allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / net / tulip / xircom_tulip_cb.c
blobf64172927377770549c04bee8779852a3ced2994
1 /* xircom_tulip_cb.c: A Xircom CBE-100 ethernet driver for Linux. */
2 /*
3 Written/copyright 1994-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 The author may be reached as becker@scyld.com, or C/O
9 Scyld Computing Corporation
10 410 Severn Ave., Suite 210
11 Annapolis MD 21403
15 #define DRV_NAME "xircom_tulip_cb"
16 #define DRV_VERSION "0.92"
17 #define DRV_RELDATE "June 27, 2006"
19 /* A few user-configurable values. */
21 #define xircom_debug debug
22 #ifdef XIRCOM_DEBUG
23 static int xircom_debug = XIRCOM_DEBUG;
24 #else
25 static int xircom_debug = 1;
26 #endif
28 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
29 static int max_interrupt_work = 25;
31 #define MAX_UNITS 4
32 /* Used to pass the full-duplex flag, etc. */
33 static int full_duplex[MAX_UNITS];
34 static int options[MAX_UNITS];
35 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
37 /* Keep the ring sizes a power of two for efficiency.
38 Making the Tx ring too large decreases the effectiveness of channel
39 bonding and packet priority.
40 There are no ill effects from too-large receive rings. */
41 #define TX_RING_SIZE 16
42 #define RX_RING_SIZE 32
44 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
45 #ifdef __alpha__
46 static int rx_copybreak = 1518;
47 #else
48 static int rx_copybreak = 100;
49 #endif
52 Set the bus performance register.
53 Typical: Set 16 longword cache alignment, no burst limit.
54 Cache alignment bits 15:14 Burst length 13:8
55 0000 No alignment 0x00000000 unlimited 0800 8 longwords
56 4000 8 longwords 0100 1 longword 1000 16 longwords
57 8000 16 longwords 0200 2 longwords 2000 32 longwords
58 C000 32 longwords 0400 4 longwords
59 Warning: many older 486 systems are broken and require setting 0x00A04800
60 8 longword cache alignment, 8 longword burst.
61 ToDo: Non-Intel setting could be better.
64 #if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
65 static int csr0 = 0x01A00000 | 0xE000;
66 #elif defined(__powerpc__)
67 static int csr0 = 0x01B00000 | 0x8000;
68 #elif defined(CONFIG_SPARC)
69 static int csr0 = 0x01B00080 | 0x8000;
70 #elif defined(__i386__)
71 static int csr0 = 0x01A00000 | 0x8000;
72 #else
73 #warning Processor architecture undefined!
74 static int csr0 = 0x00A00000 | 0x4800;
75 #endif
77 /* Operational parameters that usually are not changed. */
78 /* Time in jiffies before concluding the transmitter is hung. */
79 #define TX_TIMEOUT (4 * HZ)
80 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
81 #define PKT_SETUP_SZ 192 /* Size of the setup frame */
83 /* PCI registers */
84 #define PCI_POWERMGMT 0x40
86 #include <linux/module.h>
87 #include <linux/moduleparam.h>
88 #include <linux/kernel.h>
89 #include <linux/pci.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/delay.h>
93 #include <linux/init.h>
94 #include <linux/mii.h>
95 #include <linux/ethtool.h>
96 #include <linux/crc32.h>
98 #include <asm/io.h>
99 #include <asm/processor.h> /* Processor type for cache alignment. */
100 #include <asm/uaccess.h>
103 /* These identify the driver base version and may not be removed. */
104 static char version[] __devinitdata =
105 KERN_INFO DRV_NAME ".c derived from tulip.c:v0.91 4/14/99 becker@scyld.com\n"
106 KERN_INFO " unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE "\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("Xircom CBE-100 ethernet driver");
110 MODULE_LICENSE("GPL v2");
111 MODULE_VERSION(DRV_VERSION);
113 module_param(debug, int, 0);
114 module_param(max_interrupt_work, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(csr0, int, 0);
118 module_param_array(options, int, NULL, 0);
119 module_param_array(full_duplex, int, NULL, 0);
121 #define RUN_AT(x) (jiffies + (x))
124 Theory of Operation
126 I. Board Compatibility
128 This device driver was forked from the driver for the DECchip "Tulip",
129 Digital's single-chip ethernet controllers for PCI. It supports Xircom's
130 almost-Tulip-compatible CBE-100 CardBus adapters.
132 II. Board-specific settings
134 PCI bus devices are configured by the system at boot time, so no jumpers
135 need to be set on the board. The system BIOS preferably should assign the
136 PCI INTA signal to an otherwise unused system IRQ line.
138 III. Driver operation
140 IIIa. Ring buffers
142 The Xircom can use either ring buffers or lists of Tx and Rx descriptors.
143 This driver uses statically allocated rings of Rx and Tx descriptors, set at
144 compile time by RX/TX_RING_SIZE. This version of the driver allocates skbuffs
145 for the Rx ring buffers at open() time and passes the skb->data field to the
146 Xircom as receive data buffers. When an incoming frame is less than
147 RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is
148 copied to the new skbuff. When the incoming frame is larger, the skbuff is
149 passed directly up the protocol stack and replaced by a newly allocated
150 skbuff.
152 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
153 using a full-sized skbuff for small frames vs. the copying costs of larger
154 frames. For small frames the copying cost is negligible (esp. considering
155 that we are pre-loading the cache with immediately useful header
156 information). For large frames the copying cost is non-trivial, and the
157 larger copy might flush the cache of useful data. A subtle aspect of this
158 choice is that the Xircom only receives into longword aligned buffers, thus
159 the IP header at offset 14 isn't longword aligned for further processing.
160 Copied frames are put into the new skbuff at an offset of "+2", thus copying
161 has the beneficial effect of aligning the IP header and preloading the
162 cache.
164 IIIC. Synchronization
165 The driver runs as two independent, single-threaded flows of control. One
166 is the send-packet routine, which enforces single-threaded use by the
167 dev->tbusy flag. The other thread is the interrupt handler, which is single
168 threaded by the hardware and other software.
170 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
171 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
172 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
173 the 'tp->tx_full' flag.
175 The interrupt handler has exclusive control over the Rx ring and records stats
176 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
177 we can't avoid the interrupt overhead by having the Tx routine reap the Tx
178 stats.) After reaping the stats, it marks the queue entry as empty by setting
179 the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the
180 tx_full and tbusy flags.
