allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / firewire / fw-device.c
blobc1ce465d97103b3855393cd79bdfd778d531d41b
1 /*
2 * Device probing and sysfs code.
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/wait.h>
23 #include <linux/errno.h>
24 #include <linux/kthread.h>
25 #include <linux/device.h>
26 #include <linux/delay.h>
27 #include <linux/idr.h>
28 #include <linux/rwsem.h>
29 #include <asm/semaphore.h>
30 #include <linux/ctype.h>
31 #include "fw-transaction.h"
32 #include "fw-topology.h"
33 #include "fw-device.h"
35 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
37 ci->p = p + 1;
38 ci->end = ci->p + (p[0] >> 16);
40 EXPORT_SYMBOL(fw_csr_iterator_init);
42 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
44 *key = *ci->p >> 24;
45 *value = *ci->p & 0xffffff;
47 return ci->p++ < ci->end;
49 EXPORT_SYMBOL(fw_csr_iterator_next);
51 static int is_fw_unit(struct device *dev);
53 static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 struct fw_csr_iterator ci;
56 int key, value, match;
58 match = 0;
59 fw_csr_iterator_init(&ci, directory);
60 while (fw_csr_iterator_next(&ci, &key, &value)) {
61 if (key == CSR_VENDOR && value == id->vendor)
62 match |= FW_MATCH_VENDOR;
63 if (key == CSR_MODEL && value == id->model)
64 match |= FW_MATCH_MODEL;
65 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
66 match |= FW_MATCH_SPECIFIER_ID;
67 if (key == CSR_VERSION && value == id->version)
68 match |= FW_MATCH_VERSION;
71 return (match & id->match_flags) == id->match_flags;
74 static int fw_unit_match(struct device *dev, struct device_driver *drv)
76 struct fw_unit *unit = fw_unit(dev);
77 struct fw_driver *driver = fw_driver(drv);
78 int i;
80 /* We only allow binding to fw_units. */
81 if (!is_fw_unit(dev))
82 return 0;
84 for (i = 0; driver->id_table[i].match_flags != 0; i++) {
85 if (match_unit_directory(unit->directory, &driver->id_table[i]))
86 return 1;
89 return 0;
92 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
94 struct fw_device *device = fw_device(unit->device.parent);
95 struct fw_csr_iterator ci;
97 int key, value;
98 int vendor = 0;
99 int model = 0;
100 int specifier_id = 0;
101 int version = 0;
103 fw_csr_iterator_init(&ci, &device->config_rom[5]);
104 while (fw_csr_iterator_next(&ci, &key, &value)) {
105 switch (key) {
106 case CSR_VENDOR:
107 vendor = value;
108 break;
109 case CSR_MODEL:
110 model = value;
111 break;
115 fw_csr_iterator_init(&ci, unit->directory);
116 while (fw_csr_iterator_next(&ci, &key, &value)) {
117 switch (key) {
118 case CSR_SPECIFIER_ID:
119 specifier_id = value;
120 break;
121 case CSR_VERSION:
122 version = value;
123 break;
127 return snprintf(buffer, buffer_size,
128 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
129 vendor, model, specifier_id, version);
132 static int
133 fw_unit_uevent(struct device *dev, char **envp, int num_envp,
134 char *buffer, int buffer_size)
136 struct fw_unit *unit = fw_unit(dev);
137 char modalias[64];
138 int length = 0;
139 int i = 0;
141 get_modalias(unit, modalias, sizeof(modalias));
143 if (add_uevent_var(envp, num_envp, &i,
144 buffer, buffer_size, &length,
145 "MODALIAS=%s", modalias))
146 return -ENOMEM;
148 envp[i] = NULL;
150 return 0;
153 struct bus_type fw_bus_type = {
154 .name = "firewire",
155 .match = fw_unit_match,
157 EXPORT_SYMBOL(fw_bus_type);
159 struct fw_device *fw_device_get(struct fw_device *device)
161 get_device(&device->device);
163 return device;
166 void fw_device_put(struct fw_device *device)
168 put_device(&device->device);
171 static void fw_device_release(struct device *dev)
173 struct fw_device *device = fw_device(dev);
174 unsigned long flags;
177 * Take the card lock so we don't set this to NULL while a
178 * FW_NODE_UPDATED callback is being handled.
