if (rc)
2465 return rc;
2466 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2467 if (rc)
2468 return rc;
2470 /* set Cache Line size */
2471 temp_byte = 0x08;
2472 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2473 if (rc)
2474 return rc;
2476 /* Setup the IO, memory, and prefetchable windows */
2477 io_node = get_max_resource(&(resources->io_head), 0x1000);
2478 if (!io_node)
2479 return -ENOMEM;
2480 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2481 if (!mem_node)
2482 return -ENOMEM;
2483 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2484 if (!p_mem_node)
2485 return -ENOMEM;
2486 dbg("Setup the IO, memory, and prefetchable windows\n");
2487 dbg("io_node\n");
2488 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2489 io_node->length, io_node->next);
2490 dbg("mem_node\n");
2491 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2492 mem_node->length, mem_node->next);
2493 dbg("p_mem_node\n");
2494 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2495 p_mem_node->length, p_mem_node->next);
2497 /* set up the IRQ info */
2498 if (!resources->irqs) {
2499 irqs.barber_pole = 0;
2500 irqs.interrupt[0] = 0;
2501 irqs.interrupt[1] = 0;
2502 irqs.interrupt[2] = 0;
2503 irqs.interrupt[3] = 0;
2504 irqs.valid_INT = 0;
2505 } else {
2506 irqs.barber_pole = resources->irqs->barber_pole;
2507 irqs.interrupt[0] = resources->irqs->interrupt[0];
2508 irqs.interrupt[1] = resources->irqs->interrupt[1];
2509 irqs.interrupt[2] = resources->irqs->interrupt[2];
2510 irqs.interrupt[3] = resources->irqs->interrupt[3];
2511 irqs.valid_INT = resources->irqs->valid_INT;
2514 /* set up resource lists that are now aligned on top and bottom
2515 * for anything behind the bridge. */
2516 temp_resources.bus_head = bus_node;
2517 temp_resources.io_head = io_node;
2518 temp_resources.mem_head = mem_node;
2519 temp_resources.p_mem_head = p_mem_node;
2520 temp_resources.irqs = &irqs;
2522 /* Make copies of the nodes we are going to pass down so that
2523 * if there is a problem,we can just use these to free resources */
2524 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2525 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2526 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2527 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2529 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2530 kfree(hold_bus_node);
2531 kfree(hold_IO_node);
2532 kfree(hold_mem_node);
2533 kfree(hold_p_mem_node);
2535 return 1;
2538 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2540 bus_node->base += 1;
2541 bus_node->length -= 1;
2542 bus_node->next = NULL;
2544 /* If we have IO resources copy them and fill in the bridge's
2545 * IO range registers */
2546 if (io_node) {
2547 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2548 io_node->next = NULL;
2550 /* set IO base and Limit registers */
2551 temp_byte = io_node->base >> 8;
2552 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2554 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2555 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2556 } else {
2557 kfree(hold_IO_node);
2558 hold_IO_node = NULL;
2561 /* If we have memory resources copy them and fill in the
2562 * bridge's memory range registers. Otherwise, fill in the
2563 * range registers with values that disable them. */
2564 if (mem_node) {
2565 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2566 mem_node->next = NULL;
2568 /* set Mem base and Limit registers */
2569 temp_word = mem_node->base >> 16;
2570 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2572 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2573 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2574 } else {
2575 temp_word = 0xFFFF;
2576 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2578 temp_word = 0x0000;
2579 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2581 kfree(hold_mem_node);
2582 hold_mem_node = NULL;
2585 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2586 p_mem_node->next = NULL;
2588 /* set Pre Mem base and Limit registers */
2589 temp_word = p_mem_node->base >> 16;
2590 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2592 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2593 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2595 /* Adjust this to compensate for extra adjustment in first loop */
2596 irqs.barber_pole--;
2598 rc = 0;
2600 /* Here we actually find the devices and configure them */
2601 for (device = 0; (device <= 0x1F) && !rc; device++) {