182 IV. Notes
184 IVb. References
186 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
187 http://www.digital.com (search for current 21*4* datasheets and "21X4 SROM")
188 http://www.national.com/pf/DP/DP83840A.html
190 IVc. Errata
194 /* A full-duplex map for media types. */
195 enum MediaIs {
196 MediaIsFD = 1, MediaAlwaysFD=2, MediaIsMII=4, MediaIsFx=8,
197 MediaIs100=16};
198 static const char media_cap[] =
199 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20 };
201 /* Offsets to the Command and Status Registers, "CSRs". All accesses
202 must be longword instructions and quadword aligned. */
203 enum xircom_offsets {
204 CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
205 CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
206 CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x04, };
208 /* The bits in the CSR5 status registers, mostly interrupt sources. */
209 enum status_bits {
210 LinkChange=0x08000000,
211 NormalIntr=0x10000, NormalIntrMask=0x00014045,
212 AbnormalIntr=0x8000, AbnormalIntrMask=0x0a00a5a2,
213 ReservedIntrMask=0xe0001a18,
214 EarlyRxIntr=0x4000, BusErrorIntr=0x2000,
215 EarlyTxIntr=0x400, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40,
216 TxFIFOUnderflow=0x20, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01,
219 enum csr0_control_bits {
220 EnableMWI=0x01000000, EnableMRL=0x00800000,
221 EnableMRM=0x00200000, EqualBusPrio=0x02,
222 SoftwareReset=0x01,
225 enum csr6_control_bits {
226 ReceiveAllBit=0x40000000, AllMultiBit=0x80, PromiscBit=0x40,
227 HashFilterBit=0x01, FullDuplexBit=0x0200,
228 TxThresh10=0x400000, TxStoreForw=0x200000,
229 TxThreshMask=0xc000, TxThreshShift=14,
230 EnableTx=0x2000, EnableRx=0x02,
231 ReservedZeroMask=0x8d930134, ReservedOneMask=0x320c0000,
232 EnableTxRx=(EnableTx | EnableRx),
236 enum tbl_flag {
237 HAS_MII=1, HAS_ACPI=2,
239 static struct xircom_chip_table {
240 char *chip_name;
241 int valid_intrs; /* CSR7 interrupt enable settings */
242 int flags;
243 } xircom_tbl[] = {
244 { "Xircom Cardbus Adapter",
245 LinkChange | NormalIntr | AbnormalIntr | BusErrorIntr |
246 RxDied | RxNoBuf | RxIntr | TxFIFOUnderflow | TxNoBuf | TxDied | TxIntr,
247 HAS_MII | HAS_ACPI, },
248 { NULL, },
250 /* This matches the table above. */
251 enum chips {
252 X3201_3,
256 /* The Xircom Rx and Tx buffer descriptors. */
257 struct xircom_rx_desc {
258 s32 status;
259 s32 length;
260 u32 buffer1, buffer2;
263 struct xircom_tx_desc {
264 s32 status;
265 s32 length;
266 u32 buffer1, buffer2; /* We use only buffer 1. */
269 enum tx_desc0_status_bits {
270 Tx0DescOwned=0x80000000, Tx0DescError=0x8000, Tx0NoCarrier=0x0800,
271 Tx0LateColl=0x0200, Tx0ManyColl=0x0100, Tx0Underflow=0x02,
273 enum tx_desc1_status_bits {
274 Tx1ComplIntr=0x80000000, Tx1LastSeg=0x40000000, Tx1FirstSeg=0x20000000,
275 Tx1SetupPkt=0x08000000, Tx1DisableCRC=0x04000000, Tx1RingWrap=0x02000000,
276 Tx1ChainDesc=0x01000000, Tx1NoPad=0x800000, Tx1HashSetup=0x400000,
277 Tx1WholePkt=(Tx1FirstSeg | Tx1LastSeg),
279 enum rx_desc0_status_bits {
280 Rx0DescOwned=0x80000000, Rx0DescError=0x8000, Rx0NoSpace=0x4000,
281 Rx0Runt=0x0800, Rx0McastPkt=0x0400, Rx0FirstSeg=0x0200, Rx0LastSeg=0x0100,
282 Rx0HugeFrame=0x80, Rx0CRCError=0x02,
283 Rx0WholePkt=(Rx0FirstSeg | Rx0LastSeg),
285 enum rx_desc1_status_bits {
286 Rx1RingWrap=0x02000000, Rx1ChainDesc=0x01000000,
289 struct xircom_private {
290 struct xircom_rx_desc rx_ring[RX_RING_SIZE];
291 struct xircom_tx_desc tx_ring[TX_RING_SIZE];
292 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
293 struct sk_buff* tx_skbuff[TX_RING_SIZE];
295 /* The X3201-3 requires 4-byte aligned tx bufs */
296 struct sk_buff* tx_aligned_skbuff[TX_RING_SIZE];
298 /* The addresses of receive-in-place skbuffs. */
299 struct sk_buff* rx_skbuff[RX_RING_SIZE];
300 u16 setup_frame[PKT_SETUP_SZ / sizeof(u16)]; /* Pseudo-Tx frame to init address table. */
301 int chip_id;
302 struct net_device_stats stats;
303 unsigned int cur_rx, cur_tx; /* The next free ring entry */
304 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
305 unsigned int tx_full:1; /* The Tx queue is full. */
306 unsigned int speed100:1;
307 unsigned int full_duplex:1; /* Full-duplex operation requested. */
308 unsigned int autoneg:1;
309 unsigned int default_port:4; /* Last dev->if_port value. */
310 unsigned int open:1;
311 unsigned int csr0; /* CSR0 setting. */
312 unsigned int csr6; /* Current CSR6 control settings. */
313 u16 to_advertise; /* NWay capabilities advertised. */
314 u16 advertising[4];
315 signed char phys[4], mii_cnt; /* MII device addresses. */
316 int saved_if_port;
317 struct pci_dev *pdev;
318 spinlock_t lock;
321 static int mdio_read(struct net_device *dev, int phy_id, int location);
322 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
323 static void xircom_up(struct net_device *dev);
324 static void xircom_down(struct net_device *dev);
325 static int xircom_open(struct net_device *dev);
326 static void xircom_tx_timeout(struct net_device *dev);
327 static void xircom_init_ring(struct net_device *dev);
328 static int xircom_start_xmit(struct sk_buff *skb, struct net_device *dev);
329 static int xircom_rx(struct net_device *dev);
330 static void xircom_media_change(struct net_device *dev);
331 static irqreturn_t xircom_interrupt(int irq, void *dev_instance);
332 static int xircom_close(struct net_device *dev);
333 static struct net_device_stats *xircom_get_stats(struct net_device *dev);
334 static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
335 static void set_rx_mode(struct net_device *dev);
336 static void check_duplex(struct net_device *dev);
337 static const struct ethtool_ops ops;
340 /* The Xircom cards are picky about when certain bits in CSR6 can be
341 manipulated. Keith Owens <kaos@ocs.com.au>. */
342 static void outl_CSR6(u32 newcsr6, long ioaddr)
344 const int strict_bits =
345 TxThresh10 | TxStoreForw | TxThreshMask | EnableTxRx | FullDuplexBit;
346 int csr5, csr5_22_20, csr5_19_17, currcsr6, attempts = 200;
347 unsigned long flags;
348 save_flags(flags);
349 cli();
350 /* mask out the reserved bits that always read 0 on the Xircom cards */
351 newcsr6 &= ~ReservedZeroMask;
352 /* or in the reserved bits that always read 1 */
353 newcsr6 |= ReservedOneMask;
354 currcsr6 = inl(ioaddr + CSR6);
355 if (((newcsr6 & strict_bits) == (currcsr6 & strict_bits)) ||
356 ((currcsr6 & ~EnableTxRx) == 0)) {
357 outl(newcsr6, ioaddr + CSR6); /* safe */
358 restore_flags(flags);
359 return;
361 /* make sure the transmitter and receiver are stopped first */
362 currcsr6 &= ~EnableTxRx;
363 while (1) {
364 csr5 = inl(ioaddr + CSR5);
365 if (csr5 == 0xffffffff)
366 break; /* cannot read csr5, card removed? */
367 csr5_22_20 = csr5 & 0x700000;
368 csr5_19_17 = csr5 & 0x0e0000;
369 if ((csr5_22_20 == 0 || csr5_22_20 == 0x600000) &&
370 (csr5_19_17 == 0 || csr5_19_17 == 0x80000 || csr5_19_17 == 0xc0000))
371 break; /* both are stopped or suspended */
372 if (!--attempts) {
373 printk(KERN_INFO DRV_NAME ": outl_CSR6 too many attempts,"
374 "csr5=0x%08x\n", csr5);
375 outl(newcsr6, ioaddr + CSR6); /* unsafe but do it anyway */
376 restore_flags(flags);
377 return;
379 outl(currcsr6, ioaddr + CSR6);
380 udelay(1);
382 /* now it is safe to change csr6 */
383 outl(newcsr6, ioaddr + CSR6);
384 restore_flags(flags);
388 static void __devinit read_mac_address(struct net_device *dev)
390 long ioaddr = dev->base_addr;
391 int i, j;
392 unsigned char tuple, link, data_id, data_count;
394 /* Xircom has its address stored in the CIS;
395 * we access it through the boot rom interface for now
396 * this might not work, as the CIS is not parsed but I
397 * (danilo) use the offset I found on my card's CIS !!!
