allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / x86_64 / mm / numa.c
blob51548947ad3b7f1c32080e8304e37316fcc4b948
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/numa.h>
19 #include <asm/acpi.h>
21 #ifndef Dprintk
22 #define Dprintk(x...)
23 #endif
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
28 struct memnode memnode;
30 unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
31 [0 ... NR_CPUS-1] = NUMA_NO_NODE
33 unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
34 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
36 cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
38 int numa_off __initdata;
39 unsigned long __initdata nodemap_addr;
40 unsigned long __initdata nodemap_size;
44 * Given a shift value, try to populate memnodemap[]
45 * Returns :
46 * 1 if OK
47 * 0 if memnodmap[] too small (of shift too small)
48 * -1 if node overlap or lost ram (shift too big)
50 static int __init
51 populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift)
53 int i;
54 int res = -1;
55 unsigned long addr, end;
57 memset(memnodemap, 0xff, memnodemapsize);
58 for (i = 0; i < numnodes; i++) {
59 addr = nodes[i].start;
60 end = nodes[i].end;
61 if (addr >= end)
62 continue;
63 if ((end >> shift) >= memnodemapsize)
64 return 0;
65 do {
66 if (memnodemap[addr >> shift] != 0xff)
67 return -1;
68 memnodemap[addr >> shift] = i;
69 addr += (1UL << shift);
70 } while (addr < end);
71 res = 1;
73 return res;
76 static int __init allocate_cachealigned_memnodemap(void)
78 unsigned long pad, pad_addr;
80 memnodemap = memnode.embedded_map;
81 if (memnodemapsize <= 48)
82 return 0;
84 pad = L1_CACHE_BYTES - 1;
85 pad_addr = 0x8000;
86 nodemap_size = pad + memnodemapsize;
87 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
88 nodemap_size);
89 if (nodemap_addr == -1UL) {
90 printk(KERN_ERR
91 "NUMA: Unable to allocate Memory to Node hash map\n");
92 nodemap_addr = nodemap_size = 0;
93 return -1;
95 pad_addr = (nodemap_addr + pad) & ~pad;
96 memnodemap = phys_to_virt(pad_addr);
98 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
99 nodemap_addr, nodemap_addr + nodemap_size);
100 return 0;
104 * The LSB of all start and end addresses in the node map is the value of the
105 * maximum possible shift.
107 static int __init
108 extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes)
110 int i, nodes_used = 0;
111 unsigned long start, end;
112 unsigned long bitfield = 0, memtop = 0;
114 for (i = 0; i < numnodes; i++) {
115 start = nodes[i].start;
116 end = nodes[i].end;
117 if (start >= end)
118 continue;
119 bitfield |= start;
120 nodes_used++;
121 if (end > memtop)
122 memtop = end;
124 if (nodes_used <= 1)
125 i = 63;
126 else
127 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
128 memnodemapsize = (memtop >> i)+1;
129 return i;
132 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
134 int shift;
136 shift = extract_lsb_from_nodes(nodes, numnodes);
137 if (allocate_cachealigned_memnodemap())
138 return -1;
139 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
140 shift);
142 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
143 printk(KERN_INFO
144 "Your memory is not aligned you need to rebuild your kernel "
145 "with a bigger NODEMAPSIZE shift=%d\n",
146 shift);
147 return -1;
149 return shift;
152 #ifdef CONFIG_SPARSEMEM
153 int early_pfn_to_nid(unsigned long pfn)
155 return phys_to_nid(pfn << PAGE_SHIFT);
157 #endif
159 static void * __init
160 early_node_mem(int nodeid, unsigned long start, unsigned long end,
161 unsigned long size)
163 unsigned long mem = find_e820_area(start, end, size);
164 void *ptr;
165 if (mem != -1L)
166 return __va(mem);
167 ptr = __alloc_bootmem_nopanic(size,
168 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
169 if (ptr == 0) {
170 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
171 size, nodeid);
172 return NULL;
174 return ptr;
177 /* Initialize bootmem allocator for a node */
178 void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
180 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
181 unsigned long nodedata_phys;
182 void *bootmap;
183 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
185 start = round_up(start, ZONE_ALIGN);
187 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
189 start_pfn = start >> PAGE_SHIFT;