180 spin_lock_irqsave(&device->card->lock, flags);
181 device->node->data = NULL;
182 spin_unlock_irqrestore(&device->card->lock, flags);
184 fw_node_put(device->node);
185 fw_card_put(device->card);
186 kfree(device->config_rom);
187 kfree(device);
190 int fw_device_enable_phys_dma(struct fw_device *device)
192 return device->card->driver->enable_phys_dma(device->card,
193 device->node_id,
194 device->generation);
196 EXPORT_SYMBOL(fw_device_enable_phys_dma);
198 struct config_rom_attribute {
199 struct device_attribute attr;
200 u32 key;
203 static ssize_t
204 show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
206 struct config_rom_attribute *attr =
207 container_of(dattr, struct config_rom_attribute, attr);
208 struct fw_csr_iterator ci;
209 u32 *dir;
210 int key, value;
212 if (is_fw_unit(dev))
213 dir = fw_unit(dev)->directory;
214 else
215 dir = fw_device(dev)->config_rom + 5;
217 fw_csr_iterator_init(&ci, dir);
218 while (fw_csr_iterator_next(&ci, &key, &value))
219 if (attr->key == key)
220 return snprintf(buf, buf ? PAGE_SIZE : 0,
221 "0x%06x\n", value);
223 return -ENOENT;
226 #define IMMEDIATE_ATTR(name, key) \
227 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
229 static ssize_t
230 show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
232 struct config_rom_attribute *attr =
233 container_of(dattr, struct config_rom_attribute, attr);
234 struct fw_csr_iterator ci;
235 u32 *dir, *block = NULL, *p, *end;
236 int length, key, value, last_key = 0;
237 char *b;
239 if (is_fw_unit(dev))
240 dir = fw_unit(dev)->directory;
241 else
242 dir = fw_device(dev)->config_rom + 5;
244 fw_csr_iterator_init(&ci, dir);
245 while (fw_csr_iterator_next(&ci, &key, &value)) {
246 if (attr->key == last_key &&
247 key == (CSR_DESCRIPTOR | CSR_LEAF))
248 block = ci.p - 1 + value;
249 last_key = key;
252 if (block == NULL)
253 return -ENOENT;
255 length = min(block[0] >> 16, 256U);
256 if (length < 3)
257 return -ENOENT;
259 if (block[1] != 0 || block[2] != 0)
260 /* Unknown encoding. */
261 return -ENOENT;
263 if (buf == NULL)
264 return length * 4;
266 b = buf;
267 end = &block[length + 1];
268 for (p = &block[3]; p < end; p++, b += 4)
269 * (u32 *) b = (__force u32) __cpu_to_be32(*p);
271 /* Strip trailing whitespace and add newline. */
272 while (b--, (isspace(*b) || *b == '\0') && b > buf);
273 strcpy(b + 1, "\n");
275 return b + 2 - buf;
278 #define TEXT_LEAF_ATTR(name, key) \
279 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
281 static struct config_rom_attribute config_rom_attributes[] = {
282 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
283 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
284 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
285 IMMEDIATE_ATTR(version, CSR_VERSION),
286 IMMEDIATE_ATTR(model, CSR_MODEL),
287 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
288 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
289 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
292 static void
293 init_fw_attribute_group(struct device *dev,
294 struct device_attribute *attrs,
295 struct fw_attribute_group *group)
297 struct device_attribute *attr;
298 int i, j;
300 for (j = 0; attrs[j].attr.name != NULL; j++)
301 group->attrs[j] = &attrs[j].attr;
303 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
304 attr = &config_rom_attributes[i].attr;
305 if (attr->show(dev, attr, NULL) < 0)
306 continue;
307 group->attrs[j++] = &attr->attr;
310 BUG_ON(j >= ARRAY_SIZE(group->attrs));
311 group->attrs[j++] = NULL;
312 group->groups[0] = &group->group;
313 group->groups[1] = NULL;
314 group->group.attrs = group->attrs;
315 dev->groups = group->groups;
318 static ssize_t
319 modalias_show(struct device *dev,
320 struct device_attribute *attr, char *buf)
322 struct fw_unit *unit = fw_unit(dev);
323 int length;
325 length = get_modalias(unit, buf, PAGE_SIZE);
326 strcpy(buf + length, "\n");
328 return length + 1;