399 * Doug Ledford: I changed this routine around so that it
400 * walks the CIS memory space, parsing the config items, and
401 * finds the proper lan_node_id tuple and uses the data
402 * stored there.
404 outl(1 << 12, ioaddr + CSR9); /* enable boot rom access */
405 for (i = 0x100; i < 0x1f7; i += link+2) {
406 outl(i, ioaddr + CSR10);
407 tuple = inl(ioaddr + CSR9) & 0xff;
408 outl(i + 1, ioaddr + CSR10);
409 link = inl(ioaddr + CSR9) & 0xff;
410 outl(i + 2, ioaddr + CSR10);
411 data_id = inl(ioaddr + CSR9) & 0xff;
412 outl(i + 3, ioaddr + CSR10);
413 data_count = inl(ioaddr + CSR9) & 0xff;
414 if ( (tuple == 0x22) &&
415 (data_id == 0x04) && (data_count == 0x06) ) {
417 * This is it. We have the data we want.
419 for (j = 0; j < 6; j++) {
420 outl(i + j + 4, ioaddr + CSR10);
421 dev->dev_addr[j] = inl(ioaddr + CSR9) & 0xff;
423 break;
424 } else if (link == 0) {
425 break;
432 * locate the MII interfaces and initialize them.
433 * we disable full-duplex modes here,
434 * because we don't know how to handle them.
436 static void find_mii_transceivers(struct net_device *dev)
438 struct xircom_private *tp = netdev_priv(dev);
439 int phy, phy_idx;
441 if (media_cap[tp->default_port] & MediaIsMII) {
442 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
443 tp->to_advertise = media2advert[tp->default_port - 9];
444 } else
445 tp->to_advertise =
446 /*ADVERTISE_100BASE4 | ADVERTISE_100FULL |*/ ADVERTISE_100HALF |
447 /*ADVERTISE_10FULL |*/ ADVERTISE_10HALF | ADVERTISE_CSMA;
449 /* Find the connected MII xcvrs.
450 Doing this in open() would allow detecting external xcvrs later,
451 but takes much time. */
452 for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) {
453 int mii_status = mdio_read(dev, phy, MII_BMSR);
454 if ((mii_status & (BMSR_100BASE4 | BMSR_100HALF | BMSR_10HALF)) == BMSR_100BASE4 ||
455 ((mii_status & BMSR_100BASE4) == 0 &&
456 (mii_status & (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF)) != 0)) {
457 int mii_reg0 = mdio_read(dev, phy, MII_BMCR);
458 int mii_advert = mdio_read(dev, phy, MII_ADVERTISE);
459 int reg4 = ((mii_status >> 6) & tp->to_advertise) | ADVERTISE_CSMA;
460 tp->phys[phy_idx] = phy;
461 tp->advertising[phy_idx++] = reg4;
462 printk(KERN_INFO "%s: MII transceiver #%d "
463 "config %4.4x status %4.4x advertising %4.4x.\n",
464 dev->name, phy, mii_reg0, mii_status, mii_advert);
467 tp->mii_cnt = phy_idx;
468 if (phy_idx == 0) {
469 printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n",
470 dev->name);
471 tp->phys[0] = 0;
477 * To quote Arjan van de Ven:
478 * transceiver_voodoo() enables the external UTP plug thingy.
479 * it's called voodoo as I stole this code and cannot cross-reference
480 * it with the specification.
481 * Actually it seems to go like this:
482 * - GPIO2 enables the MII itself so we can talk to it. The MII gets reset
483 * so any prior MII settings are lost.
484 * - GPIO0 enables the TP port so the MII can talk to the network.
485 * - a software reset will reset both GPIO pins.
486 * I also moved the software reset here, because doing it in xircom_up()
487 * required enabling the GPIO pins each time, which reset the MII each time.
488 * Thus we couldn't control the MII -- which sucks because we don't know
489 * how to handle full-duplex modes so we *must* disable them.
491 static void transceiver_voodoo(struct net_device *dev)
493 struct xircom_private *tp = netdev_priv(dev);
494 long ioaddr = dev->base_addr;
496 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
497 outl(SoftwareReset, ioaddr + CSR0);
498 udelay(2);
500 /* Deassert reset. */
501 outl(tp->csr0, ioaddr + CSR0);
503 /* Reset the xcvr interface and turn on heartbeat. */
504 outl(0x0008, ioaddr + CSR15);
505 udelay(5); /* The delays are Xircom-recommended to give the
506 * chipset time to reset the actual hardware
507 * on the PCMCIA card
509 outl(0xa8050000, ioaddr + CSR15);
510 udelay(5);
511 outl(0xa00f0000, ioaddr + CSR15);
512 udelay(5);
514 outl_CSR6(0, ioaddr);
515 //outl_CSR6(FullDuplexBit, ioaddr);
519 static int __devinit xircom_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
521 struct net_device *dev;
522 struct xircom_private *tp;
523 static int board_idx = -1;
524 int chip_idx = id->driver_data;
525 long ioaddr;
526 int i;
527 u8 chip_rev;
529 /* when built into the kernel, we only print version if device is found */
530 #ifndef MODULE
531 static int printed_version;
532 if (!printed_version++)
533 printk(version);
534 #endif
536 //printk(KERN_INFO "xircom_init_one(%s)\n", pci_name(pdev));
538 board_idx++;
540 if (pci_enable_device(pdev))
541 return -ENODEV;
543 pci_set_master(pdev);
545 ioaddr = pci_resource_start(pdev, 0);
546 dev = alloc_etherdev(sizeof(*tp));
547 if (!dev) {
548 printk (KERN_ERR DRV_NAME "%d: cannot alloc etherdev, aborting\n", board_idx);
549 return -ENOMEM;
551 SET_MODULE_OWNER(dev);
552 SET_NETDEV_DEV(dev, &pdev->dev);
554 dev->base_addr = ioaddr;
555 dev->irq = pdev->irq;
557 if (pci_request_regions(pdev, dev->name)) {
558 printk (KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", board_idx);
559 goto err_out_free_netdev;
562 /* Bring the chip out of sleep mode.
563 Caution: Snooze mode does not work with some boards! */
564 if (xircom_tbl[chip_idx].flags & HAS_ACPI)
565 pci_write_config_dword(pdev, PCI_POWERMGMT, 0);
567 /* Stop the chip's Tx and Rx processes. */
568 outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);
569 /* Clear the missed-packet counter. */
570 (volatile int)inl(ioaddr + CSR8);
572 tp = netdev_priv(dev);
574 spin_lock_init(&tp->lock);
575 tp->pdev = pdev;
576 tp->chip_id = chip_idx;
577 /* BugFixes: The 21143-TD hangs with PCI Write-and-Invalidate cycles. */
578 /* XXX: is this necessary for Xircom? */
579 tp->csr0 = csr0 & ~EnableMWI;
581 pci_set_drvdata(pdev, dev);
583 /* The lower four bits are the media type. */
584 if (board_idx >= 0 && board_idx < MAX_UNITS) {
585 tp->default_port = options[board_idx] & 15;
586 if ((options[board_idx] & 0x90) || full_duplex[board_idx] > 0)
587 tp->full_duplex = 1;
588 if (mtu[board_idx] > 0)
589 dev->mtu = mtu[board_idx];
591 if (dev->mem_start)
592 tp->default_port = dev->mem_start;
593 if (tp->default_port) {
594 if (media_cap[tp->default_port] & MediaAlwaysFD)
595 tp->full_duplex = 1;
597 if (tp->full_duplex)
598 tp->autoneg = 0;
599 else
600 tp->autoneg = 1;
601 tp->speed100 = 1;
603 /* The Xircom-specific entries in the device structure. */
604 dev->open = &xircom_open;
605 dev->hard_start_xmit = &xircom_start_xmit;
606 dev->stop = &xircom_close;
607 dev->get_stats = &xircom_get_stats;
608 dev->do_ioctl = &xircom_ioctl;
609 #ifdef HAVE_MULTICAST
610 dev->set_multicast_list = &set_rx_mode;
611 #endif
612 dev->tx_timeout = xircom_tx_timeout;
613 dev->watchdog_timeo = TX_TIMEOUT;
614 SET_ETHTOOL_OPS(dev, &ops);
616 transceiver_voodoo(dev);
618 read_mac_address(dev);
620 if (register_netdev(dev))
621 goto err_out_cleardev;
623 pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
624 printk(KERN_INFO "%s: %s rev %d at %#3lx,",
625 dev->name, xircom_tbl[chip_idx].chip_name, chip_rev, ioaddr);
626 for (i = 0; i < 6; i++)
627 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
628 printk(", IRQ %d.\n", dev->irq);
630 if (xircom_tbl[chip_idx].flags & HAS_MII) {
631 find_mii_transceivers(dev);
632 check_duplex(dev);
635 return 0;
637 err_out_cleardev:
638 pci_set_drvdata(pdev, NULL);
639 pci_release_regions(pdev);
640 err_out_free_netdev:
641 free_netdev(dev);
642 return -ENODEV;
646 /* MII transceiver control section.
