allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / net / tulip / tulip_core.c
blob041af63f2811c4cb35ddf7f63a6dcea2c8b33412
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
3 /*
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
21 #else
22 #define DRV_VERSION "1.1.15"
23 #endif
24 #define DRV_RELDATE "Feb 27, 2007"
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include "tulip.h"
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
39 #ifdef CONFIG_SPARC
40 #include <asm/prom.h>
41 #endif
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
47 /* A few user-configurable values. */
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
52 #define MAX_UNITS 8
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(CONFIG_SPARC) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(CONFIG_SPARC) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
104 #else
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
107 #endif
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
125 #define PFX DRV_NAME ": "
127 #ifdef TULIP_DEBUG
128 int tulip_debug = TULIP_DEBUG;
129 #else
130 int tulip_debug = 1;
131 #endif
133 static void tulip_timer(unsigned long data)
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
143 * This table use during operation for capabilities and media timer.
145 * It is indexed via the values in 'enum chips'
148 struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
152 /* DC21140 */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 tulip_media_task },
157 /* DC21142, DC21143 */
158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
162 /* LC82C168 */
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
166 /* MX98713 */
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
170 /* MX98715 */
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
172 HAS_MEDIA_TABLE, mxic_timer, },
174 /* MX98725 */
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
176 HAS_MEDIA_TABLE, mxic_timer, },
178 /* AX88140 */
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
181 | IS_ASIX, tulip_timer, tulip_media_task },
183 /* PNIC2 */
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
187 /* COMET */
188 { "ADMtek Comet", 256, 0x0001abef,
189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
191 /* COMPEX9881 */
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
195 /* I21145 */
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
200 /* DM910X */
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
203 tulip_timer, tulip_media_task },
205 /* RS7112 */
206 { "Conexant LANfinity", 256, 0x0001ebef,
207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
212 static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261 static int tulip_open(struct net_device *dev);
262 static int tulip_close(struct net_device *dev);
263 static void tulip_up(struct net_device *dev);
264 static void tulip_down(struct net_device *dev);
265 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267 static void set_rx_mode(struct net_device *dev);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 static void poll_tulip(struct net_device *dev);
270 #endif
272 static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
275 if (tp->flags & HAS_ACPI) {
276 u32 tmp, newtmp;
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
279 if (sleep)
280 newtmp |= CFDD_Sleep;
281 else if (snooze)
282 newtmp |= CFDD_Snooze;
283 if (tmp != newtmp)
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
290 static void tulip_up(struct net_device *dev)
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
295 int i;
297 /* Wake the chip from sleep/snooze mode. */
298 tulip_set_power_state (tp, 0, 0);
300 /* On some chip revs we must set the MII/SYM port before the reset!? */
301 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
302 iowrite32(0x00040000, ioaddr + CSR6);
304 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
305 iowrite32(0x00000001, ioaddr + CSR0);
306 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
307 udelay(100);
309 /* Deassert reset.
310 Wait the specified 50 PCI cycles after a reset by initializing
311 Tx and Rx queues and the address filter list. */
312 iowrite32(tp->csr0, ioaddr + CSR0);
313 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
314 udelay(100);
316 if (tulip_debug > 1)
317 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
319 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
320 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
321 tp->cur_rx = tp->cur_tx = 0;
322 tp->dirty_rx = tp->dirty_tx = 0;
324 if (tp->flags & MC_HASH_ONLY) {
325 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
326 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
327 if (tp->chip_id == AX88140) {
328 iowrite32(0, ioaddr + CSR13);
329 iowrite32(addr_low, ioaddr + CSR14);
330 iowrite32(1, ioaddr + CSR13);
331 iowrite32(addr_high, ioaddr + CSR14);
332 } else if (tp->flags & COMET_MAC_ADDR) {
333 iowrite32(addr_low, ioaddr + 0xA4);
334 iowrite32(addr_high, ioaddr + 0xA8);
335 iowrite32(0, ioaddr + 0xAC);
336 iowrite32(0, ioaddr + 0xB0);
338 } else {
339 /* This is set_rx_mode(), but without starting the transmitter. */
340 u16 *eaddrs = (u16 *)dev->dev_addr;
341 u16 *setup_frm = &tp->setup_frame[15*6];
342 dma_addr_t mapping;
344 /* 21140 bug: you must add the broadcast address. */
345 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
346 /* Fill the final entry of the table with our physical address. */
347 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
348 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
349 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
351 mapping = pci_map_single(tp->pdev, tp->setup_frame,
352 sizeof(tp->setup_frame),
353 PCI_DMA_TODEVICE);
354 tp->tx_buffers[tp->cur_tx].skb = NULL;
355 tp->tx_buffers[tp->cur_tx].mapping = mapping;
357 /* Put the setup frame on the Tx list. */
358 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
359 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
360 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
362 tp->cur_tx++;
365 tp->saved_if_port = dev->if_port;
366 if (dev->if_port == 0)
367 dev->if_port = tp->default_port;
369 /* Allow selecting a default media. */
370 i = 0;
371 if (tp->mtable == NULL)
372 goto media_picked;
373 if (dev->if_port) {
374 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
375 (dev->if_port == 12 ? 0 : dev->if_port);
376 for (i = 0; i < tp->mtable->leafcount; i++)
377 if (tp->mtable->mleaf[i].media == looking_for) {
378 printk(KERN_INFO "%s: Using user-specified media %s.\n",
379 dev->name, medianame[dev->if_port]);
380 goto media_picked;
383 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
384 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
385 for (i = 0; i < tp->mtable->leafcount; i++)
386 if (tp->mtable->mleaf[i].media == looking_for) {
387 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
388 dev->name, medianame[looking_for]);
389 goto media_picked;
392 /* Start sensing first non-full-duplex media. */