2602 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2604 ID = 0xFFFFFFFF;
2605 pci_bus->number = hold_bus_node->base;
2606 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2607 pci_bus->number = func->bus;
2609 if (ID != 0xFFFFFFFF) { /* device present */
2610 /* Setup slot structure. */
2611 new_slot = cpqhp_slot_create(hold_bus_node->base);
2613 if (new_slot == NULL) {
2614 rc = -ENOMEM;
2615 continue;
2618 new_slot->bus = hold_bus_node->base;
2619 new_slot->device = device;
2620 new_slot->function = 0;
2621 new_slot->is_a_board = 1;
2622 new_slot->status = 0;
2624 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2625 dbg("configure_new_device rc=0x%x\n",rc);
2626 } /* End of IF (device in slot?) */
2627 } /* End of FOR loop */
2629 if (rc)
2630 goto free_and_out;
2631 /* save the interrupt routing information */
2632 if (resources->irqs) {
2633 resources->irqs->interrupt[0] = irqs.interrupt[0];
2634 resources->irqs->interrupt[1] = irqs.interrupt[1];
2635 resources->irqs->interrupt[2] = irqs.interrupt[2];
2636 resources->irqs->interrupt[3] = irqs.interrupt[3];
2637 resources->irqs->valid_INT = irqs.valid_INT;
2638 } else if (!behind_bridge) {
2639 /* We need to hook up the interrupts here */
2640 for (cloop = 0; cloop < 4; cloop++) {
2641 if (irqs.valid_INT & (0x01 << cloop)) {
2642 rc = cpqhp_set_irq(func->bus, func->device,
2643 0x0A + cloop, irqs.interrupt[cloop]);
2644 if (rc)
2645 goto free_and_out;
2647 } /* end of for loop */
2649 /* Return unused bus resources
2650 * First use the temporary node to store information for
2651 * the board */
2652 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2653 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2655 hold_bus_node->next = func->bus_head;
2656 func->bus_head = hold_bus_node;
2658 temp_byte = temp_resources.bus_head->base - 1;
2660 /* set subordinate bus */
2661 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2663 if (temp_resources.bus_head->length == 0) {
2664 kfree(temp_resources.bus_head);
2665 temp_resources.bus_head = NULL;
2666 } else {
2667 return_resource(&(resources->bus_head), temp_resources.bus_head);
2671 /* If we have IO space available and there is some left,
2672 * return the unused portion */
2673 if (hold_IO_node && temp_resources.io_head) {
2674 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2675 &hold_IO_node, 0x1000);
2677 /* Check if we were able to split something off */
2678 if (io_node) {
2679 hold_IO_node->base = io_node->base + io_node->length;
2681 temp_byte = (hold_IO_node->base) >> 8;
2682 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2684 return_resource(&(resources->io_head), io_node);
2687 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2689 /* Check if we were able to split something off */
2690 if (io_node) {
2691 /* First use the temporary node to store
2692 * information for the board */
2693 hold_IO_node->length = io_node->base - hold_IO_node->base;
2695 /* If we used any, add it to the board's list */
2696 if (hold_IO_node->length) {
2697 hold_IO_node->next = func->io_head;
2698 func->io_head = hold_IO_node;
2700 temp_byte = (io_node->base - 1) >> 8;
2701 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2703 return_resource(&(resources->io_head), io_node);
2704 } else {
2705 /* it doesn't need any IO */
2706 temp_word = 0x0000;
2707 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2709 return_resource(&(resources->io_head), io_node);
2710 kfree(hold_IO_node);
2712 } else {
2713 /* it used most of the range */
2714 hold_IO_node->next = func->io_head;
2715 func->io_head = hold_IO_node;
2717 } else if (hold_IO_node) {
2718 /* it used the whole range */
2719 hold_IO_node->next = func->io_head;
2720 func->io_head = hold_IO_node;
2722 /* If we have memory space available and there is some left,
2723 * return the unused portion */
2724 if (hold_mem_node && temp_resources.mem_head) {
2725 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2726 &hold_mem_node, 0x100000);
2728 /* Check if we were able to split something off */
2729 if (mem_node) {
2730 hold_mem_node->base = mem_node->base + mem_node->length;
2732 temp_word = (hold_mem_node->base) >> 16;
2733 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2735 return_resource(&(resources->mem_head), mem_node);
2738 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2740 /* Check if we were able to split something off */
2741 if (mem_node) {
2742 /* First use the temporary node to store
2743 * information for the board */