647 Read and write the MII registers using software-generated serial
648 MDIO protocol. See the MII specifications or DP83840A data sheet
649 for details. */
651 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
652 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
653 "overclocking" issues or future 66Mhz PCI. */
654 #define mdio_delay() inl(mdio_addr)
656 /* Read and write the MII registers using software-generated serial
657 MDIO protocol. It is just different enough from the EEPROM protocol
658 to not share code. The maxium data clock rate is 2.5 Mhz. */
659 #define MDIO_SHIFT_CLK 0x10000
660 #define MDIO_DATA_WRITE0 0x00000
661 #define MDIO_DATA_WRITE1 0x20000
662 #define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */
663 #define MDIO_ENB_IN 0x40000
664 #define MDIO_DATA_READ 0x80000
666 static int mdio_read(struct net_device *dev, int phy_id, int location)
668 int i;
669 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
670 int retval = 0;
671 long ioaddr = dev->base_addr;
672 long mdio_addr = ioaddr + CSR9;
674 /* Establish sync by sending at least 32 logic ones. */
675 for (i = 32; i >= 0; i--) {
676 outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
677 mdio_delay();
678 outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
679 mdio_delay();
681 /* Shift the read command bits out. */
682 for (i = 15; i >= 0; i--) {
683 int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
685 outl(MDIO_ENB | dataval, mdio_addr);
686 mdio_delay();
687 outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
688 mdio_delay();
690 /* Read the two transition, 16 data, and wire-idle bits. */
691 for (i = 19; i > 0; i--) {
692 outl(MDIO_ENB_IN, mdio_addr);
693 mdio_delay();
694 retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
695 outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
696 mdio_delay();
698 return (retval>>1) & 0xffff;
702 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
704 int i;
705 int cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;
706 long ioaddr = dev->base_addr;
707 long mdio_addr = ioaddr + CSR9;
709 /* Establish sync by sending 32 logic ones. */
710 for (i = 32; i >= 0; i--) {
711 outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
712 mdio_delay();
713 outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
714 mdio_delay();
716 /* Shift the command bits out. */
717 for (i = 31; i >= 0; i--) {
718 int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
719 outl(MDIO_ENB | dataval, mdio_addr);
720 mdio_delay();
721 outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
722 mdio_delay();
724 /* Clear out extra bits. */
725 for (i = 2; i > 0; i--) {
726 outl(MDIO_ENB_IN, mdio_addr);
727 mdio_delay();
728 outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
729 mdio_delay();
731 return;
735 static void
736 xircom_up(struct net_device *dev)
738 struct xircom_private *tp = netdev_priv(dev);
739 long ioaddr = dev->base_addr;
740 int i;
742 xircom_init_ring(dev);
743 /* Clear the tx ring */
744 for (i = 0; i < TX_RING_SIZE; i++) {
745 tp->tx_skbuff[i] = NULL;
746 tp->tx_ring[i].status = 0;
749 if (xircom_debug > 1)
750 printk(KERN_DEBUG "%s: xircom_up() irq %d.\n", dev->name, dev->irq);
752 outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
753 outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);
755 tp->saved_if_port = dev->if_port;
756 if (dev->if_port == 0)
757 dev->if_port = tp->default_port;
759 tp->csr6 = TxThresh10 /*| FullDuplexBit*/; /* XXX: why 10 and not 100? */
761 set_rx_mode(dev);
763 /* Start the chip's Tx to process setup frame. */
764 outl_CSR6(tp->csr6, ioaddr);
765 outl_CSR6(tp->csr6 | EnableTx, ioaddr);
767 /* Acknowledge all outstanding interrupts sources */
768 outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
769 /* Enable interrupts by setting the interrupt mask. */
770 outl(xircom_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
771 /* Enable Rx */
772 outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
773 /* Rx poll demand */
774 outl(0, ioaddr + CSR2);
776 /* Tell the net layer we're ready */
777 netif_start_queue (dev);
779 /* Check current media state */
780 xircom_media_change(dev);
782 if (xircom_debug > 2) {
783 printk(KERN_DEBUG "%s: Done xircom_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
784 dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5),
785 inl(ioaddr + CSR6));
790 static int
791 xircom_open(struct net_device *dev)
793 struct xircom_private *tp = netdev_priv(dev);
795 if (request_irq(dev->irq, &xircom_interrupt, IRQF_SHARED, dev->name, dev))
796 return -EAGAIN;
798 xircom_up(dev);
799 tp->open = 1;
801 return 0;
805 static void xircom_tx_timeout(struct net_device *dev)
807 struct xircom_private *tp = netdev_priv(dev);
808 long ioaddr = dev->base_addr;
810 if (media_cap[dev->if_port] & MediaIsMII) {
811 /* Do nothing -- the media monitor should handle this. */
812 if (xircom_debug > 1)
813 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
814 dev->name);
817 #if defined(way_too_many_messages)
818 if (xircom_debug > 3) {
819 int i;
820 for (i = 0; i < RX_RING_SIZE; i++) {
821 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
822 int j;
823 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
824 "%2.2x %2.2x %2.2x.\n",
825 i, (unsigned int)tp->rx_ring[i].status,
826 (unsigned int)tp->rx_ring[i].length,
827 (unsigned int)tp->rx_ring[i].buffer1,
828 (unsigned int)tp->rx_ring[i].buffer2,
829 buf[0], buf[1], buf[2]);
830 for (j = 0; buf[j] != 0xee && j < 1600; j++)
831 if (j < 100) printk(" %2.2x", buf[j]);
832 printk(" j=%d.\n", j);
834 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
835 for (i = 0; i < RX_RING_SIZE; i++)
836 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
837 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
838 for (i = 0; i < TX_RING_SIZE; i++)
839 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
840 printk("\n");
842 #endif
844 /* Stop and restart the chip's Tx/Rx processes . */
845 outl_CSR6(tp->csr6 | EnableRx, ioaddr);
846 outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
847 /* Trigger an immediate transmit demand. */
848 outl(0, ioaddr + CSR1);
850 dev->trans_start = jiffies;
851 netif_wake_queue (dev);
852 tp->stats.tx_errors++;
856 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
857 static void xircom_init_ring(struct net_device *dev)
859 struct xircom_private *tp = netdev_priv(dev);
860 int i;
862 tp->tx_full = 0;
863 tp->cur_rx = tp->cur_tx = 0;
864 tp->dirty_rx = tp->dirty_tx = 0;
866 for (i = 0; i < RX_RING_SIZE; i++) {
867 tp->rx_ring[i].status = 0;
868 tp->rx_ring[i].length = PKT_BUF_SZ;
869 tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]);
870 tp->rx_skbuff[i] = NULL;
872 /* Mark the last entry as wrapping the ring. */
873 tp->rx_ring[i-1].length = PKT_BUF_SZ | Rx1RingWrap;
874 tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]);
876 for (i = 0; i < RX_RING_SIZE; i++) {
877 /* Note the receive buffer must be longword aligned.