331 static ssize_t
332 rom_index_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
335 struct fw_device *device = fw_device(dev->parent);
336 struct fw_unit *unit = fw_unit(dev);
338 return snprintf(buf, PAGE_SIZE, "%d\n",
339 (int)(unit->directory - device->config_rom));
342 static struct device_attribute fw_unit_attributes[] = {
343 __ATTR_RO(modalias),
344 __ATTR_RO(rom_index),
345 __ATTR_NULL,
348 static ssize_t
349 config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
351 struct fw_device *device = fw_device(dev);
353 memcpy(buf, device->config_rom, device->config_rom_length * 4);
355 return device->config_rom_length * 4;
358 static ssize_t
359 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
361 struct fw_device *device = fw_device(dev);
362 u64 guid;
364 guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];
366 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
367 (unsigned long long)guid);
370 static struct device_attribute fw_device_attributes[] = {
371 __ATTR_RO(config_rom),
372 __ATTR_RO(guid),
373 __ATTR_NULL,
376 struct read_quadlet_callback_data {
377 struct completion done;
378 int rcode;
379 u32 data;
382 static void
383 complete_transaction(struct fw_card *card, int rcode,
384 void *payload, size_t length, void *data)
386 struct read_quadlet_callback_data *callback_data = data;
388 if (rcode == RCODE_COMPLETE)
389 callback_data->data = be32_to_cpu(*(__be32 *)payload);
390 callback_data->rcode = rcode;
391 complete(&callback_data->done);
394 static int read_rom(struct fw_device *device, int index, u32 * data)
396 struct read_quadlet_callback_data callback_data;
397 struct fw_transaction t;
398 u64 offset;
400 init_completion(&callback_data.done);
402 offset = 0xfffff0000400ULL + index * 4;
403 fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
404 device->node_id,
405 device->generation, SCODE_100,
406 offset, NULL, 4, complete_transaction, &callback_data);
408 wait_for_completion(&callback_data.done);
410 *data = callback_data.data;
412 return callback_data.rcode;
415 static int read_bus_info_block(struct fw_device *device)
417 static u32 rom[256];
418 u32 stack[16], sp, key;
419 int i, end, length;
421 /* First read the bus info block. */
422 for (i = 0; i < 5; i++) {
423 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
424 return -1;
426 * As per IEEE1212 7.2, during power-up, devices can
427 * reply with a 0 for the first quadlet of the config
428 * rom to indicate that they are booting (for example,
429 * if the firmware is on the disk of a external
430 * harddisk). In that case we just fail, and the
431 * retry mechanism will try again later.
433 if (i == 0 && rom[i] == 0)
434 return -1;
438 * Now parse the config rom. The config rom is a recursive
439 * directory structure so we parse it using a stack of
440 * references to the blocks that make up the structure. We
441 * push a reference to the root directory on the stack to
442 * start things off.
444 length = i;
445 sp = 0;
446 stack[sp++] = 0xc0000005;
447 while (sp > 0) {
449 * Pop the next block reference of the stack. The
450 * lower 24 bits is the offset into the config rom,
451 * the upper 8 bits are the type of the reference the
452 * block.
454 key = stack[--sp];
455 i = key & 0xffffff;
456 if (i >= ARRAY_SIZE(rom))
458 * The reference points outside the standard
459 * config rom area, something's fishy.
461 return -1;
463 /* Read header quadlet for the block to get the length. */
464 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
465 return -1;
466 end = i + (rom[i] >> 16) + 1;
467 i++;
468 if (end > ARRAY_SIZE(rom))
470 * This block extends outside standard config
471 * area (and the array we're reading it
472 * into). That's broken, so ignore this
473 * device.
475 return -1;
478 * Now read in the block. If this is a directory
479 * block, check the entries as we read them to see if
480 * it references another block, and push it in that case.