2744 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2746 if (hold_mem_node->length) {
2747 hold_mem_node->next = func->mem_head;
2748 func->mem_head = hold_mem_node;
2750 /* configure end address */
2751 temp_word = (mem_node->base - 1) >> 16;
2752 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2754 /* Return unused resources to the pool */
2755 return_resource(&(resources->mem_head), mem_node);
2756 } else {
2757 /* it doesn't need any Mem */
2758 temp_word = 0x0000;
2759 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2761 return_resource(&(resources->mem_head), mem_node);
2762 kfree(hold_mem_node);
2764 } else {
2765 /* it used most of the range */
2766 hold_mem_node->next = func->mem_head;
2767 func->mem_head = hold_mem_node;
2769 } else if (hold_mem_node) {
2770 /* it used the whole range */
2771 hold_mem_node->next = func->mem_head;
2772 func->mem_head = hold_mem_node;
2774 /* If we have prefetchable memory space available and there
2775 * is some left at the end, return the unused portion */
2776 if (hold_p_mem_node && temp_resources.p_mem_head) {
2777 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2778 &hold_p_mem_node, 0x100000);
2780 /* Check if we were able to split something off */
2781 if (p_mem_node) {
2782 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2784 temp_word = (hold_p_mem_node->base) >> 16;
2785 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2787 return_resource(&(resources->p_mem_head), p_mem_node);
2790 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2792 /* Check if we were able to split something off */
2793 if (p_mem_node) {
2794 /* First use the temporary node to store
2795 * information for the board */
2796 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2798 /* If we used any, add it to the board's list */
2799 if (hold_p_mem_node->length) {
2800 hold_p_mem_node->next = func->p_mem_head;
2801 func->p_mem_head = hold_p_mem_node;
2803 temp_word = (p_mem_node->base - 1) >> 16;
2804 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2806 return_resource(&(resources->p_mem_head), p_mem_node);
2807 } else {
2808 /* it doesn't need any PMem */
2809 temp_word = 0x0000;
2810 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2812 return_resource(&(resources->p_mem_head), p_mem_node);
2813 kfree(hold_p_mem_node);
2815 } else {
2816 /* it used the most of the range */
2817 hold_p_mem_node->next = func->p_mem_head;
2818 func->p_mem_head = hold_p_mem_node;
2820 } else if (hold_p_mem_node) {
2821 /* it used the whole range */
2822 hold_p_mem_node->next = func->p_mem_head;
2823 func->p_mem_head = hold_p_mem_node;
2825 /* We should be configuring an IRQ and the bridge's base address
2826 * registers if it needs them. Although we have never seen such
2827 * a device */
2829 /* enable card */
2830 command = 0x0157; /* = PCI_COMMAND_IO |
2831 * PCI_COMMAND_MEMORY |
2832 * PCI_COMMAND_MASTER |
2833 * PCI_COMMAND_INVALIDATE |
2834 * PCI_COMMAND_PARITY |
2835 * PCI_COMMAND_SERR */
2836 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2838 /* set Bridge Control Register */
2839 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2840 * PCI_BRIDGE_CTL_SERR |
2841 * PCI_BRIDGE_CTL_NO_ISA */
2842 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2843 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2844 /* Standard device */
2845 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2847 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2848 /* Display (video) adapter (not supported) */
2849 return DEVICE_TYPE_NOT_SUPPORTED;
2851 /* Figure out IO and memory needs */
2852 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2853 temp_register = 0xFFFFFFFF;
2855 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2856 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2858 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2859 dbg("CND: base = 0x%x\n", temp_register);
2861 if (temp_register) { /* If this register is implemented */
2862 if ((temp_register & 0x03L) == 0x01) {
2863 /* Map IO */
2865 /* set base = amount of IO space */
2866 base = temp_register & 0xFFFFFFFC;
2867 base = ~base + 1;
2869 dbg("CND: length = 0x%x\n", base);
2870 io_node = get_io_resource(&(resources->io_head), base);
2871 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2872 io_node->base, io_node->length, io_node->next);
2873 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2875 /* allocate the resource to the board */
2876 if (io_node) {
2877 base = io_node->base;
2879 io_node->next = func->io_head;