878 dev_alloc_skb() provides 16 byte alignment. But do *not*
879 use skb_reserve() to align the IP header! */
880 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
881 tp->rx_skbuff[i] = skb;
882 if (skb == NULL)
883 break;
884 skb->dev = dev; /* Mark as being used by this device. */
885 tp->rx_ring[i].status = Rx0DescOwned; /* Owned by Xircom chip */
886 tp->rx_ring[i].buffer1 = virt_to_bus(skb->data);
888 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
890 /* The Tx buffer descriptor is filled in as needed, but we
891 do need to clear the ownership bit. */
892 for (i = 0; i < TX_RING_SIZE; i++) {
893 tp->tx_skbuff[i] = NULL;
894 tp->tx_ring[i].status = 0;
895 tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]);
896 if (tp->chip_id == X3201_3)
897 tp->tx_aligned_skbuff[i] = dev_alloc_skb(PKT_BUF_SZ);
899 tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]);
903 static int
904 xircom_start_xmit(struct sk_buff *skb, struct net_device *dev)
906 struct xircom_private *tp = netdev_priv(dev);
907 int entry;
908 u32 flag;
910 /* Caution: the write order is important here, set the base address
911 with the "ownership" bits last. */
913 /* Calculate the next Tx descriptor entry. */
914 entry = tp->cur_tx % TX_RING_SIZE;
916 tp->tx_skbuff[entry] = skb;
917 if (tp->chip_id == X3201_3) {
918 skb_copy_from_linear_data(skb,
919 tp->tx_aligned_skbuff[entry]->data,
920 skb->len);
921 tp->tx_ring[entry].buffer1 = virt_to_bus(tp->tx_aligned_skbuff[entry]->data);
922 } else
923 tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data);
925 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
926 flag = Tx1WholePkt; /* No interrupt */
927 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
928 flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
929 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
930 flag = Tx1WholePkt; /* No Tx-done intr. */
931 } else {
932 /* Leave room for set_rx_mode() to fill entries. */
933 flag = Tx1WholePkt | Tx1ComplIntr; /* Tx-done intr. */
934 tp->tx_full = 1;
936 if (entry == TX_RING_SIZE - 1)
937 flag |= Tx1WholePkt | Tx1ComplIntr | Tx1RingWrap;
939 tp->tx_ring[entry].length = skb->len | flag;
940 tp->tx_ring[entry].status = Tx0DescOwned; /* Pass ownership to the chip. */
941 tp->cur_tx++;
942 if (tp->tx_full)
943 netif_stop_queue (dev);
944 else
945 netif_wake_queue (dev);
947 /* Trigger an immediate transmit demand. */
948 outl(0, dev->base_addr + CSR1);
950 dev->trans_start = jiffies;
952 return 0;
956 static void xircom_media_change(struct net_device *dev)
958 struct xircom_private *tp = netdev_priv(dev);
959 long ioaddr = dev->base_addr;
960 u16 reg0, reg1, reg4, reg5;
961 u32 csr6 = inl(ioaddr + CSR6), newcsr6;
963 /* reset status first */
964 mdio_read(dev, tp->phys[0], MII_BMCR);
965 mdio_read(dev, tp->phys[0], MII_BMSR);
967 reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
968 reg1 = mdio_read(dev, tp->phys[0], MII_BMSR);
970 if (reg1 & BMSR_LSTATUS) {
971 /* link is up */
972 if (reg0 & BMCR_ANENABLE) {
973 /* autonegotiation is enabled */
974 reg4 = mdio_read(dev, tp->phys[0], MII_ADVERTISE);
975 reg5 = mdio_read(dev, tp->phys[0], MII_LPA);
976 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
977 tp->speed100 = 1;
978 tp->full_duplex = 1;
979 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
980 tp->speed100 = 1;
981 tp->full_duplex = 0;
982 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
983 tp->speed100 = 0;
984 tp->full_duplex = 1;
985 } else {
986 tp->speed100 = 0;
987 tp->full_duplex = 0;
989 } else {
990 /* autonegotiation is disabled */
991 if (reg0 & BMCR_SPEED100)
992 tp->speed100 = 1;
993 else
994 tp->speed100 = 0;
995 if (reg0 & BMCR_FULLDPLX)
996 tp->full_duplex = 1;
997 else
998 tp->full_duplex = 0;
1000 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1001 dev->name,
1002 tp->speed100 ? "100" : "10",
1003 tp->full_duplex ? "full" : "half");
1004 netif_carrier_on(dev);
1005 newcsr6 = csr6 & ~FullDuplexBit;
1006 if (tp->full_duplex)
1007 newcsr6 |= FullDuplexBit;
1008 if (newcsr6 != csr6)
1009 outl_CSR6(newcsr6, ioaddr + CSR6);
1010 } else {
1011 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1012 netif_carrier_off(dev);
1017 static void check_duplex(struct net_device *dev)
1019 struct xircom_private *tp = netdev_priv(dev);
1020 u16 reg0;
1022 mdio_write(dev, tp->phys[0], MII_BMCR, BMCR_RESET);
1023 udelay(500);
1024 while (mdio_read(dev, tp->phys[0], MII_BMCR) & BMCR_RESET);
1026 reg0 = mdio_read(dev, tp->phys[0], MII_BMCR);
1027 mdio_write(dev, tp->phys[0], MII_ADVERTISE, tp->advertising[0]);
1029 if (tp->autoneg) {
1030 reg0 &= ~(BMCR_SPEED100 | BMCR_FULLDPLX);
1031 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1032 } else {
1033 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1034 if (tp->speed100)
1035 reg0 |= BMCR_SPEED100;
1036 if (tp->full_duplex)
1037 reg0 |= BMCR_FULLDPLX;
1038 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1039 dev->name,
1040 tp->speed100 ? "100" : "10",
1041 tp->full_duplex ? "full" : "half");
1043 mdio_write(dev, tp->phys[0], MII_BMCR, reg0);
1047 /* The interrupt handler does all of the Rx thread work and cleans up
1048 after the Tx thread. */
1049 static irqreturn_t xircom_interrupt(int irq, void *dev_instance)
1051 struct net_device *dev = dev_instance;
1052 struct xircom_private *tp = netdev_priv(dev);
1053 long ioaddr = dev->base_addr;
1054 int csr5, work_budget = max_interrupt_work;
1055 int handled = 0;
1057 spin_lock (&tp->lock);
1059 do {
1060 csr5 = inl(ioaddr + CSR5);
1061 /* Acknowledge all of the current interrupt sources ASAP. */
1062 outl(csr5 & 0x0001ffff, ioaddr + CSR5);
1064 if (xircom_debug > 4)
1065 printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n",
1066 dev->name, csr5, inl(dev->base_addr + CSR5));
1068 if (csr5 == 0xffffffff)
1069 break; /* all bits set, assume PCMCIA card removed */
1071 if ((csr5 & (NormalIntr|AbnormalIntr)) == 0)
1072 break;
1074 handled = 1;
1076 if (csr5 & (RxIntr | RxNoBuf))
1077 work_budget -= xircom_rx(dev);
1079 if (csr5 & (TxNoBuf | TxDied | TxIntr)) {
1080 unsigned int dirty_tx;
1082 for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0;
1083 dirty_tx++) {
1084 int entry = dirty_tx % TX_RING_SIZE;
1085 int status = tp->tx_ring[entry].status;
1087 if (status < 0)
1088 break; /* It still hasn't been Txed */
1089 /* Check for Rx filter setup frames. */
1090 if (tp->tx_skbuff[entry] == NULL)
1091 continue;
1093 if (status & Tx0DescError) {
1094 /* There was an major error, log it. */
1095 #ifndef final_version
1096 if (xircom_debug > 1)
1097 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1098 dev->name, status);
1099 #endif
1100 tp->stats.tx_errors++;
1101 if (status & Tx0ManyColl) {
1102 tp->stats.tx_aborted_errors++;
1104 if (status & Tx0NoCarrier) tp->stats.tx_carrier_errors++;
1105 if (status & Tx0LateColl) tp->stats.tx_window_errors++;
1106 if (status & Tx0Underflow) tp->stats.tx_fifo_errors++;
1107 } else {
1108 tp->stats.tx_bytes += tp->tx_ring[entry].length & 0x7ff;
1109 tp->stats.collisions += (status >> 3) & 15;
1110 tp->stats.tx_packets++;
1113 /* Free the original skb. */
1114 dev_kfree_skb_irq(tp->tx_skbuff[entry]);
1115 tp->tx_skbuff[entry] = NULL;
1118 #ifndef final_version
1119 if (tp->cur_tx - dirty_tx > TX_RING_SIZE) {
1120 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1121 dev->name, dirty_tx, tp->cur_tx, tp->tx_full);
1122 dirty_tx += TX_RING_SIZE;
1124 #endif
1126 if (tp->tx_full &&
1127 tp->cur_tx - dirty_tx < TX_RING_SIZE - 2)
1128 /* The ring is no longer full */
1129 tp->tx_full = 0;
1131 if (tp->tx_full)
1132 netif_stop_queue (dev);
1133 else
1134 netif_wake_queue (dev);
1136 tp->dirty_tx = dirty_tx;
1137 if (csr5 & TxDied) {
1138 if (xircom_debug > 2)
1139 printk(KERN_WARNING "%s: The transmitter stopped."