393 for (i = tp->mtable->leafcount - 1;
394 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
396 media_picked:
398 tp->csr6 = 0;
399 tp->cur_index = i;
400 tp->nwayset = 0;
402 if (dev->if_port) {
403 if (tp->chip_id == DC21143 &&
404 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
405 /* We must reset the media CSRs when we force-select MII mode. */
406 iowrite32(0x0000, ioaddr + CSR13);
407 iowrite32(0x0000, ioaddr + CSR14);
408 iowrite32(0x0008, ioaddr + CSR15);
410 tulip_select_media(dev, 1);
411 } else if (tp->chip_id == DC21142) {
412 if (tp->mii_cnt) {
413 tulip_select_media(dev, 1);
414 if (tulip_debug > 1)
415 printk(KERN_INFO "%s: Using MII transceiver %d, status "
416 "%4.4x.\n",
417 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
418 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
419 tp->csr6 = csr6_mask_hdcap;
420 dev->if_port = 11;
421 iowrite32(0x0000, ioaddr + CSR13);
422 iowrite32(0x0000, ioaddr + CSR14);
423 } else
424 t21142_start_nway(dev);
425 } else if (tp->chip_id == PNIC2) {
426 /* for initial startup advertise 10/100 Full and Half */
427 tp->sym_advertise = 0x01E0;
428 /* enable autonegotiate end interrupt */
429 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
430 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
431 pnic2_start_nway(dev);
432 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
433 if (tp->mii_cnt) {
434 dev->if_port = 11;
435 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
436 iowrite32(0x0001, ioaddr + CSR15);
437 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
438 pnic_do_nway(dev);
439 else {
440 /* Start with 10mbps to do autonegotiation. */
441 iowrite32(0x32, ioaddr + CSR12);
442 tp->csr6 = 0x00420000;
443 iowrite32(0x0001B078, ioaddr + 0xB8);
444 iowrite32(0x0201B078, ioaddr + 0xB8);
445 next_tick = 1*HZ;
447 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
448 && ! tp->medialock) {
449 dev->if_port = 0;
450 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
451 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
452 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
453 /* Provided by BOLO, Macronix - 12/10/1998. */
454 dev->if_port = 0;
455 tp->csr6 = 0x01a80200;
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
458 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
459 /* Enable automatic Tx underrun recovery. */
460 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
461 dev->if_port = tp->mii_cnt ? 11 : 0;
462 tp->csr6 = 0x00040000;
463 } else if (tp->chip_id == AX88140) {
464 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
465 } else
466 tulip_select_media(dev, 1);
468 /* Start the chip's Tx to process setup frame. */
469 tulip_stop_rxtx(tp);
470 barrier();
471 udelay(5);
472 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
474 /* Enable interrupts by setting the interrupt mask. */
475 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
476 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
477 tulip_start_rxtx(tp);
478 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
480 if (tulip_debug > 2) {
481 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
482 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
483 ioread32(ioaddr + CSR6));
486 /* Set the timer to switch to check for link beat and perhaps switch
487 to an alternate media type. */
488 tp->timer.expires = RUN_AT(next_tick);
489 add_timer(&tp->timer);
490 #ifdef CONFIG_TULIP_NAPI
491 init_timer(&tp->oom_timer);
492 tp->oom_timer.data = (unsigned long)dev;
493 tp->oom_timer.function = oom_timer;
494 #endif
497 static int
498 tulip_open(struct net_device *dev)
500 int retval;
502 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
503 return retval;
505 tulip_init_ring (dev);
507 tulip_up (dev);
509 netif_start_queue (dev);
511 return 0;
515 static void tulip_tx_timeout(struct net_device *dev)
517 struct tulip_private *tp = netdev_priv(dev);
518 void __iomem *ioaddr = tp->base_addr;
519 unsigned long flags;
521 spin_lock_irqsave (&tp->lock, flags);
523 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
524 /* Do nothing -- the media monitor should handle this. */
525 if (tulip_debug > 1)
526 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
527 dev->name);
528 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
529 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
530 || tp->chip_id == DM910X) {
531 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
532 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
533 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
534 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
535 tp->timeout_recovery = 1;
536 schedule_work(&tp->media_work);
537 goto out_unlock;
538 } else if (tp->chip_id == PNIC2) {
539 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
540 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
541 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
542 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
543 } else {
544 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
545 "%8.8x, resetting...\n",
546 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
547 dev->if_port = 0;
550 #if defined(way_too_many_messages)
551 if (tulip_debug > 3) {
552 int i;
553 for (i = 0; i < RX_RING_SIZE; i++) {
554 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
555 int j;
556 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
557 "%2.2x %2.2x %2.2x.\n",
558 i, (unsigned int)tp->rx_ring[i].status,
559 (unsigned int)tp->rx_ring[i].length,
560 (unsigned int)tp->rx_ring[i].buffer1,
561 (unsigned int)tp->rx_ring[i].buffer2,
562 buf[0], buf[1], buf[2]);
563 for (j = 0; buf[j] != 0xee && j < 1600; j++)
564 if (j < 100) printk(" %2.2x", buf[j]);
565 printk(" j=%d.\n", j);
567 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
568 for (i = 0; i < RX_RING_SIZE; i++)
569 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
570 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
571 for (i = 0; i < TX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
573 printk("\n");
575 #endif
577 tulip_tx_timeout_complete(tp, ioaddr);
579 out_unlock:
580 spin_unlock_irqrestore (&tp->lock, flags);
581 dev->trans_start = jiffies;
582 netif_wake_queue (dev);
586 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
587 static void tulip_init_ring(struct net_device *dev)
589 struct tulip_private *tp = netdev_priv(dev);
590 int i;
592 tp->susp_rx = 0;
593 tp->ttimer = 0;
594 tp->nir = 0;
596 for (i = 0; i < RX_RING_SIZE; i++) {
597 tp->rx_ring[i].status = 0x00000000;
598 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
599 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
600 tp->rx_buffers[i].skb = NULL;
601 tp->rx_buffers[i].mapping = 0;
603 /* Mark the last entry as wrapping the ring. */
604 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
605 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
607 for (i = 0; i < RX_RING_SIZE; i++) {
608 dma_addr_t mapping;
610 /* Note the receive buffer must be longword aligned.
611 dev_alloc_skb() provides 16 byte alignment. But do *not*
612 use skb_reserve() to align the IP header! */
613 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
614 tp->rx_buffers[i].skb = skb;
615 if (skb == NULL)
616 break;
617 mapping = pci_map_single(tp->pdev, skb->data,
618 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
619 tp->rx_buffers[i].mapping = mapping;
620 skb->dev = dev; /* Mark as being used by this device. */
621 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
622 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
624 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
626 /* The Tx buffer descriptor is filled in as needed, but we
627 do need to clear the ownership bit. */
628 for (i = 0; i < TX_RING_SIZE; i++) {
629 tp->tx_buffers[i].skb = NULL;
630 tp->tx_buffers[i].mapping = 0;
631 tp->tx_ring[i].status = 0x00000000;
632 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
634 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
637 static int
638 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
640 struct tulip_private *tp = netdev_priv(dev);
641 int entry;
642 u32 flag;
643 dma_addr_t mapping;
645 spin_lock_irq(&tp->lock);
647 /* Calculate the next Tx descriptor entry. */
648 entry = tp->cur_tx % TX_RING_SIZE;
650 tp->tx_buffers[entry].skb = skb;
651 mapping = pci_map_single(tp->pdev, skb->data,
652 skb->len, PCI_DMA_TODEVICE);
653 tp->tx_buffers[entry].mapping = mapping;
654 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
656 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
657 flag = 0x60000000; /* No interrupt */
658 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
659 flag = 0xe0000000; /* Tx-done intr. */
660 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
661 flag = 0x60000000; /* No Tx-done intr. */
662 } else { /* Leave room for set_rx_mode() to fill entries. */
663 flag = 0xe0000000; /* Tx-done intr. */
664 netif_stop_queue(dev);
666 if (entry == TX_RING_SIZE-1)
667 flag = 0xe0000000 | DESC_RING_WRAP;
669 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
670 /* if we were using Transmit Automatic Polling, we would need a
671 * wmb() here. */
672 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
673 wmb();
675 tp->cur_tx++;
677 /* Trigger an immediate transmit demand. */
678 iowrite32(0, tp->base_addr + CSR1);
680 spin_unlock_irq(&tp->lock);
682 dev->trans_start = jiffies;
684 return 0;
687 static void tulip_clean_tx_ring(struct tulip_private *tp)
689 unsigned int dirty_tx;
691 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
692 dirty_tx++) {
693 int entry = dirty_tx % TX_RING_SIZE;
694 int status = le32_to_cpu(tp->tx_ring[entry].status);
696 if (status < 0) {
697 tp->stats.tx_errors++; /* It wasn't Txed */
698 tp->tx_ring[entry].status = 0;
701 /* Check for Tx filter setup frames. */
702 if (tp->tx_buffers[entry].skb == NULL) {
703 /* test because dummy frames not mapped */
704 if (tp->tx_buffers[entry].mapping)
705 pci_unmap_single(tp->pdev,
706 tp->tx_buffers[entry].mapping,
707 sizeof(tp->setup_frame),
708 PCI_DMA_TODEVICE);
709 continue;
712 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
713 tp->tx_buffers[entry].skb->len,
714 PCI_DMA_TODEVICE);
716 /* Free the original skb. */
717 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
718 tp->tx_buffers[entry].skb = NULL;
719 tp->tx_buffers[entry].mapping = 0;
723 static void tulip_down (struct net_device *dev)
725 struct tulip_private *tp = netdev_priv(dev);
726 void __iomem *ioaddr = tp->base_addr;
727 unsigned long flags;
729 flush_scheduled_work();
731 del_timer_sync (&tp->timer);
732 #ifdef CONFIG_TULIP_NAPI
733 del_timer_sync (&tp->oom_timer);
734 #endif
735 spin_lock_irqsave (&tp->lock, flags);
737 /* Disable interrupts by clearing the interrupt mask. */
738 iowrite32 (0x00000000, ioaddr + CSR7);
740 /* Stop the Tx and Rx processes. */
741 tulip_stop_rxtx(tp);
743 /* prepare receive buffers */
744 tulip_refill_rx(dev);
746 /* release any unconsumed transmit buffers */
747 tulip_clean_tx_ring(tp);
749 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
750 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
752 spin_unlock_irqrestore (&tp->lock, flags);
754 init_timer(&tp->timer);
755 tp->timer.data = (unsigned long)dev;
756 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
758 dev->if_port = tp->saved_if_port;
760 /* Leave the driver in snooze, not sleep, mode. */
761 tulip_set_power_state (tp, 0, 1);
765 static int tulip_close (struct net_device *dev)
767 struct tulip_private *tp = netdev_priv(dev);
768 void __iomem *ioaddr = tp->base_addr;
769 int i;
771 netif_stop_queue (dev);
773 tulip_down (dev);
775 if (tulip_debug > 1)
776 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
777 dev->name, ioread32 (ioaddr + CSR5));
779 free_irq (dev->irq, dev);
781 /* Free all the skbuffs in the Rx queue. */
782 for (i = 0; i < RX_RING_SIZE; i++) {
783 struct sk_buff *skb = tp->rx_buffers[i].skb;
784 dma_addr_t mapping = tp->rx_buffers[i].mapping;
786 tp->rx_buffers[i].skb = NULL;
787 tp->rx_buffers[i].mapping = 0;
789 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
790 tp->rx_ring[i].length = 0;
791 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
792 if (skb) {
793 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
794 PCI_DMA_FROMDEVICE);
795 dev_kfree_skb (skb);
798 for (i = 0; i < TX_RING_SIZE; i++) {
799 struct sk_buff *skb = tp->tx_buffers[i].skb;
801 if (skb != NULL) {
802 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
803 skb->len, PCI_DMA_TODEVICE);
804 dev_kfree_skb (skb);
806 tp->tx_buffers[i].skb = NULL;
807 tp->tx_buffers[i].mapping = 0;
810 return 0;
813 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
815 struct tulip_private *tp = netdev_priv(dev);
816 void __iomem *ioaddr = tp->base_addr;
818 if (netif_running(dev)) {
819 unsigned long flags;
821 spin_lock_irqsave (&tp->lock, flags);
823 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
825 spin_unlock_irqrestore(&tp->lock, flags);
828 return &tp->stats;
832 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
834 struct tulip_private *np = netdev_priv(dev);
835 strcpy(info->driver, DRV_NAME);
836 strcpy(info->version, DRV_VERSION);
837 strcpy(info->bus_info, pci_name(np->pdev));
840 static const struct ethtool_ops ops = {
841 .get_drvinfo = tulip_get_drvinfo
844 /* Provide ioctl() calls to examine the MII xcvr state. */
845 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
847 struct tulip_private *tp = netdev_priv(dev);
848 void __iomem *ioaddr = tp->base_addr;
849 struct mii_ioctl_data *data = if_mii(rq);
850 const unsigned int phy_idx = 0;
851 int phy = tp->phys[phy_idx] & 0x1f;
852 unsigned int regnum = data->reg_num;
854 switch (cmd) {
855 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