190 end_pfn = end >> PAGE_SHIFT;
192 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
193 if (node_data[nodeid] == NULL)
194 return;
195 nodedata_phys = __pa(node_data[nodeid]);
197 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
198 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
199 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
200 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
202 /* Find a place for the bootmem map */
203 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
204 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
205 bootmap = early_node_mem(nodeid, bootmap_start, end,
206 bootmap_pages<<PAGE_SHIFT);
207 if (bootmap == NULL) {
208 if (nodedata_phys < start || nodedata_phys >= end)
209 free_bootmem((unsigned long)node_data[nodeid],pgdat_size);
210 node_data[nodeid] = NULL;
211 return;
213 bootmap_start = __pa(bootmap);
214 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
216 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
217 bootmap_start >> PAGE_SHIFT,
218 start_pfn, end_pfn);
220 free_bootmem_with_active_regions(nodeid, end);
222 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
223 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
224 #ifdef CONFIG_ACPI_NUMA
225 srat_reserve_add_area(nodeid);
226 #endif
227 node_set_online(nodeid);
230 /* Initialize final allocator for a zone */
231 void __init setup_node_zones(int nodeid)
233 unsigned long start_pfn, end_pfn, memmapsize, limit;
235 start_pfn = node_start_pfn(nodeid);
236 end_pfn = node_end_pfn(nodeid);
238 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
239 nodeid, start_pfn, end_pfn);
241 /* Try to allocate mem_map at end to not fill up precious <4GB
242 memory. */
243 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
244 limit = end_pfn << PAGE_SHIFT;
245 #ifdef CONFIG_FLAT_NODE_MEM_MAP
246 NODE_DATA(nodeid)->node_mem_map =
247 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
248 memmapsize, SMP_CACHE_BYTES,
249 round_down(limit - memmapsize, PAGE_SIZE),
250 limit);
251 #endif
254 void __init numa_init_array(void)
256 int rr, i;
257 /* There are unfortunately some poorly designed mainboards around
258 that only connect memory to a single CPU. This breaks the 1:1 cpu->node
259 mapping. To avoid this fill in the mapping for all possible
260 CPUs, as the number of CPUs is not known yet.
261 We round robin the existing nodes. */
262 rr = first_node(node_online_map);
263 for (i = 0; i < NR_CPUS; i++) {
264 if (cpu_to_node[i] != NUMA_NO_NODE)
265 continue;
266 numa_set_node(i, rr);
267 rr = next_node(rr, node_online_map);
268 if (rr == MAX_NUMNODES)
269 rr = first_node(node_online_map);
274 #ifdef CONFIG_NUMA_EMU
275 /* Numa emulation */
276 #define E820_ADDR_HOLE_SIZE(start, end) \
277 (e820_hole_size((start) >> PAGE_SHIFT, (end) >> PAGE_SHIFT) << \
278 PAGE_SHIFT)
279 char *cmdline __initdata;
282 * Setups up nid to range from addr to addr + size. If the end boundary is
283 * greater than max_addr, then max_addr is used instead. The return value is 0
284 * if there is additional memory left for allocation past addr and -1 otherwise.
285 * addr is adjusted to be at the end of the node.
287 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
288 u64 size, u64 max_addr)
290 int ret = 0;
291 nodes[nid].start = *addr;
292 *addr += size;
293 if (*addr >= max_addr) {
294 *addr = max_addr;
295 ret = -1;
297 nodes[nid].end = *addr;
298 node_set(nid, node_possible_map);
299 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
300 nodes[nid].start, nodes[nid].end,
301 (nodes[nid].end - nodes[nid].start) >> 20);
302 return ret;
306 * Splits num_nodes nodes up equally starting at node_start. The return value
307 * is the number of nodes split up and addr is adjusted to be at the end of the
308 * last node allocated.
310 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
311 u64 max_addr, int node_start,
312 int num_nodes)
314 unsigned int big;
315 u64 size;
316 int i;
318 if (num_nodes <= 0)
319 return -1;
320 if (num_nodes > MAX_NUMNODES)
321 num_nodes = MAX_NUMNODES;
322 size = (max_addr - *addr - E820_ADDR_HOLE_SIZE(*addr, max_addr)) /
323 num_nodes;
325 * Calculate the number of big nodes that can be allocated as a result
326 * of consolidating the leftovers.