1140 " CSR5 is %x, CSR6 %x, new CSR6 %x.\n",
1141 dev->name, csr5, inl(ioaddr + CSR6), tp->csr6);
1142 outl_CSR6(tp->csr6 | EnableRx, ioaddr);
1143 outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
1147 /* Log errors. */
1148 if (csr5 & AbnormalIntr) { /* Abnormal error summary bit. */
1149 if (csr5 & LinkChange)
1150 xircom_media_change(dev);
1151 if (csr5 & TxFIFOUnderflow) {
1152 if ((tp->csr6 & TxThreshMask) != TxThreshMask)
1153 tp->csr6 += (1 << TxThreshShift); /* Bump up the Tx threshold */
1154 else
1155 tp->csr6 |= TxStoreForw; /* Store-n-forward. */
1156 /* Restart the transmit process. */
1157 outl_CSR6(tp->csr6 | EnableRx, ioaddr);
1158 outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
1160 if (csr5 & RxDied) { /* Missed a Rx frame. */
1161 tp->stats.rx_errors++;
1162 tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
1163 outl_CSR6(tp->csr6 | EnableTxRx, ioaddr);
1165 /* Clear all error sources, included undocumented ones! */
1166 outl(0x0800f7ba, ioaddr + CSR5);
1168 if (--work_budget < 0) {
1169 if (xircom_debug > 1)
1170 printk(KERN_WARNING "%s: Too much work during an interrupt, "
1171 "csr5=0x%8.8x.\n", dev->name, csr5);
1172 /* Acknowledge all interrupt sources. */
1173 outl(0x8001ffff, ioaddr + CSR5);
1174 break;
1176 } while (1);
1178 if (xircom_debug > 3)
1179 printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n",
1180 dev->name, inl(ioaddr + CSR5));
1182 spin_unlock (&tp->lock);
1183 return IRQ_RETVAL(handled);
1187 static int
1188 xircom_rx(struct net_device *dev)
1190 struct xircom_private *tp = netdev_priv(dev);
1191 int entry = tp->cur_rx % RX_RING_SIZE;
1192 int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx;
1193 int work_done = 0;
1195 if (xircom_debug > 4)
1196 printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
1197 tp->rx_ring[entry].status);
1198 /* If we own the next entry, it's a new packet. Send it up. */
1199 while (tp->rx_ring[entry].status >= 0) {
1200 s32 status = tp->rx_ring[entry].status;
1202 if (xircom_debug > 5)
1203 printk(KERN_DEBUG " In xircom_rx(), entry %d %8.8x.\n", entry,
1204 tp->rx_ring[entry].status);
1205 if (--rx_work_limit < 0)
1206 break;
1207 if ((status & 0x38008300) != 0x0300) {
1208 if ((status & 0x38000300) != 0x0300) {
1209 /* Ignore earlier buffers. */
1210 if ((status & 0xffff) != 0x7fff) {
1211 if (xircom_debug > 1)
1212 printk(KERN_WARNING "%s: Oversized Ethernet frame "
1213 "spanned multiple buffers, status %8.8x!\n",
1214 dev->name, status);
1215 tp->stats.rx_length_errors++;
1217 } else if (status & Rx0DescError) {
1218 /* There was a fatal error. */
1219 if (xircom_debug > 2)
1220 printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n",
1221 dev->name, status);
1222 tp->stats.rx_errors++; /* end of a packet.*/
1223 if (status & (Rx0Runt | Rx0HugeFrame)) tp->stats.rx_length_errors++;
1224 if (status & Rx0CRCError) tp->stats.rx_crc_errors++;
1226 } else {
1227 /* Omit the four octet CRC from the length. */
1228 short pkt_len = ((status >> 16) & 0x7ff) - 4;
1229 struct sk_buff *skb;
1231 #ifndef final_version
1232 if (pkt_len > 1518) {
1233 printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n",
1234 dev->name, pkt_len, pkt_len);
1235 pkt_len = 1518;
1236 tp->stats.rx_length_errors++;
1238 #endif
1239 /* Check if the packet is long enough to accept without copying
1240 to a minimally-sized skbuff. */
1241 if (pkt_len < rx_copybreak
1242 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1243 skb_reserve(skb, 2); /* 16 byte align the IP header */
1244 #if ! defined(__alpha__)
1245 eth_copy_and_sum(skb, bus_to_virt(tp->rx_ring[entry].buffer1),
1246 pkt_len, 0);
1247 skb_put(skb, pkt_len);
1248 #else
1249 memcpy(skb_put(skb, pkt_len),
1250 bus_to_virt(tp->rx_ring[entry].buffer1), pkt_len);
1251 #endif
1252 work_done++;
1253 } else { /* Pass up the skb already on the Rx ring. */
1254 skb_put(skb = tp->rx_skbuff[entry], pkt_len);
1255 tp->rx_skbuff[entry] = NULL;
1257 skb->protocol = eth_type_trans(skb, dev);
1258 netif_rx(skb);
1259 dev->last_rx = jiffies;
1260 tp->stats.rx_packets++;
1261 tp->stats.rx_bytes += pkt_len;
1263 entry = (++tp->cur_rx) % RX_RING_SIZE;
1266 /* Refill the Rx ring buffers. */
1267 for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) {
1268 entry = tp->dirty_rx % RX_RING_SIZE;
1269 if (tp->rx_skbuff[entry] == NULL) {
1270 struct sk_buff *skb;
1271 skb = tp->rx_skbuff[entry] = dev_alloc_skb(PKT_BUF_SZ);
1272 if (skb == NULL)
1273 break;
1274 skb->dev = dev; /* Mark as being used by this device. */
1275 tp->rx_ring[entry].buffer1 = virt_to_bus(skb->data);
1276 work_done++;
1278 tp->rx_ring[entry].status = Rx0DescOwned;
1281 return work_done;
1285 static void
1286 xircom_down(struct net_device *dev)
1288 long ioaddr = dev->base_addr;
1289 struct xircom_private *tp = netdev_priv(dev);
1291 /* Disable interrupts by clearing the interrupt mask. */
1292 outl(0, ioaddr + CSR7);
1293 /* Stop the chip's Tx and Rx processes. */
1294 outl_CSR6(inl(ioaddr + CSR6) & ~EnableTxRx, ioaddr);
1296 if (inl(ioaddr + CSR6) != 0xffffffff)
1297 tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
1299 dev->if_port = tp->saved_if_port;
1303 static int
1304 xircom_close(struct net_device *dev)