482 while (i < end) {
483 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
484 return -1;
485 if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
486 sp < ARRAY_SIZE(stack))
487 stack[sp++] = i + rom[i];
488 i++;
490 if (length < i)
491 length = i;
494 device->config_rom = kmalloc(length * 4, GFP_KERNEL);
495 if (device->config_rom == NULL)
496 return -1;
497 memcpy(device->config_rom, rom, length * 4);
498 device->config_rom_length = length;
500 return 0;
503 static void fw_unit_release(struct device *dev)
505 struct fw_unit *unit = fw_unit(dev);
507 kfree(unit);
510 static struct device_type fw_unit_type = {
511 .uevent = fw_unit_uevent,
512 .release = fw_unit_release,
515 static int is_fw_unit(struct device *dev)
517 return dev->type == &fw_unit_type;
520 static void create_units(struct fw_device *device)
522 struct fw_csr_iterator ci;
523 struct fw_unit *unit;
524 int key, value, i;
526 i = 0;
527 fw_csr_iterator_init(&ci, &device->config_rom[5]);
528 while (fw_csr_iterator_next(&ci, &key, &value)) {
529 if (key != (CSR_UNIT | CSR_DIRECTORY))
530 continue;
533 * Get the address of the unit directory and try to
534 * match the drivers id_tables against it.
536 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
537 if (unit == NULL) {
538 fw_error("failed to allocate memory for unit\n");
539 continue;
542 unit->directory = ci.p + value - 1;
543 unit->device.bus = &fw_bus_type;
544 unit->device.type = &fw_unit_type;
545 unit->device.parent = &device->device;
546 snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
547 "%s.%d", device->device.bus_id, i++);
549 init_fw_attribute_group(&unit->device,
550 fw_unit_attributes,
551 &unit->attribute_group);
552 if (device_register(&unit->device) < 0)
553 goto skip_unit;
555 continue;
557 skip_unit:
558 kfree(unit);
562 static int shutdown_unit(struct device *device, void *data)
564 device_unregister(device);
566 return 0;
569 static DECLARE_RWSEM(idr_rwsem);
570 static DEFINE_IDR(fw_device_idr);
571 int fw_cdev_major;
573 struct fw_device *fw_device_from_devt(dev_t devt)
575 struct fw_device *device;
577 down_read(&idr_rwsem);
578 device = idr_find(&fw_device_idr, MINOR(devt));
579 up_read(&idr_rwsem);
581 return device;
584 static void fw_device_shutdown(struct work_struct *work)
586 struct fw_device *device =
587 container_of(work, struct fw_device, work.work);
588 int minor = MINOR(device->device.devt);
590 down_write(&idr_rwsem);
591 idr_remove(&fw_device_idr, minor);
592 up_write(&idr_rwsem);
594 fw_device_cdev_remove(device);
595 device_for_each_child(&device->device, NULL, shutdown_unit);
596 device_unregister(&device->device);
599 static struct device_type fw_device_type = {
600 .release = fw_device_release,
604 * These defines control the retry behavior for reading the config
605 * rom. It shouldn't be necessary to tweak these; if the device
606 * doesn't respond to a config rom read within 10 seconds, it's not
607 * going to respond at all. As for the initial delay, a lot of
608 * devices will be able to respond within half a second after bus
609 * reset. On the other hand, it's not really worth being more
610 * aggressive than that, since it scales pretty well; if 10 devices
611 * are plugged in, they're all getting read within one second.
614 #define MAX_RETRIES 10
615 #define RETRY_DELAY (3 * HZ)
616 #define INITIAL_DELAY (HZ / 2)
618 static void fw_device_init(struct work_struct *work)
620 struct fw_device *device =
621 container_of(work, struct fw_device, work.work);
622 int minor, err;
625 * All failure paths here set node->data to NULL, so that we
626 * don't try to do device_for_each_child() on a kfree()'d
627 * device.
630 if (read_bus_info_block(device) < 0) {
631 if (device->config_rom_retries < MAX_RETRIES) {
632 device->config_rom_retries++;
633 schedule_delayed_work(&device->work, RETRY_DELAY);
634 } else {
635 fw_notify("giving up on config rom for node id %x\n",
636 device->node_id);
637 if (device->node == device->card->root_node)
638 schedule_delayed_work(&device->card->work, 0);
639 fw_device_release(&device->device);
641 return;
644 err = -ENOMEM;
645 down_write(&idr_rwsem);
646 if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
647 err = idr_get_new(&fw_device_idr, device, &minor);
648 up_write(&idr_rwsem);
649 if (err < 0)
650 goto error;
652 device->device.bus = &fw_bus_type;
653 device->device.type = &fw_device_type;
654 device->device.parent = device->card->device;
655 device->device.devt = MKDEV(fw_cdev_major, minor);
656 snprintf(device->device.bus_id, sizeof(device->device.bus_id),
657 "fw%d", minor);
659 init_fw_attribute_group(&device->device,
660 fw_device_attributes,
661 &device->attribute_group);
662 if (device_add(&device->device)) {
663 fw_error("Failed to add device.\n");
664 goto error_with_cdev;
667 create_units(device);
670 * Transition the device to running state. If it got pulled
671 * out from under us while we did the intialization work, we
672 * have to shut down the device again here. Normally, though,
673 * fw_node_event will be responsible for shutting it down when
674 * necessary. We have to use the atomic cmpxchg here to avoid
675 * racing with the FW_NODE_DESTROYED case in
676 * fw_node_event().