328 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
329 FAKE_NODE_MIN_SIZE;
331 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
332 size &= FAKE_NODE_MIN_HASH_MASK;
333 if (!size) {
334 printk(KERN_ERR "Not enough memory for each node. "
335 "NUMA emulation disabled.\n");
336 return -1;
339 for (i = node_start; i < num_nodes + node_start; i++) {
340 u64 end = *addr + size;
341 if (i < big)
342 end += FAKE_NODE_MIN_SIZE;
344 * The final node can have the remaining system RAM. Other
345 * nodes receive roughly the same amount of available pages.
347 if (i == num_nodes + node_start - 1)
348 end = max_addr;
349 else
350 while (end - *addr - E820_ADDR_HOLE_SIZE(*addr, end) <
351 size) {
352 end += FAKE_NODE_MIN_SIZE;
353 if (end > max_addr) {
354 end = max_addr;
355 break;
358 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
359 break;
361 return i - node_start + 1;
365 * Splits the remaining system RAM into chunks of size. The remaining memory is
366 * always assigned to a final node and can be asymmetric. Returns the number of
367 * nodes split.
369 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
370 u64 max_addr, int node_start, u64 size)
372 int i = node_start;
373 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
374 while (!setup_node_range(i++, nodes, addr, size, max_addr))
376 return i - node_start;
380 * Sets up the system RAM area from start_pfn to end_pfn according to the
381 * numa=fake command-line option.
383 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
385 struct bootnode nodes[MAX_NUMNODES];
386 u64 addr = start_pfn << PAGE_SHIFT;
387 u64 max_addr = end_pfn << PAGE_SHIFT;
388 int num_nodes = 0;
389 int coeff_flag;
390 int coeff = -1;
391 int num = 0;
392 u64 size;
393 int i;
395 memset(&nodes, 0, sizeof(nodes));
397 * If the numa=fake command-line is just a single number N, split the
398 * system RAM into N fake nodes.
400 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
401 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0,
402 simple_strtol(cmdline, NULL, 0));
403 if (num_nodes < 0)
404 return num_nodes;
405 goto out;
408 /* Parse the command line. */
409 for (coeff_flag = 0; ; cmdline++) {
410 if (*cmdline && isdigit(*cmdline)) {
411 num = num * 10 + *cmdline - '0';
412 continue;
414 if (*cmdline == '*') {
415 if (num > 0)
416 coeff = num;
417 coeff_flag = 1;
419 if (!*cmdline || *cmdline == ',') {
420 if (!coeff_flag)
421 coeff = 1;
423 * Round down to the nearest FAKE_NODE_MIN_SIZE.
424 * Command-line coefficients are in megabytes.
426 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
427 if (size)
428 for (i = 0; i < coeff; i++, num_nodes++)
429 if (setup_node_range(num_nodes, nodes,
430 &addr, size, max_addr) < 0)
431 goto done;
432 if (!*cmdline)
433 break;
434 coeff_flag = 0;
435 coeff = -1;
437 num = 0;
439 done:
440 if (!num_nodes)
441 return -1;
442 /* Fill remainder of system RAM, if appropriate. */
443 if (addr < max_addr) {
444 if (coeff_flag && coeff < 0) {
445 /* Split remaining nodes into num-sized chunks */
446 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
447 num_nodes, num);
448 goto out;
450 switch (*(cmdline - 1)) {
451 case '*':
452 /* Split remaining nodes into coeff chunks */
453 if (coeff <= 0)
454 break;
455 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
456 num_nodes, coeff);
457 break;
458 case ',':
459 /* Do not allocate remaining system RAM */
460 break;
461 default:
462 /* Give one final node */
463 setup_node_range(num_nodes, nodes, &addr,
464 max_addr - addr, max_addr);
465 num_nodes++;
468 out:
469 memnode_shift = compute_hash_shift(nodes, num_nodes);
470 if (memnode_shift < 0) {
471 memnode_shift = 0;
472 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
473 "disabled.\n");
474 return -1;
478 * We need to vacate all active ranges that may have been registered by
479 * SRAT.