1306 long ioaddr = dev->base_addr;
1307 struct xircom_private *tp = netdev_priv(dev);
1308 int i;
1310 if (xircom_debug > 1)
1311 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1312 dev->name, inl(ioaddr + CSR5));
1314 netif_stop_queue(dev);
1316 if (netif_device_present(dev))
1317 xircom_down(dev);
1319 free_irq(dev->irq, dev);
1321 /* Free all the skbuffs in the Rx queue. */
1322 for (i = 0; i < RX_RING_SIZE; i++) {
1323 struct sk_buff *skb = tp->rx_skbuff[i];
1324 tp->rx_skbuff[i] = NULL;
1325 tp->rx_ring[i].status = 0; /* Not owned by Xircom chip. */
1326 tp->rx_ring[i].length = 0;
1327 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
1328 if (skb) {
1329 dev_kfree_skb(skb);
1332 for (i = 0; i < TX_RING_SIZE; i++) {
1333 if (tp->tx_skbuff[i])
1334 dev_kfree_skb(tp->tx_skbuff[i]);
1335 tp->tx_skbuff[i] = NULL;
1338 tp->open = 0;
1339 return 0;
1343 static struct net_device_stats *xircom_get_stats(struct net_device *dev)
1345 struct xircom_private *tp = netdev_priv(dev);
1346 long ioaddr = dev->base_addr;
1348 if (netif_device_present(dev))
1349 tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
1351 return &tp->stats;
1354 static int xircom_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1356 struct xircom_private *tp = netdev_priv(dev);
1357 ecmd->supported =
1358 SUPPORTED_10baseT_Half |
1359 SUPPORTED_10baseT_Full |
1360 SUPPORTED_100baseT_Half |
1361 SUPPORTED_100baseT_Full |
1362 SUPPORTED_Autoneg |
1363 SUPPORTED_MII;
1365 ecmd->advertising = ADVERTISED_MII;
1366 if (tp->advertising[0] & ADVERTISE_10HALF)
1367 ecmd->advertising |= ADVERTISED_10baseT_Half;
1368 if (tp->advertising[0] & ADVERTISE_10FULL)
1369 ecmd->advertising |= ADVERTISED_10baseT_Full;
1370 if (tp->advertising[0] & ADVERTISE_100HALF)
1371 ecmd->advertising |= ADVERTISED_100baseT_Half;
1372 if (tp->advertising[0] & ADVERTISE_100FULL)
1373 ecmd->advertising |= ADVERTISED_100baseT_Full;
1374 if (tp->autoneg) {
1375 ecmd->advertising |= ADVERTISED_Autoneg;
1376 ecmd->autoneg = AUTONEG_ENABLE;
1377 } else
1378 ecmd->autoneg = AUTONEG_DISABLE;
1380 ecmd->port = PORT_MII;
1381 ecmd->transceiver = XCVR_INTERNAL;
1382 ecmd->phy_address = tp->phys[0];
1383 ecmd->speed = tp->speed100 ? SPEED_100 : SPEED_10;
1384 ecmd->duplex = tp->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1385 ecmd->maxtxpkt = TX_RING_SIZE / 2;
1386 ecmd->maxrxpkt = 0;
1387 return 0;
1390 static int xircom_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1392 struct xircom_private *tp = netdev_priv(dev);
1393 u16 autoneg, speed100, full_duplex;
1395 autoneg = (ecmd->autoneg == AUTONEG_ENABLE);
1396 speed100 = (ecmd->speed == SPEED_100);
1397 full_duplex = (ecmd->duplex == DUPLEX_FULL);
1399 tp->autoneg = autoneg;
1400 if (speed100 != tp->speed100 ||
1401 full_duplex != tp->full_duplex) {
1402 tp->speed100 = speed100;
1403 tp->full_duplex = full_duplex;
1404 /* change advertising bits */
1405 tp->advertising[0] &= ~(ADVERTISE_10HALF |
1406 ADVERTISE_10FULL |
1407 ADVERTISE_100HALF |
1408 ADVERTISE_100FULL |
1409 ADVERTISE_100BASE4);
1410 if (speed100) {
1411 if (full_duplex)
1412 tp->advertising[0] |= ADVERTISE_100FULL;
1413 else
1414 tp->advertising[0] |= ADVERTISE_100HALF;
1415 } else {
1416 if (full_duplex)
1417 tp->advertising[0] |= ADVERTISE_10FULL;
1418 else
1419 tp->advertising[0] |= ADVERTISE_10HALF;
1422 check_duplex(dev);
1423 return 0;
1426 static void xircom_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1428 struct xircom_private *tp = netdev_priv(dev);
1429 strcpy(info->driver, DRV_NAME);
1430 strcpy(info->version, DRV_VERSION);
1431 strcpy(info->bus_info, pci_name(tp->pdev));
1434 static const struct ethtool_ops ops = {
1435 .get_settings = xircom_get_settings,
1436 .set_settings = xircom_set_settings,
1437 .get_drvinfo = xircom_get_drvinfo,
1440 /* Provide ioctl() calls to examine the MII xcvr state. */
1441 static int xircom_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1443 struct xircom_private *tp = netdev_priv(dev);
1444 u16 *data = (u16 *)&rq->ifr_ifru;
1445 int phy = tp->phys[0] & 0x1f;
1446 unsigned long flags;
1448 switch(cmd) {
1449 /* Legacy mii-diag interface */
1450 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1451 if (tp->mii_cnt)
1452 data[0] = phy;
1453 else
1454 return -ENODEV;
1455 return 0;
1456 case SIOCGMIIREG: /* Read MII PHY register. */
1457 save_flags(flags);
1458 cli();
1459 data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
1460 restore_flags(flags);
1461 return 0;
1462 case SIOCSMIIREG: /* Write MII PHY register. */
1463 if (!capable(CAP_NET_ADMIN))
1464 return -EPERM;
1465 save_flags(flags);
1466 cli();
1467 if (data[0] == tp->phys[0]) {
1468 u16 value = data[2];
1469 switch (data[1]) {
1470 case 0:
1471 if (value & (BMCR_RESET | BMCR_ANENABLE))
1472 /* Autonegotiation. */
1473 tp->autoneg = 1;
1474 else {
1475 tp->full_duplex = (value & BMCR_FULLDPLX) ? 1 : 0;
1476 tp->autoneg = 0;
1478 break;
1479 case 4:
1480 tp->advertising[0] = value;
1481 break;
1483 check_duplex(dev);
1485 mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
1486 restore_flags(flags);
1487 return 0;
1488 default:
1489 return -EOPNOTSUPP;
1492 return -EOPNOTSUPP;
1495 /* Set or clear the multicast filter for this adaptor.