678 if (atomic_cmpxchg(&device->state,
679 FW_DEVICE_INITIALIZING,
680 FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
681 fw_device_shutdown(&device->work.work);
682 else
683 fw_notify("created new fw device %s (%d config rom retries)\n",
684 device->device.bus_id, device->config_rom_retries);
687 * Reschedule the IRM work if we just finished reading the
688 * root node config rom. If this races with a bus reset we
689 * just end up running the IRM work a couple of extra times -
690 * pretty harmless.
692 if (device->node == device->card->root_node)
693 schedule_delayed_work(&device->card->work, 0);
695 return;
697 error_with_cdev:
698 down_write(&idr_rwsem);
699 idr_remove(&fw_device_idr, minor);
700 up_write(&idr_rwsem);
701 error:
702 put_device(&device->device);
705 static int update_unit(struct device *dev, void *data)
707 struct fw_unit *unit = fw_unit(dev);
708 struct fw_driver *driver = (struct fw_driver *)dev->driver;
710 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
711 down(&dev->sem);
712 driver->update(unit);
713 up(&dev->sem);
716 return 0;
719 static void fw_device_update(struct work_struct *work)
721 struct fw_device *device =
722 container_of(work, struct fw_device, work.work);
724 fw_device_cdev_update(device);
725 device_for_each_child(&device->device, NULL, update_unit);
728 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
730 struct fw_device *device;
732 switch (event) {
733 case FW_NODE_CREATED:
734 case FW_NODE_LINK_ON:
735 if (!node->link_on)
736 break;
738 device = kzalloc(sizeof(*device), GFP_ATOMIC);
739 if (device == NULL)
740 break;
743 * Do minimal intialization of the device here, the
744 * rest will happen in fw_device_init(). We need the
745 * card and node so we can read the config rom and we
746 * need to do device_initialize() now so
747 * device_for_each_child() in FW_NODE_UPDATED is
748 * doesn't freak out.
750 device_initialize(&device->device);
751 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
752 device->card = fw_card_get(card);
753 device->node = fw_node_get(node);
754 device->node_id = node->node_id;
755 device->generation = card->generation;
756 INIT_LIST_HEAD(&device->client_list);
759 * Set the node data to point back to this device so
760 * FW_NODE_UPDATED callbacks can update the node_id
761 * and generation for the device.
763 node->data = device;
766 * Many devices are slow to respond after bus resets,
767 * especially if they are bus powered and go through
768 * power-up after getting plugged in. We schedule the
769 * first config rom scan half a second after bus reset.
771 INIT_DELAYED_WORK(&device->work, fw_device_init);
772 schedule_delayed_work(&device->work, INITIAL_DELAY);
773 break;
775 case FW_NODE_UPDATED:
776 if (!node->link_on || node->data == NULL)
777 break;
779 device = node->data;
780 device->node_id = node->node_id;
781 device->generation = card->generation;
782 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
783 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
784 schedule_delayed_work(&device->work, 0);
786 break;
788 case FW_NODE_DESTROYED:
789 case FW_NODE_LINK_OFF:
790 if (!node->data)
791 break;
794 * Destroy the device associated with the node. There
795 * are two cases here: either the device is fully
796 * initialized (FW_DEVICE_RUNNING) or we're in the
797 * process of reading its config rom
798 * (FW_DEVICE_INITIALIZING). If it is fully
799 * initialized we can reuse device->work to schedule a
800 * full fw_device_shutdown(). If not, there's work
801 * scheduled to read it's config rom, and we just put
802 * the device in shutdown state to have that code fail
803 * to create the device.
805 device = node->data;
806 if (atomic_xchg(&device->state,
807 FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
808 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
809 schedule_delayed_work(&device->work, 0);
811 break;