856 if (tp->mii_cnt)
857 data->phy_id = phy;
858 else if (tp->flags & HAS_NWAY)
859 data->phy_id = 32;
860 else if (tp->chip_id == COMET)
861 data->phy_id = 1;
862 else
863 return -ENODEV;
865 case SIOCGMIIREG: /* Read MII PHY register. */
866 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
867 int csr12 = ioread32 (ioaddr + CSR12);
868 int csr14 = ioread32 (ioaddr + CSR14);
869 switch (regnum) {
870 case 0:
871 if (((csr14<<5) & 0x1000) ||
872 (dev->if_port == 5 && tp->nwayset))
873 data->val_out = 0x1000;
874 else
875 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
876 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
877 break;
878 case 1:
879 data->val_out =
880 0x1848 +
881 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
882 ((csr12&0x06) == 6 ? 0 : 4);
883 data->val_out |= 0x6048;
884 break;
885 case 4:
886 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
887 data->val_out =
888 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
889 ((csr14 >> 1) & 0x20) + 1;
890 data->val_out |= ((csr14 >> 9) & 0x03C0);
891 break;
892 case 5: data->val_out = tp->lpar; break;
893 default: data->val_out = 0; break;
895 } else {
896 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
898 return 0;
900 case SIOCSMIIREG: /* Write MII PHY register. */
901 if (!capable (CAP_NET_ADMIN))
902 return -EPERM;
903 if (regnum & ~0x1f)
904 return -EINVAL;
905 if (data->phy_id == phy) {
906 u16 value = data->val_in;
907 switch (regnum) {
908 case 0: /* Check for autonegotiation on or reset. */
909 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
910 if (tp->full_duplex_lock)
911 tp->full_duplex = (value & 0x0100) ? 1 : 0;
912 break;
913 case 4:
914 tp->advertising[phy_idx] =
915 tp->mii_advertise = data->val_in;
916 break;
919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
920 u16 value = data->val_in;
921 if (regnum == 0) {
922 if ((value & 0x1200) == 0x1200) {
923 if (tp->chip_id == PNIC2) {
924 pnic2_start_nway (dev);
925 } else {
926 t21142_start_nway (dev);
929 } else if (regnum == 4)
930 tp->sym_advertise = value;
931 } else {
932 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
934 return 0;
935 default:
936 return -EOPNOTSUPP;
939 return -EOPNOTSUPP;
943 /* Set or clear the multicast filter for this adaptor.
944 Note that we only use exclusion around actually queueing the
945 new frame, not around filling tp->setup_frame. This is non-deterministic
946 when re-entered but still correct. */
948 #undef set_bit_le
949 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
951 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
953 struct tulip_private *tp = netdev_priv(dev);
954 u16 hash_table[32];
955 struct dev_mc_list *mclist;
956 int i;
957 u16 *eaddrs;
959 memset(hash_table, 0, sizeof(hash_table));
960 set_bit_le(255, hash_table); /* Broadcast entry */
961 /* This should work on big-endian machines as well. */
962 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
963 i++, mclist = mclist->next) {
964 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
966 set_bit_le(index, hash_table);
969 for (i = 0; i < 32; i++) {
970 *setup_frm++ = hash_table[i];
971 *setup_frm++ = hash_table[i];
973 setup_frm = &tp->setup_frame[13*6];
975 /* Fill the final entry with our physical address. */
976 eaddrs = (u16 *)dev->dev_addr;
977 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
978 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
979 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
982 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
984 struct tulip_private *tp = netdev_priv(dev);
985 struct dev_mc_list *mclist;
986 int i;
987 u16 *eaddrs;
989 /* We have <= 14 addresses so we can use the wonderful
990 16 address perfect filtering of the Tulip. */
991 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
992 i++, mclist = mclist->next) {
993 eaddrs = (u16 *)mclist->dmi_addr;
994 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
995 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
996 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
998 /* Fill the unused entries with the broadcast address. */
999 memset(setup_frm, 0xff, (15-i)*12);
1000 setup_frm = &tp->setup_frame[15*6];
1002 /* Fill the final entry with our physical address. */
1003 eaddrs = (u16 *)dev->dev_addr;
1004 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1005 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1006 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1010 static void set_rx_mode(struct net_device *dev)
1012 struct tulip_private *tp = netdev_priv(dev);
1013 void __iomem *ioaddr = tp->base_addr;
1014 int csr6;
1016 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1018 tp->csr6 &= ~0x00D5;
1019 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1020 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1021 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1022 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1023 /* Too many to filter well -- accept all multicasts. */
1024 tp->csr6 |= AcceptAllMulticast;
1025 csr6 |= AcceptAllMulticast;
1026 } else if (tp->flags & MC_HASH_ONLY) {
1027 /* Some work-alikes have only a 64-entry hash filter table. */
1028 /* Should verify correctness on big-endian/__powerpc__ */
1029 struct dev_mc_list *mclist;
1030 int i;
1031 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else {
1035 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1036 int filterbit;
1037 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1038 i++, mclist = mclist->next) {
1039 if (tp->flags & COMET_MAC_ADDR)
1040 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1041 else
1042 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1043 filterbit &= 0x3f;
1044 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1045 if (tulip_debug > 2) {
1046 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1047 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1048 mclist->dmi_addr[0], mclist->dmi_addr[1],
1049 mclist->dmi_addr[2], mclist->dmi_addr[3],
1050 mclist->dmi_addr[4], mclist->dmi_addr[5],
1051 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1054 if (mc_filter[0] == tp->mc_filter[0] &&
1055 mc_filter[1] == tp->mc_filter[1])
1056 ; /* No change. */
1057 else if (tp->flags & IS_ASIX) {
1058 iowrite32(2, ioaddr + CSR13);
1059 iowrite32(mc_filter[0], ioaddr + CSR14);
1060 iowrite32(3, ioaddr + CSR13);
1061 iowrite32(mc_filter[1], ioaddr + CSR14);
1062 } else if (tp->flags & COMET_MAC_ADDR) {
1063 iowrite32(mc_filter[0], ioaddr + 0xAC);
1064 iowrite32(mc_filter[1], ioaddr + 0xB0);
1066 tp->mc_filter[0] = mc_filter[0];
1067 tp->mc_filter[1] = mc_filter[1];
1069 } else {
1070 unsigned long flags;
1071 u32 tx_flags = 0x08000000 | 192;
1073 /* Note that only the low-address shortword of setup_frame is valid!
1074 The values are doubled for big-endian architectures. */
1075 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1076 build_setup_frame_hash(tp->setup_frame, dev);
1077 tx_flags = 0x08400000 | 192;
1078 } else {
1079 build_setup_frame_perfect(tp->setup_frame, dev);
1082 spin_lock_irqsave(&tp->lock, flags);
1084 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1085 /* Same setup recently queued, we need not add it. */
1086 } else {
1087 unsigned int entry;
1088 int dummy = -1;
1090 /* Now add this frame to the Tx list. */
1092 entry = tp->cur_tx++ % TX_RING_SIZE;
1094 if (entry != 0) {
1095 /* Avoid a chip errata by prefixing a dummy entry. */
1096 tp->tx_buffers[entry].skb = NULL;
1097 tp->tx_buffers[entry].mapping = 0;
1098 tp->tx_ring[entry].length =
1099 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1100 tp->tx_ring[entry].buffer1 = 0;
1101 /* Must set DescOwned later to avoid race with chip */
1102 dummy = entry;
1103 entry = tp->cur_tx++ % TX_RING_SIZE;
1107 tp->tx_buffers[entry].skb = NULL;
1108 tp->tx_buffers[entry].mapping =
1109 pci_map_single(tp->pdev, tp->setup_frame,
1110 sizeof(tp->setup_frame),
1111 PCI_DMA_TODEVICE);
1112 /* Put the setup frame on the Tx list. */
1113 if (entry == TX_RING_SIZE-1)
1114 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1115 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1116 tp->tx_ring[entry].buffer1 =
1117 cpu_to_le32(tp->tx_buffers[entry].mapping);
1118 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1119 if (dummy >= 0)
1120 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1121 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1122 netif_stop_queue(dev);
1124 /* Trigger an immediate transmit demand. */
1125 iowrite32(0, ioaddr + CSR1);
1128 spin_unlock_irqrestore(&tp->lock, flags);
1131 iowrite32(csr6, ioaddr + CSR6);
1134 #ifdef CONFIG_TULIP_MWI
1135 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1136 struct net_device *dev)
1138 struct tulip_private *tp = netdev_priv(dev);
1139 u8 cache;
1140 u16 pci_command;
1141 u32 csr0;
1143 if (tulip_debug > 3)
1144 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1146 tp->csr0 = csr0 = 0;
1148 /* if we have any cache line size at all, we can do MRM */
1149 csr0 |= MRM;
1151 /* ...and barring hardware bugs, MWI */
1152 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1153 csr0 |= MWI;
1155 /* set or disable MWI in the standard PCI command bit.
1156 * Check for the case where mwi is desired but not available
1158 if (csr0 & MWI) pci_set_mwi(pdev);
1159 else pci_clear_mwi(pdev);
1161 /* read result from hardware (in case bit refused to enable) */
1162 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1163 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1164 csr0 &= ~MWI;
1166 /* if cache line size hardwired to zero, no MWI */
1167 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1168 if ((csr0 & MWI) && (cache == 0)) {
1169 csr0 &= ~MWI;
1170 pci_clear_mwi(pdev);
1173 /* assign per-cacheline-size cache alignment and
1174 * burst length values
1176 switch (cache) {
1177 case 8:
1178 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1179 break;
1180 case 16:
1181 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1182 break;
1183 case 32:
1184 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1185 break;
1186 default:
1187 cache = 0;
1188 break;
1191 /* if we have a good cache line size, we by now have a good
1192 * csr0, so save it and exit
1194 if (cache)
1195 goto out;
1197 /* we don't have a good csr0 or cache line size, disable MWI */
1198 if (csr0 & MWI) {
1199 pci_clear_mwi(pdev);
1200 csr0 &= ~MWI;
1203 /* sane defaults for burst length and cache alignment
1204 * originally from de4x5 driver
1206 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1208 out:
1209 tp->csr0 = csr0;
1210 if (tulip_debug > 2)
1211 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1212 pci_name(pdev), cache, csr0);
1214 #endif
1217 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1218 * is the DM910X and the on chip ULi devices
1221 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1223 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1224 return 1;
1225 return 0;
1228 static int __devinit tulip_init_one (struct pci_dev *pdev,
1229 const struct pci_device_id *ent)
1231 struct tulip_private *tp;
1232 /* See note below on the multiport cards. */
1233 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1234 static struct pci_device_id early_486_chipsets[] = {
1235 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1236 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1237 { },
1239 static int last_irq;
1240 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1241 u8 chip_rev;
1242 int i, irq;
1243 unsigned short sum;
1244 unsigned char *ee_data;
1245 struct net_device *dev;
1246 void __iomem *ioaddr;
1247 static int board_idx = -1;
1248 int chip_idx = ent->driver_data;
1249 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1250 unsigned int eeprom_missing = 0;
1251 unsigned int force_csr0 = 0;
1253 #ifndef MODULE
1254 static int did_version; /* Already printed version info. */
1255 if (tulip_debug > 0 && did_version++ == 0)
1256 printk (KERN_INFO "%s", version);
1257 #endif
1259 board_idx++;
1262 * Lan media wire a tulip chip to a wan interface. Needs a very
1263 * different driver (lmc driver)
1266 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1267 printk (KERN_ERR PFX "skipping LMC card.\n");
1268 return -ENODEV;
1272 * Early DM9100's need software CRC and the DMFE driver
1275 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1277 u32 dev_rev;
1278 /* Read Chip revision */
1279 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1280 if(dev_rev < 0x02000030)
1282 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1283 return -ENODEV;
1288 * Looks for early PCI chipsets where people report hangs
1289 * without the workarounds being on.
1292 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1293 aligned. Aries might need this too. The Saturn errata are not
1294 pretty reading but thankfully it's an old 486 chipset.
1296 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1297 Saturn.
1300 if (pci_dev_present(early_486_chipsets)) {
1301 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1302 force_csr0 = 1;
1305 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1306 if (chip_idx == AX88140) {
1307 if ((csr0 & 0x3f00) == 0)
1308 csr0 |= 0x2000;
1311 /* PNIC doesn't have MWI/MRL/MRM... */
1312 if (chip_idx == LC82C168)
1313 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1315 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1316 if (tulip_uli_dm_quirk(pdev)) {
1317 csr0 &= ~0x01f100ff;
1318 #if defined(CONFIG_SPARC)
1319 csr0 = (csr0 & ~0xff00) | 0xe000;
1320 #endif
1323 * And back to business
1326 i = pci_enable_device(pdev);
1327 if (i) {
1328 printk (KERN_ERR PFX
1329 "Cannot enable tulip board #%d, aborting\n",
1330 board_idx);
1331 return i;
1334 irq = pdev->irq;
1336 /* alloc_etherdev ensures aligned and zeroed private structures */
1337 dev = alloc_etherdev (sizeof (*tp));
1338 if (!dev) {
1339 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1340 return -ENOMEM;
1343 SET_MODULE_OWNER(dev);
1344 SET_NETDEV_DEV(dev, &pdev->dev);
1345 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1346 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1347 "aborting\n", pci_name(pdev),
1348 (unsigned long long)pci_resource_len (pdev, 0),
1349 (unsigned long long)pci_resource_start (pdev, 0));
1350 goto err_out_free_netdev;
1353 /* grab all resources from both PIO and MMIO regions, as we
1354 * don't want anyone else messing around with our hardware */
1355 if (pci_request_regions (pdev, "tulip"))
1356 goto err_out_free_netdev;
1358 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1360 if (!ioaddr)
1361 goto err_out_free_res;
1363 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1366 * initialize private data structure 'tp'
1367 * it is zeroed and aligned in alloc_etherdev
1369 tp = netdev_priv(dev);
1370 tp->dev = dev;
1372 tp->rx_ring = pci_alloc_consistent(pdev,
1373 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1374 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1375 &tp->rx_ring_dma);
1376 if (!tp->rx_ring)
1377 goto err_out_mtable;
1378 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1379 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1381 tp->chip_id = chip_idx;
1382 tp->flags = tulip_tbl[chip_idx].flags;
1383 tp->pdev = pdev;
1384 tp->base_addr = ioaddr;
1385 tp->revision = chip_rev;
1386 tp->csr0 = csr0;
1387 spin_lock_init(&tp->lock);
1388 spin_lock_init(&tp->mii_lock);
1389 init_timer(&tp->timer);
1390 tp->timer.data = (unsigned long)dev;
1391 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1393 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1395 dev->base_addr = (unsigned long)ioaddr;
1397 #ifdef CONFIG_TULIP_MWI
1398 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1399 tulip_mwi_config (pdev, dev);
1400 #else
1401 /* MWI is broken for DC21143 rev 65... */
1402 if (chip_idx == DC21143 && chip_rev == 65)
1403 tp->csr0 &= ~MWI;
1404 #endif
1406 /* Stop the chip's Tx and Rx processes. */
1407 tulip_stop_rxtx(tp);
1409 pci_set_master(pdev);
1411 #ifdef CONFIG_GSC
1412 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1413 switch (pdev->subsystem_device) {
1414 default:
1415 break;
1416 case 0x1061:
1417 case 0x1062:
1418 case 0x1063:
1419 case 0x1098:
1420 case 0x1099:
1421 case 0x10EE:
1422 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1423 chip_name = "GSC DS21140 Tulip";
1426 #endif
1428 /* Clear the missed-packet counter. */
1429 ioread32(ioaddr + CSR8);
1431 /* The station address ROM is read byte serially. The register must
1432 be polled, waiting for the value to be read bit serially from the
1433 EEPROM.
1435 ee_data = tp->eeprom;
1436 sum = 0;
1437 if (chip_idx == LC82C168) {
1438 for (i = 0; i < 3; i++) {
1439 int value, boguscnt = 100000;
1440 iowrite32(0x600 | i, ioaddr + 0x98);
1442 value = ioread32(ioaddr + CSR9);
1443 while (value < 0 && --boguscnt > 0);
1444 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1445 sum += value & 0xffff;
1447 } else if (chip_idx == COMET) {
1448 /* No need to read the EEPROM. */
1449 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1450 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1451 for (i = 0; i < 6; i ++)
1452 sum += dev->dev_addr[i];
1453 } else {
1454 /* A serial EEPROM interface, we read now and sort it out later. */
1455 int sa_offset = 0;
1456 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1458 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1459 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1460 ee_data[i] = data & 0xff;
1461 ee_data[i + 1] = data >> 8;
1464 /* DEC now has a specification (see Notes) but early board makers
1465 just put the address in the first EEPROM locations. */
1466 /* This does memcmp(ee_data, ee_data+16, 8) */
1467 for (i = 0; i < 8; i ++)
1468 if (ee_data[i] != ee_data[16+i])
1469 sa_offset = 20;
1470 if (chip_idx == CONEXANT) {
1471 /* Check that the tuple type and length is correct. */
1472 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1473 sa_offset = 0x19A;
1474 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1475 ee_data[2] == 0) {
1476 sa_offset = 2; /* Grrr, damn Matrox boards. */
1477 multiport_cnt = 4;
1479 #ifdef CONFIG_DDB5477
1480 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1481 /* DDB5477 MAC address in first EEPROM locations. */
1482 sa_offset = 0;
1483 /* No media table either */
1484 tp->flags &= ~HAS_MEDIA_TABLE;
1486 #endif
1487 #ifdef CONFIG_MIPS_COBALT
1488 if ((pdev->bus->number == 0) &&
1489 ((PCI_SLOT(pdev->devfn) == 7) ||
1490 (PCI_SLOT(pdev->devfn) == 12))) {
1491 /* Cobalt MAC address in first EEPROM locations. */
1492 sa_offset = 0;
1493 /* Ensure our media table fixup get's applied */
1494 memcpy(ee_data + 16, ee_data, 8);
1496 #endif
1497 #ifdef CONFIG_GSC
1498 /* Check to see if we have a broken srom */
1499 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1500 /* pci_vendor_id and subsystem_id are swapped */
1501 ee_data[0] = ee_data[2];
1502 ee_data[1] = ee_data[3];
1503 ee_data[2] = 0x61;
1504 ee_data[3] = 0x10;
1506 /* HSC-PCI boards need to be byte-swaped and shifted
1507 * up 1 word. This shift needs to happen at the end
1508 * of the MAC first because of the 2 byte overlap.
1510 for (i = 4; i >= 0; i -= 2) {
1511 ee_data[17 + i + 3] = ee_data[17 + i];
1512 ee_data[16 + i + 5] = ee_data[16 + i];
1515 #endif
1517 for (i = 0; i < 6; i ++) {
1518 dev->dev_addr[i] = ee_data[i + sa_offset];
1519 sum += ee_data[i + sa_offset];
1522 /* Lite-On boards have the address byte-swapped. */
1523 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1524 && dev->dev_addr[1] == 0x00)
1525 for (i = 0; i < 6; i+=2) {
1526 char tmp = dev->dev_addr[i];
1527 dev->dev_addr[i] = dev->dev_addr[i+1];
1528 dev->dev_addr[i+1] = tmp;
1530 /* On the Zynx 315 Etherarray and other multiport boards only the
1531 first Tulip has an EEPROM.
1532 On Sparc systems the mac address is held in the OBP property
1533 "local-mac-address".
1534 The addresses of the subsequent ports are derived from the first.
1535 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1536 that here as well. */
1537 if (sum == 0 || sum == 6*0xff) {
1538 #if defined(CONFIG_SPARC)
1539 struct device_node *dp = pci_device_to_OF_node(pdev);
1540 const unsigned char *addr;
1541 int len;
1542 #endif
1543 eeprom_missing = 1;
1544 for (i = 0; i < 5; i++)
1545 dev->dev_addr[i] = last_phys_addr[i];
1546 dev->dev_addr[i] = last_phys_addr[i] + 1;
1547 #if defined(CONFIG_SPARC)
1548 addr = of_get_property(dp, "local-mac-address", &len);
1549 if (addr && len == 6)
1550 memcpy(dev->dev_addr, addr, 6);
1551 #endif
1552 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1553 if (last_irq)
1554 irq = last_irq;
1555 #endif
1558 for (i = 0; i < 6; i++)
1559 last_phys_addr[i] = dev->dev_addr[i];
1560 last_irq = irq;
1561 dev->irq = irq;
1563 /* The lower four bits are the media type. */
1564 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1565 if (options[board_idx] & MEDIA_MASK)
1566 tp->default_port = options[board_idx] & MEDIA_MASK;
1567 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1568 tp->full_duplex = 1;
1569 if (mtu[board_idx] > 0)
1570 dev->mtu = mtu[board_idx];
1572 if (dev->mem_start & MEDIA_MASK)
1573 tp->default_port = dev->mem_start & MEDIA_MASK;
1574 if (tp->default_port) {
1575 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1576 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1577 tp->medialock = 1;
1578 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1579 tp->full_duplex = 1;
1581 if (tp->full_duplex)
1582 tp->full_duplex_lock = 1;
1584 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1585 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1586 tp->mii_advertise = media2advert[tp->default_port - 9];
1587 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1590 if (tp->flags & HAS_MEDIA_TABLE) {
1591 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1592 tulip_parse_eeprom(dev);
1593 strcpy(dev->name, "eth%d"); /* un-hack */
1596 if ((tp->flags & ALWAYS_CHECK_MII) ||
1597 (tp->mtable && tp->mtable->has_mii) ||
1598 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1599 if (tp->mtable && tp->mtable->has_mii) {
1600 for (i = 0; i < tp->mtable->leafcount; i++)
1601 if (tp->mtable->mleaf[i].media == 11) {
1602 tp->cur_index = i;
1603 tp->saved_if_port = dev->if_port;
1604 tulip_select_media(dev, 2);
1605 dev->if_port = tp->saved_if_port;
1606 break;
1610 /* Find the connected MII xcvrs.
1611 Doing this in open() would allow detecting external xcvrs
1612 later, but takes much time. */
1613 tulip_find_mii (dev, board_idx);
1616 /* The Tulip-specific entries in the device structure. */
1617 dev->open = tulip_open;
1618 dev->hard_start_xmit = tulip_start_xmit;
1619 dev->tx_timeout = tulip_tx_timeout;
1620 dev->watchdog_timeo = TX_TIMEOUT;
1621 #ifdef CONFIG_TULIP_NAPI
1622 dev->poll = tulip_poll;
1623 dev->weight = 16;
1624 #endif
1625 dev->stop = tulip_close;
1626 dev->get_stats = tulip_get_stats;
1627 dev->do_ioctl = private_ioctl;
1628 dev->set_multicast_list = set_rx_mode;
1629 #ifdef CONFIG_NET_POLL_CONTROLLER
1630 dev->poll_controller = &poll_tulip;
1631 #endif
1632 SET_ETHTOOL_OPS(dev, &ops);
1634 if (register_netdev(dev))
1635 goto err_out_free_ring;
1637 printk(KERN_INFO "%s: %s rev %d at "
1638 #ifdef CONFIG_TULIP_MMIO
1639 "MMIO"
1640 #else
1641 "Port"
1642 #endif
1643 " %#llx,", dev->name, chip_name, chip_rev,
1644 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1645 pci_set_drvdata(pdev, dev);
1647 if (eeprom_missing)
1648 printk(" EEPROM not present,");
1649 for (i = 0; i < 6; i++)
1650 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1651 printk(", IRQ %d.\n", irq);
1653 if (tp->chip_id == PNIC2)
1654 tp->link_change = pnic2_lnk_change;
1655 else if (tp->flags & HAS_NWAY)
1656 tp->link_change = t21142_lnk_change;
1657 else if (tp->flags & HAS_PNICNWAY)
1658 tp->link_change = pnic_lnk_change;
1660 /* Reset the xcvr interface and turn on heartbeat. */
1661 switch (chip_idx) {
1662 case DC21140:
1663 case DM910X:
1664 default:
1665 if (tp->mtable)
1666 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1667 break;
1668 case DC21142:
1669 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1670 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1671 iowrite32(0x0000, ioaddr + CSR13);
1672 iowrite32(0x0000, ioaddr + CSR14);
1673 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1674 } else
1675 t21142_start_nway(dev);
1676 break;
1677 case PNIC2:
1678 /* just do a reset for sanity sake */
1679 iowrite32(0x0000, ioaddr + CSR13);
1680 iowrite32(0x0000, ioaddr + CSR14);
1681 break;
1682 case LC82C168:
1683 if ( ! tp->mii_cnt) {
1684 tp->nway = 1;
1685 tp->nwayset = 0;
1686 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1687 iowrite32(0x30, ioaddr + CSR12);
1688 iowrite32(0x0001F078, ioaddr + CSR6);
1689 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1691 break;
1692 case MX98713:
1693 case COMPEX9881:
1694 iowrite32(0x00000000, ioaddr + CSR6);
1695 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1696 iowrite32(0x00000001, ioaddr + CSR13);
1697 break;
1698 case MX98715:
1699 case MX98725:
1700 iowrite32(0x01a80000, ioaddr + CSR6);
1701 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1702 iowrite32(0x00001000, ioaddr + CSR12);
1703 break;
1704 case COMET:
1705 /* No initialization necessary. */
1706 break;
1709 /* put the chip in snooze mode until opened */
1710 tulip_set_power_state (tp, 0, 1);
1712 return 0;
1714 err_out_free_ring:
1715 pci_free_consistent (pdev,
1716 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1717 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1718 tp->rx_ring, tp->rx_ring_dma);
1720 err_out_mtable:
1721 kfree (tp->mtable);
1722 pci_iounmap(pdev, ioaddr);
1724 err_out_free_res:
1725 pci_release_regions (pdev);
1727 err_out_free_netdev:
1728 free_netdev (dev);
1729 return -ENODEV;
1733 #ifdef CONFIG_PM
1735 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1737 struct net_device *dev = pci_get_drvdata(pdev);
1739 if (!dev)
1740 return -EINVAL;
1742 if (netif_running(dev))
1743 tulip_down(dev);
1745 netif_device_detach(dev);
1746 free_irq(dev->irq, dev);
1748 pci_save_state(pdev);
1749 pci_disable_device(pdev);
1750 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1752 return 0;
1756 static int tulip_resume(struct pci_dev *pdev)
1758 struct net_device *dev = pci_get_drvdata(pdev);
1759 int retval;
1761 if (!dev)
1762 return -EINVAL;
1764 pci_set_power_state(pdev, PCI_D0);
1765 pci_restore_state(pdev);
1767 if ((retval = pci_enable_device(pdev))) {
1768 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1769 return retval;
1772 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1773 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1774 return retval;
1777 netif_device_attach(dev);
1779 if (netif_running(dev))
1780 tulip_up(dev);
1782 return 0;
1785 #endif /* CONFIG_PM */
1788 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1790 struct net_device *dev = pci_get_drvdata (pdev);
1791 struct tulip_private *tp;
1793 if (!dev)
1794 return;
1796 tp = netdev_priv(dev);
1797 unregister_netdev(dev);
1798 pci_free_consistent (pdev,
1799 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1800 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1801 tp->rx_ring, tp->rx_ring_dma);
1802 kfree (tp->mtable);
1803 pci_iounmap(pdev, tp->base_addr);
1804 free_netdev (dev);
1805 pci_release_regions (pdev);
1806 pci_set_drvdata (pdev, NULL);
1808 /* pci_power_off (pdev, -1); */
1811 #ifdef CONFIG_NET_POLL_CONTROLLER
1813 * Polling 'interrupt' - used by things like netconsole to send skbs
1814 * without having to re-enable interrupts. It's not called while
1815 * the interrupt routine is executing.
1818 static void poll_tulip (struct net_device *dev)
1820 /* disable_irq here is not very nice, but with the lockless
1821 interrupt handler we have no other choice. */
1822 disable_irq(dev->irq);
1823 tulip_interrupt (dev->irq, dev);
1824 enable_irq(dev->irq);
1826 #endif
1828 static struct pci_driver tulip_driver = {
1829 .name = DRV_NAME,
1830 .id_table = tulip_pci_tbl,
1831 .probe = tulip_init_one,
1832 .remove = __devexit_p(tulip_remove_one),
1833 #ifdef CONFIG_PM
1834 .suspend = tulip_suspend,
1835 .resume = tulip_resume,
1836 #endif /* CONFIG_PM */
1840 static int __init tulip_init (void)
1842 #ifdef MODULE
1843 printk (KERN_INFO "%s", version);
1844 #endif
1846 /* copy module parms into globals */
1847 tulip_rx_copybreak = rx_copybreak;
1848 tulip_max_interrupt_work = max_interrupt_work;
1850 /* probe for and init boards */
1851 return pci_register_driver(&tulip_driver);
1855 static void __exit tulip_cleanup (void)
1857 pci_unregister_driver (&tulip_driver);
1861 module_init(tulip_init);
1862 module_exit(tulip_cleanup);