481 remove_all_active_ranges();
482 for_each_node_mask(i, node_possible_map) {
483 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
484 nodes[i].end >> PAGE_SHIFT);
485 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
487 numa_init_array();
488 return 0;
490 #undef E820_ADDR_HOLE_SIZE
491 #endif /* CONFIG_NUMA_EMU */
493 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
495 int i;
497 nodes_clear(node_possible_map);
499 #ifdef CONFIG_NUMA_EMU
500 if (cmdline && !numa_emulation(start_pfn, end_pfn))
501 return;
502 nodes_clear(node_possible_map);
503 #endif
505 #ifdef CONFIG_ACPI_NUMA
506 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
507 end_pfn << PAGE_SHIFT))
508 return;
509 nodes_clear(node_possible_map);
510 #endif
512 #ifdef CONFIG_K8_NUMA
513 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
514 return;
515 nodes_clear(node_possible_map);
516 #endif
517 printk(KERN_INFO "%s\n",
518 numa_off ? "NUMA turned off" : "No NUMA configuration found");
520 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
521 start_pfn << PAGE_SHIFT,
522 end_pfn << PAGE_SHIFT);
523 /* setup dummy node covering all memory */
524 memnode_shift = 63;
525 memnodemap = memnode.embedded_map;
526 memnodemap[0] = 0;
527 nodes_clear(node_online_map);
528 node_set_online(0);
529 node_set(0, node_possible_map);
530 for (i = 0; i < NR_CPUS; i++)
531 numa_set_node(i, 0);
532 node_to_cpumask[0] = cpumask_of_cpu(0);
533 e820_register_active_regions(0, start_pfn, end_pfn);
534 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
537 __cpuinit void numa_add_cpu(int cpu)
539 set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
542 void __cpuinit numa_set_node(int cpu, int node)
544 cpu_pda(cpu)->nodenumber = node;
545 cpu_to_node[cpu] = node;
548 unsigned long __init numa_free_all_bootmem(void)
550 int i;
551 unsigned long pages = 0;
552 for_each_online_node(i) {
553 pages += free_all_bootmem_node(NODE_DATA(i));
555 return pages;
558 void __init paging_init(void)
560 int i;
561 unsigned long max_zone_pfns[MAX_NR_ZONES];
562 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
563 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
564 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
565 max_zone_pfns[ZONE_NORMAL] = end_pfn;
567 sparse_memory_present_with_active_regions(MAX_NUMNODES);
568 sparse_init();
570 for_each_online_node(i) {
571 setup_node_zones(i);
574 free_area_init_nodes(max_zone_pfns);
577 static __init int numa_setup(char *opt)
579 if (!opt)
580 return -EINVAL;
581 if (!strncmp(opt,"off",3))
582 numa_off = 1;
583 #ifdef CONFIG_NUMA_EMU
584 if (!strncmp(opt, "fake=", 5))
585 cmdline = opt + 5;
586 #endif
587 #ifdef CONFIG_ACPI_NUMA
588 if (!strncmp(opt,"noacpi",6))
589 acpi_numa = -1;
590 if (!strncmp(opt,"hotadd=", 7))
591 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
592 #endif
593 return 0;
596 early_param("numa", numa_setup);
599 * Setup early cpu_to_node.
601 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
602 * and apicid_to_node[] tables have valid entries for a CPU.
603 * This means we skip cpu_to_node[] initialisation for NUMA
604 * emulation and faking node case (when running a kernel compiled
605 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
606 * is already initialized in a round robin manner at numa_init_array,
607 * prior to this call, and this initialization is good enough
608 * for the fake NUMA cases.
610 void __init init_cpu_to_node(void)
612 int i;
613 for (i = 0; i < NR_CPUS; i++) {
614 u8 apicid = x86_cpu_to_apicid[i];
615 if (apicid == BAD_APICID)
616 continue;
617 if (apicid_to_node[apicid] == NUMA_NO_NODE)
618 continue;
619 numa_set_node(i,apicid_to_node[apicid]);
623 EXPORT_SYMBOL(cpu_to_node);
624 EXPORT_SYMBOL(node_to_cpumask);
625 EXPORT_SYMBOL(memnode);
626 EXPORT_SYMBOL(node_data);
628 #ifdef CONFIG_DISCONTIGMEM
630 * Functions to convert PFNs from/to per node page addresses.
631 * These are out of line because they are quite big.
632 * They could be all tuned by pre caching more state.
633 * Should do that.
636 int pfn_valid(unsigned long pfn)
638 unsigned nid;
639 if (pfn >= num_physpages)
640 return 0;
641 nid = pfn_to_nid(pfn);
642 if (nid == 0xff)
643 return 0;
644 return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
646 EXPORT_SYMBOL(pfn_valid);
647 #endif