2880 func->io_head = io_node;
2881 } else
2882 return -ENOMEM;
2883 } else if ((temp_register & 0x0BL) == 0x08) {
2884 /* Map prefetchable memory */
2885 base = temp_register & 0xFFFFFFF0;
2886 base = ~base + 1;
2888 dbg("CND: length = 0x%x\n", base);
2889 p_mem_node = get_resource(&(resources->p_mem_head), base);
2891 /* allocate the resource to the board */
2892 if (p_mem_node) {
2893 base = p_mem_node->base;
2895 p_mem_node->next = func->p_mem_head;
2896 func->p_mem_head = p_mem_node;
2897 } else
2898 return -ENOMEM;
2899 } else if ((temp_register & 0x0BL) == 0x00) {
2900 /* Map memory */
2901 base = temp_register & 0xFFFFFFF0;
2902 base = ~base + 1;
2904 dbg("CND: length = 0x%x\n", base);
2905 mem_node = get_resource(&(resources->mem_head), base);
2907 /* allocate the resource to the board */
2908 if (mem_node) {
2909 base = mem_node->base;
2911 mem_node->next = func->mem_head;
2912 func->mem_head = mem_node;
2913 } else
2914 return -ENOMEM;
2915 } else if ((temp_register & 0x0BL) == 0x04) {
2916 /* Map memory */
2917 base = temp_register & 0xFFFFFFF0;
2918 base = ~base + 1;
2920 dbg("CND: length = 0x%x\n", base);
2921 mem_node = get_resource(&(resources->mem_head), base);
2923 /* allocate the resource to the board */
2924 if (mem_node) {
2925 base = mem_node->base;
2927 mem_node->next = func->mem_head;
2928 func->mem_head = mem_node;
2929 } else
2930 return -ENOMEM;
2931 } else if ((temp_register & 0x0BL) == 0x06) {
2932 /* Those bits are reserved, we can't handle this */
2933 return 1;
2934 } else {
2935 /* Requesting space below 1M */
2936 return NOT_ENOUGH_RESOURCES;
2939 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2941 /* Check for 64-bit base */
2942 if ((temp_register & 0x07L) == 0x04) {
2943 cloop += 4;
2945 /* Upper 32 bits of address always zero
2946 * on today's systems */
2947 /* FIXME this is probably not true on
2948 * Alpha and ia64??? */
2949 base = 0;
2950 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2953 } /* End of base register loop */
2954 if (cpqhp_legacy_mode) {
2955 /* Figure out which interrupt pin this function uses */
2956 rc = pci_bus_read_config_byte (pci_bus, devfn,
2957 PCI_INTERRUPT_PIN, &temp_byte);
2959 /* If this function needs an interrupt and we are behind
2960 * a bridge and the pin is tied to something that's
2961 * alread mapped, set this one the same */
2962 if (temp_byte && resources->irqs &&
2963 (resources->irqs->valid_INT &
2964 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2965 /* We have to share with something already set up */
2966 IRQ = resources->irqs->interrupt[(temp_byte +
2967 resources->irqs->barber_pole - 1) & 0x03];
2968 } else {
2969 /* Program IRQ based on card type */
2970 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2972 if (class_code == PCI_BASE_CLASS_STORAGE) {
2973 IRQ = cpqhp_disk_irq;
2974 } else {
2975 IRQ = cpqhp_nic_irq;
2979 /* IRQ Line */
2980 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2983 if (!behind_bridge) {
2984 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2985 if (rc)
2986 return 1;
2987 } else {
2988 /* TBD - this code may also belong in the other clause
2989 * of this If statement */
2990 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2991 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2994 /* Latency Timer */
2995 temp_byte = 0x40;
2996 rc = pci_bus_write_config_byte(pci_bus, devfn,
2997 PCI_LATENCY_TIMER, temp_byte);
2999 /* Cache Line size */
3000 temp_byte = 0x08;
3001 rc = pci_bus_write_config_byte(pci_bus, devfn,
3002 PCI_CACHE_LINE_SIZE, temp_byte);
3004 /* disable ROM base Address */
3005 temp_dword = 0x00L;
3006 rc = pci_bus_write_config_word(pci_bus, devfn,
3007 PCI_ROM_ADDRESS, temp_dword);
3009 /* enable card */
3010 temp_word = 0x0157; /* = PCI_COMMAND_IO |
3011 * PCI_COMMAND_MEMORY |
3012 * PCI_COMMAND_MASTER |
3013 * PCI_COMMAND_INVALIDATE |
3014 * PCI_COMMAND_PARITY |
3015 * PCI_COMMAND_SERR */
3016 rc = pci_bus_write_config_word (pci_bus, devfn,
3017 PCI_COMMAND, temp_word);
3018 } else { /* End of Not-A-Bridge else */
3019 /* It's some strange type of PCI adapter (Cardbus?) */
3020 return DEVICE_TYPE_NOT_SUPPORTED;
3023 func->configured = 1;
3025 return 0;
3026 free_and_out:
3027 cpqhp_destroy_resource_list (&temp_resources);
3029 return_resource(&(resources-> bus_head), hold_bus_node);
3030 return_resource(&(resources-> io_head), hold_IO_node);
3031 return_resource(&(resources-> mem_head), hold_mem_node);
3032 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3033 return rc;