1496 Note that we only use exclusion around actually queueing the
1497 new frame, not around filling tp->setup_frame. This is non-deterministic
1498 when re-entered but still correct. */
1499 static void set_rx_mode(struct net_device *dev)
1501 struct xircom_private *tp = netdev_priv(dev);
1502 struct dev_mc_list *mclist;
1503 long ioaddr = dev->base_addr;
1504 int csr6 = inl(ioaddr + CSR6);
1505 u16 *eaddrs, *setup_frm;
1506 u32 tx_flags;
1507 int i;
1509 tp->csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
1510 csr6 &= ~(AllMultiBit | PromiscBit | HashFilterBit);
1511 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1512 tp->csr6 |= PromiscBit;
1513 csr6 |= PromiscBit;
1514 goto out;
1517 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1518 /* Too many to filter well -- accept all multicasts. */
1519 tp->csr6 |= AllMultiBit;
1520 csr6 |= AllMultiBit;
1521 goto out;
1524 tx_flags = Tx1WholePkt | Tx1SetupPkt | PKT_SETUP_SZ;
1526 /* Note that only the low-address shortword of setup_frame is valid! */
1527 setup_frm = tp->setup_frame;
1528 mclist = dev->mc_list;
1530 /* Fill the first entry with our physical address. */
1531 eaddrs = (u16 *)dev->dev_addr;
1532 *setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
1533 *setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
1534 *setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;
1536 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1537 u32 *hash_table = (u32 *)(tp->setup_frame + 4 * 12);
1538 u32 hash, hash2;
1540 tx_flags |= Tx1HashSetup;
1541 tp->csr6 |= HashFilterBit;
1542 csr6 |= HashFilterBit;
1544 /* Fill the unused 3 entries with the broadcast address.
1545 At least one entry *must* contain the broadcast address!!!*/
1546 for (i = 0; i < 3; i++) {
1547 *setup_frm = 0xffff; setup_frm += 2;
1548 *setup_frm = 0xffff; setup_frm += 2;
1549 *setup_frm = 0xffff; setup_frm += 2;
1552 /* Truly brain-damaged hash filter layout */
1553 /* XXX: not sure if I should take the last or the first 9 bits */
1554 for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
1555 u32 *hptr;
1556 hash = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
1557 if (hash < 384) {
1558 hash2 = hash + ((hash >> 4) << 4) +
1559 ((hash >> 5) << 5);
1560 } else {
1561 hash -= 384;
1562 hash2 = 64 + hash + (hash >> 4) * 80;
1564 hptr = &hash_table[hash2 & ~0x1f];
1565 *hptr |= cpu_to_le32(1 << (hash2 & 0x1f));
1567 } else {
1568 /* We have <= 14 mcast addresses so we can use Xircom's
1569 wonderful 16-address perfect filter. */
1570 for (i = 0; i < dev->mc_count; i++, mclist = mclist->next) {
1571 eaddrs = (u16 *)mclist->dmi_addr;
1572 *setup_frm = cpu_to_le16(eaddrs[0]); setup_frm += 2;
1573 *setup_frm = cpu_to_le16(eaddrs[1]); setup_frm += 2;
1574 *setup_frm = cpu_to_le16(eaddrs[2]); setup_frm += 2;
1576 /* Fill the unused entries with the broadcast address.
1577 At least one entry *must* contain the broadcast address!!!*/
1578 for (; i < 15; i++) {
1579 *setup_frm = 0xffff; setup_frm += 2;
1580 *setup_frm = 0xffff; setup_frm += 2;
1581 *setup_frm = 0xffff; setup_frm += 2;
1585 /* Now add this frame to the Tx list. */
1586 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1587 /* Same setup recently queued, we need not add it. */
1588 /* XXX: Huh? All it means is that the Tx list is full...*/
1589 } else {
1590 unsigned long flags;
1591 unsigned int entry;
1592 int dummy = -1;
1594 save_flags(flags); cli();
1595 entry = tp->cur_tx++ % TX_RING_SIZE;
1597 if (entry != 0) {
1598 /* Avoid a chip errata by prefixing a dummy entry. */
1599 tp->tx_skbuff[entry] = NULL;
1600 tp->tx_ring[entry].length =
1601 (entry == TX_RING_SIZE - 1) ? Tx1RingWrap : 0;
1602 tp->tx_ring[entry].buffer1 = 0;
1603 /* race with chip, set Tx0DescOwned later */
1604 dummy = entry;
1605 entry = tp->cur_tx++ % TX_RING_SIZE;
1608 tp->tx_skbuff[entry] = NULL;
1609 /* Put the setup frame on the Tx list. */
1610 if (entry == TX_RING_SIZE - 1)
1611 tx_flags |= Tx1RingWrap; /* Wrap ring. */
1612 tp->tx_ring[entry].length = tx_flags;
1613 tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame);
1614 tp->tx_ring[entry].status = Tx0DescOwned;
1615 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) {
1616 tp->tx_full = 1;
1617 netif_stop_queue (dev);
1619 if (dummy >= 0)
1620 tp->tx_ring[dummy].status = Tx0DescOwned;
1621 restore_flags(flags);
1622 /* Trigger an immediate transmit demand. */
1623 outl(0, ioaddr + CSR1);
1626 out:
1627 outl_CSR6(csr6, ioaddr);
1631 static struct pci_device_id xircom_pci_table[] = {
1632 { 0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, X3201_3 },
1633 {0},
1635 MODULE_DEVICE_TABLE(pci, xircom_pci_table);
1638 #ifdef CONFIG_PM
1639 static int xircom_suspend(struct pci_dev *pdev, pm_message_t state)
1641 struct net_device *dev = pci_get_drvdata(pdev);
1642 struct xircom_private *tp = netdev_priv(dev);
1643 printk(KERN_INFO "xircom_suspend(%s)\n", dev->name);
1644 if (tp->open)
1645 xircom_down(dev);
1647 pci_save_state(pdev);
1648 pci_disable_device(pdev);
1649 pci_set_power_state(pdev, 3);
1651 return 0;
1655 static int xircom_resume(struct pci_dev *pdev)
1657 struct net_device *dev = pci_get_drvdata(pdev);
1658 struct xircom_private *tp = netdev_priv(dev);
1659 printk(KERN_INFO "xircom_resume(%s)\n", dev->name);
1661 pci_set_power_state(pdev,0);
1662 pci_enable_device(pdev);
1663 pci_restore_state(pdev);
1665 /* Bring the chip out of sleep mode.
1666 Caution: Snooze mode does not work with some boards! */
1667 if (xircom_tbl[tp->chip_id].flags & HAS_ACPI)
1668 pci_write_config_dword(tp->pdev, PCI_POWERMGMT, 0);
1670 transceiver_voodoo(dev);
1671 if (xircom_tbl[tp->chip_id].flags & HAS_MII)
1672 check_duplex(dev);
1674 if (tp->open)
1675 xircom_up(dev);
1676 return 0;
1678 #endif /* CONFIG_PM */
1681 static void __devexit xircom_remove_one(struct pci_dev *pdev)
1683 struct net_device *dev = pci_get_drvdata(pdev);
1685 printk(KERN_INFO "xircom_remove_one(%s)\n", dev->name);
1686 unregister_netdev(dev);
1687 pci_release_regions(pdev);
1688 free_netdev(dev);
1689 pci_set_drvdata(pdev, NULL);
1693 static struct pci_driver xircom_driver = {
1694 .name = DRV_NAME,
1695 .id_table = xircom_pci_table,
1696 .probe = xircom_init_one,
1697 .remove = __devexit_p(xircom_remove_one),
1698 #ifdef CONFIG_PM
1699 .suspend = xircom_suspend,
1700 .resume = xircom_resume
1701 #endif /* CONFIG_PM */
1705 static int __init xircom_init(void)
1707 /* when a module, this is printed whether or not devices are found in probe */
1708 #ifdef MODULE
1709 printk(version);
1710 #endif
1711 return pci_register_driver(&xircom_driver);
1715 static void __exit xircom_exit(void)
1717 pci_unregister_driver(&xircom_driver);
1720 module_init(xircom_init)
1721 module_exit(xircom_exit)
1724 * Local variables:
1725 * c-indent-level: 4
1726 * c-basic-offset: 4
1727 * tab-width: 4
1728 * End: