allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / ppc / 8xx_io / enet.c
blobe58288e143698c17657cc7521bc0f754dbc33a02
1 /*
2 * Ethernet driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * I copied the basic skeleton from the lance driver, because I did not
6 * know how to write the Linux driver, but I did know how the LANCE worked.
8 * This version of the driver is somewhat selectable for the different
9 * processor/board combinations. It works for the boards I know about
10 * now, and should be easily modified to include others. Some of the
11 * configuration information is contained in <asm/commproc.h> and the
12 * remainder is here.
14 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
15 * buffers are in the host memory.
17 * Right now, I am very watseful with the buffers. I allocate memory
18 * pages and then divide them into 2K frame buffers. This way I know I
19 * have buffers large enough to hold one frame within one buffer descriptor.
20 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
21 * will be much more memory efficient and will easily handle lots of
22 * small packets.
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/string.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/bitops.h>
42 #include <asm/8xx_immap.h>
43 #include <asm/pgtable.h>
44 #include <asm/mpc8xx.h>
45 #include <asm/uaccess.h>
46 #include <asm/commproc.h>
49 * Theory of Operation
51 * The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
52 * an aribtrary number of buffers on byte boundaries, but must have at
53 * least two receive buffers to prevent constant overrun conditions.
55 * The buffer descriptors are allocated from the CPM dual port memory
56 * with the data buffers allocated from host memory, just like all other
57 * serial communication protocols. The host memory buffers are allocated
58 * from the free page pool, and then divided into smaller receive and
59 * transmit buffers. The size of the buffers should be a power of two,
60 * since that nicely divides the page. This creates a ring buffer
61 * structure similar to the LANCE and other controllers.
63 * Like the LANCE driver:
64 * The driver runs as two independent, single-threaded flows of control. One
65 * is the send-packet routine, which enforces single-threaded use by the
66 * cep->tx_busy flag. The other thread is the interrupt handler, which is
67 * single threaded by the hardware and other software.
69 * The send packet thread has partial control over the Tx ring and the
70 * 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx
71 * packet. If the next queue slot is empty, it clears the tx_busy flag when
72 * finished otherwise it sets the 'lp->tx_full' flag.
74 * The MBX has a control register external to the MPC8xx that has some
75 * control of the Ethernet interface. Information is in the manual for
76 * your board.
78 * The RPX boards have an external control/status register. Consult the
79 * programming documents for details unique to your board.
81 * For the TQM8xx(L) modules, there is no control register interface.
82 * All functions are directly controlled using I/O pins. See <asm/commproc.h>.
85 /* The transmitter timeout
87 #define TX_TIMEOUT (2*HZ)
89 /* The number of Tx and Rx buffers. These are allocated from the page
90 * pool. The code may assume these are power of two, so it is best
91 * to keep them that size.
92 * We don't need to allocate pages for the transmitter. We just use
93 * the skbuffer directly.
95 #ifdef CONFIG_ENET_BIG_BUFFERS
96 #define CPM_ENET_RX_PAGES 32
97 #define CPM_ENET_RX_FRSIZE 2048
98 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
99 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
100 #define TX_RING_SIZE 64 /* Must be power of two */
101 #define TX_RING_MOD_MASK 63 /* for this to work */
102 #else
103 #define CPM_ENET_RX_PAGES 4
104 #define CPM_ENET_RX_FRSIZE 2048
105 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
106 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
107 #define TX_RING_SIZE 8 /* Must be power of two */
108 #define TX_RING_MOD_MASK 7 /* for this to work */
109 #endif
111 /* The CPM stores dest/src/type, data, and checksum for receive packets.
113 #define PKT_MAXBUF_SIZE 1518
114 #define PKT_MINBUF_SIZE 64
115 #define PKT_MAXBLR_SIZE 1520
117 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
118 * tx_bd_base always point to the base of the buffer descriptors. The
119 * cur_rx and cur_tx point to the currently available buffer.
120 * The dirty_tx tracks the current buffer that is being sent by the
121 * controller. The cur_tx and dirty_tx are equal under both completely
122 * empty and completely full conditions. The empty/ready indicator in
123 * the buffer descriptor determines the actual condition.
125 struct scc_enet_private {
126 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
127 struct sk_buff* tx_skbuff[TX_RING_SIZE];
128 ushort skb_cur;
129 ushort skb_dirty;
131 /* CPM dual port RAM relative addresses.
133 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
134 cbd_t *tx_bd_base;
135 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
136 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
137 scc_t *sccp;
139 /* Virtual addresses for the receive buffers because we can't
140 * do a __va() on them anymore.
142 unsigned char *rx_vaddr[RX_RING_SIZE];
143 struct net_device_stats stats;
144 uint tx_full;
145 spinlock_t lock;
148 static int scc_enet_open(struct net_device *dev);
149 static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
150 static int scc_enet_rx(struct net_device *dev);
151 static void scc_enet_interrupt(void *dev_id);
152 static int scc_enet_close(struct net_device *dev);
153 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
154 static void set_multicast_list(struct net_device *dev);
156 /* Get this from various configuration locations (depends on board).
158 /*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/
160 /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards
161 * use SCC2. Some even may use SCC3.
162 * This is easily extended if necessary.
164 #if defined(CONFIG_SCC3_ENET)
165 #define CPM_CR_ENET CPM_CR_CH_SCC3
166 #define PROFF_ENET PROFF_SCC3
167 #define SCC_ENET 2 /* Index, not number! */
168 #define CPMVEC_ENET CPMVEC_SCC3
169 #elif defined(CONFIG_SCC2_ENET)
170 #define CPM_CR_ENET CPM_CR_CH_SCC2
171 #define PROFF_ENET PROFF_SCC2
172 #define SCC_ENET 1 /* Index, not number! */
173 #define CPMVEC_ENET CPMVEC_SCC2
174 #elif defined(CONFIG_SCC1_ENET)
175 #define CPM_CR_ENET CPM_CR_CH_SCC1
176 #define PROFF_ENET PROFF_SCC1
177 #define SCC_ENET 0 /* Index, not number! */
178 #define CPMVEC_ENET CPMVEC_SCC1
179 #else
180 #error CONFIG_SCCx_ENET not defined
181 #endif
183 static int
184 scc_enet_open(struct net_device *dev)
187 /* I should reset the ring buffers here, but I don't yet know
188 * a simple way to do that.
191 netif_start_queue(dev);
192 return 0; /* Always succeed */
195 static int
196 scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
198 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
199 volatile cbd_t *bdp;
201 /* Fill in a Tx ring entry */
202 bdp = cep->cur_tx;
204 #ifndef final_version
205 if (bdp->cbd_sc & BD_ENET_TX_READY) {
206 /* Ooops. All transmit buffers are full. Bail out.
207 * This should not happen, since cep->tx_busy should be set.
209 printk("%s: tx queue full!.\n", dev->name);
210 return 1;
212 #endif
214 /* Clear all of the status flags.
216 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
218 /* If the frame is short, tell CPM to pad it.
220 if (skb->len <= ETH_ZLEN)
221 bdp->cbd_sc |= BD_ENET_TX_PAD;
222 else
223 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
225 /* Set buffer length and buffer pointer.
227 bdp->cbd_datlen = skb->len;
228 bdp->cbd_bufaddr = __pa(skb->data);
230 /* Save skb pointer.
232 cep->tx_skbuff[cep->skb_cur] = skb;
234 cep->stats.tx_bytes += skb->len;
235 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
237 /* Push the data cache so the CPM does not get stale memory
238 * data.
240 flush_dcache_range((unsigned long)(skb->data),
241 (unsigned long)(skb->data + skb->len));
243 spin_lock_irq(&cep->lock);
245 /* Send it on its way. Tell CPM its ready, interrupt when done,
246 * its the last BD of the frame, and to put the CRC on the end.
248 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
250 dev->trans_start = jiffies;
252 /* If this was the last BD in the ring, start at the beginning again.
254 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
255 bdp = cep->tx_bd_base;
256 else
257 bdp++;
259 if (bdp->cbd_sc & BD_ENET_TX_READY) {
260 netif_stop_queue(dev);
261 cep->tx_full = 1;
264 cep->cur_tx = (cbd_t *)bdp;
266 spin_unlock_irq(&cep->lock);
268 return 0;
271 static void
272 scc_enet_timeout(struct net_device *dev)
274 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
276 printk("%s: transmit timed out.\n", dev->name);
277 cep->stats.tx_errors++;
278 #ifndef final_version
280 int i;
281 cbd_t *bdp;
282 printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
283 cep->cur_tx, cep->tx_full ? " (full)" : "",
284 cep->cur_rx);
285 bdp = cep->tx_bd_base;
286 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
287 printk("%04x %04x %08x\n",
288 bdp->cbd_sc,
289 bdp->cbd_datlen,
290 bdp->cbd_bufaddr);
291 bdp = cep->rx_bd_base;
292 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
293 printk("%04x %04x %08x\n",
294 bdp->cbd_sc,
295 bdp->cbd_datlen,
296 bdp->cbd_bufaddr);
298 #endif
299 if (!cep->tx_full)
300 netif_wake_queue(dev);
303 /* The interrupt handler.
304 * This is called from the CPM handler, not the MPC core interrupt.
306 static void
307 scc_enet_interrupt(void *dev_id)
309 struct net_device *dev = dev_id;
310 volatile struct scc_enet_private *cep;
311 volatile cbd_t *bdp;
312 ushort int_events;
313 int must_restart;
315 cep = (struct scc_enet_private *)dev->priv;
317 /* Get the interrupt events that caused us to be here.
319 int_events = cep->sccp->scc_scce;
320 cep->sccp->scc_scce = int_events;
321 must_restart = 0;
323 /* Handle receive event in its own function.
325 if (int_events & SCCE_ENET_RXF)
326 scc_enet_rx(dev_id);
328 /* Check for a transmit error. The manual is a little unclear
329 * about this, so the debug code until I get it figured out. It
330 * appears that if TXE is set, then TXB is not set. However,
331 * if carrier sense is lost during frame transmission, the TXE
332 * bit is set, "and continues the buffer transmission normally."
333 * I don't know if "normally" implies TXB is set when the buffer
334 * descriptor is closed.....trial and error :-).
337 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
339 if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
340 spin_lock(&cep->lock);
341 bdp = cep->dirty_tx;
342 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
343 if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
344 break;
346 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
347 cep->stats.tx_heartbeat_errors++;
348 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
349 cep->stats.tx_window_errors++;
350 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
351 cep->stats.tx_aborted_errors++;
352 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
353 cep->stats.tx_fifo_errors++;
354 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
355 cep->stats.tx_carrier_errors++;
358 /* No heartbeat or Lost carrier are not really bad errors.
359 * The others require a restart transmit command.
361 if (bdp->cbd_sc &
362 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
363 must_restart = 1;
364 cep->stats.tx_errors++;
367 cep->stats.tx_packets++;
369 /* Deferred means some collisions occurred during transmit,
370 * but we eventually sent the packet OK.
372 if (bdp->cbd_sc & BD_ENET_TX_DEF)
373 cep->stats.collisions++;
375 /* Free the sk buffer associated with this last transmit.
377 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
378 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
380 /* Update pointer to next buffer descriptor to be transmitted.
382 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
383 bdp = cep->tx_bd_base;
384 else
385 bdp++;
387 /* I don't know if we can be held off from processing these
388 * interrupts for more than one frame time. I really hope
389 * not. In such a case, we would now want to check the
390 * currently available BD (cur_tx) and determine if any
391 * buffers between the dirty_tx and cur_tx have also been
392 * sent. We would want to process anything in between that
393 * does not have BD_ENET_TX_READY set.
396 /* Since we have freed up a buffer, the ring is no longer
397 * full.
399 if (cep->tx_full) {
400 cep->tx_full = 0;
401 if (netif_queue_stopped(dev))
402 netif_wake_queue(dev);
405 cep->dirty_tx = (cbd_t *)bdp;
408 if (must_restart) {
409 volatile cpm8xx_t *cp;
411 /* Some transmit errors cause the transmitter to shut
412 * down. We now issue a restart transmit. Since the
413 * errors close the BD and update the pointers, the restart
414 * _should_ pick up without having to reset any of our
415 * pointers either.
417 cp = cpmp;
418 cp->cp_cpcr =
419 mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG;
420 while (cp->cp_cpcr & CPM_CR_FLG);
422 spin_unlock(&cep->lock);
425 /* Check for receive busy, i.e. packets coming but no place to
426 * put them. This "can't happen" because the receive interrupt
427 * is tossing previous frames.
429 if (int_events & SCCE_ENET_BSY) {
430 cep->stats.rx_dropped++;
431 printk("CPM ENET: BSY can't happen.\n");
434 return;
437 /* During a receive, the cur_rx points to the current incoming buffer.
438 * When we update through the ring, if the next incoming buffer has
439 * not been given to the system, we just set the empty indicator,
440 * effectively tossing the packet.
442 static int
443 scc_enet_rx(struct net_device *dev)
445 struct scc_enet_private *cep;
446 volatile cbd_t *bdp;
447 struct sk_buff *skb;
448 ushort pkt_len;
450 cep = (struct scc_enet_private *)dev->priv;
452 /* First, grab all of the stats for the incoming packet.
453 * These get messed up if we get called due to a busy condition.
455 bdp = cep->cur_rx;
457 for (;;) {
458 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
459 break;
461 #ifndef final_version
462 /* Since we have allocated space to hold a complete frame, both
463 * the first and last indicators should be set.
465 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
466 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
467 printk("CPM ENET: rcv is not first+last\n");
468 #endif
470 /* Frame too long or too short.
472 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
473 cep->stats.rx_length_errors++;
474 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
475 cep->stats.rx_frame_errors++;
476 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
477 cep->stats.rx_crc_errors++;
478 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
479 cep->stats.rx_crc_errors++;
481 /* Report late collisions as a frame error.
482 * On this error, the BD is closed, but we don't know what we
483 * have in the buffer. So, just drop this frame on the floor.
485 if (bdp->cbd_sc & BD_ENET_RX_CL) {
486 cep->stats.rx_frame_errors++;
488 else {
490 /* Process the incoming frame.
492 cep->stats.rx_packets++;
493 pkt_len = bdp->cbd_datlen;
494 cep->stats.rx_bytes += pkt_len;
496 /* This does 16 byte alignment, much more than we need.
497 * The packet length includes FCS, but we don't want to
498 * include that when passing upstream as it messes up
499 * bridging applications.
501 skb = dev_alloc_skb(pkt_len-4);
503 if (skb == NULL) {
504 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
505 cep->stats.rx_dropped++;
507 else {
508 skb_put(skb,pkt_len-4); /* Make room */
509 eth_copy_and_sum(skb,
510 cep->rx_vaddr[bdp - cep->rx_bd_base],
511 pkt_len-4, 0);
512 skb->protocol=eth_type_trans(skb,dev);
513 netif_rx(skb);
517 /* Clear the status flags for this buffer.
519 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
521 /* Mark the buffer empty.
523 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
525 /* Update BD pointer to next entry.
527 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
528 bdp = cep->rx_bd_base;
529 else
530 bdp++;
533 cep->cur_rx = (cbd_t *)bdp;
535 return 0;
538 static int
539 scc_enet_close(struct net_device *dev)
541 /* Don't know what to do yet.
543 netif_stop_queue(dev);
545 return 0;
548 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
550 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
552 return &cep->stats;
555 /* Set or clear the multicast filter for this adaptor.
556 * Skeleton taken from sunlance driver.
557 * The CPM Ethernet implementation allows Multicast as well as individual
558 * MAC address filtering. Some of the drivers check to make sure it is
559 * a group multicast address, and discard those that are not. I guess I
560 * will do the same for now, but just remove the test if you want
561 * individual filtering as well (do the upper net layers want or support
562 * this kind of feature?).
565 static void set_multicast_list(struct net_device *dev)
567 struct scc_enet_private *cep;
568 struct dev_mc_list *dmi;
569 u_char *mcptr, *tdptr;
570 volatile scc_enet_t *ep;
571 int i, j;
572 cep = (struct scc_enet_private *)dev->priv;
574 /* Get pointer to SCC area in parameter RAM.
576 ep = (scc_enet_t *)dev->base_addr;
578 if (dev->flags&IFF_PROMISC) {
580 /* Log any net taps. */
581 printk("%s: Promiscuous mode enabled.\n", dev->name);
582 cep->sccp->scc_psmr |= SCC_PSMR_PRO;
583 } else {
585 cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
587 if (dev->flags & IFF_ALLMULTI) {
588 /* Catch all multicast addresses, so set the
589 * filter to all 1's.
591 ep->sen_gaddr1 = 0xffff;
592 ep->sen_gaddr2 = 0xffff;
593 ep->sen_gaddr3 = 0xffff;
594 ep->sen_gaddr4 = 0xffff;
596 else {
597 /* Clear filter and add the addresses in the list.
599 ep->sen_gaddr1 = 0;
600 ep->sen_gaddr2 = 0;
601 ep->sen_gaddr3 = 0;
602 ep->sen_gaddr4 = 0;
604 dmi = dev->mc_list;
606 for (i=0; i<dev->mc_count; i++) {
608 /* Only support group multicast for now.
610 if (!(dmi->dmi_addr[0] & 1))
611 continue;
613 /* The address in dmi_addr is LSB first,
614 * and taddr is MSB first. We have to
615 * copy bytes MSB first from dmi_addr.
617 mcptr = (u_char *)dmi->dmi_addr + 5;
618 tdptr = (u_char *)&ep->sen_taddrh;
619 for (j=0; j<6; j++)
620 *tdptr++ = *mcptr--;
622 /* Ask CPM to run CRC and set bit in
623 * filter mask.
625 cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG;
626 /* this delay is necessary here -- Cort */
627 udelay(10);
628 while (cpmp->cp_cpcr & CPM_CR_FLG);
634 /* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed
635 * some other network I/O, a whole bunch of this has already been set up.
636 * It is no big deal if we do it again, we just have to disable the
637 * transmit and receive to make sure we don't catch the CPM with some
638 * inconsistent control information.
640 static int __init scc_enet_init(void)
642 struct net_device *dev;
643 struct scc_enet_private *cep;
644 int i, j, k, err;
645 uint dp_offset;
646 unsigned char *eap, *ba;
647 dma_addr_t mem_addr;
648 bd_t *bd;
649 volatile cbd_t *bdp;
650 volatile cpm8xx_t *cp;
651 volatile scc_t *sccp;
652 volatile scc_enet_t *ep;
653 volatile immap_t *immap;
655 cp = cpmp; /* Get pointer to Communication Processor */
657 immap = (immap_t *)(mfspr(SPRN_IMMR) & 0xFFFF0000); /* and to internal registers */
659 bd = (bd_t *)__res;
661 dev = alloc_etherdev(sizeof(*cep));
662 if (!dev)
663 return -ENOMEM;
665 cep = dev->priv;
666 spin_lock_init(&cep->lock);
668 /* Get pointer to SCC area in parameter RAM.
670 ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);
672 /* And another to the SCC register area.
674 sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]);
675 cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
677 /* Disable receive and transmit in case EPPC-Bug started it.
679 sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
681 /* Cookbook style from the MPC860 manual.....
682 * Not all of this is necessary if EPPC-Bug has initialized
683 * the network.
684 * So far we are lucky, all board configurations use the same
685 * pins, or at least the same I/O Port for these functions.....
686 * It can't last though......
689 #if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD))
690 /* Configure port A pins for Txd and Rxd.
692 immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD);
693 immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
694 immap->im_ioport.iop_paodr &= ~PA_ENET_TXD;
695 #elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD))
696 /* Configure port B pins for Txd and Rxd.
698 immap->im_cpm.cp_pbpar |= (PB_ENET_RXD | PB_ENET_TXD);
699 immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD);
700 immap->im_cpm.cp_pbodr &= ~PB_ENET_TXD;
701 #else
702 #error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined
703 #endif
705 #if defined(PC_ENET_LBK)
706 /* Configure port C pins to disable External Loopback
708 immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK;
709 immap->im_ioport.iop_pcdir |= PC_ENET_LBK;
710 immap->im_ioport.iop_pcso &= ~PC_ENET_LBK;
711 immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK; /* Disable Loopback */
712 #endif /* PC_ENET_LBK */
714 #ifdef PE_ENET_TCLK
715 /* Configure port E for TCLK and RCLK.
717 cp->cp_pepar |= (PE_ENET_TCLK | PE_ENET_RCLK);
718 cp->cp_pedir &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
719 cp->cp_peso &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
720 #else
721 /* Configure port A for TCLK and RCLK.
723 immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK);
724 immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);
725 #endif
727 /* Configure port C pins to enable CLSN and RENA.
729 immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
730 immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
731 immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA);
733 /* Configure Serial Interface clock routing.
734 * First, clear all SCC bits to zero, then set the ones we want.
736 cp->cp_sicr &= ~SICR_ENET_MASK;
737 cp->cp_sicr |= SICR_ENET_CLKRT;
739 /* Manual says set SDDR, but I can't find anything with that
740 * name. I think it is a misprint, and should be SDCR. This
741 * has already been set by the communication processor initialization.
744 /* Allocate space for the buffer descriptors in the DP ram.
745 * These are relative offsets in the DP ram address space.
746 * Initialize base addresses for the buffer descriptors.
748 dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
749 ep->sen_genscc.scc_rbase = dp_offset;
750 cep->rx_bd_base = cpm_dpram_addr(dp_offset);
752 dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
753 ep->sen_genscc.scc_tbase = dp_offset;
754 cep->tx_bd_base = cpm_dpram_addr(dp_offset);
756 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
757 cep->cur_rx = cep->rx_bd_base;
759 /* Issue init Rx BD command for SCC.
760 * Manual says to perform an Init Rx parameters here. We have
761 * to perform both Rx and Tx because the SCC may have been
762 * already running.
763 * In addition, we have to do it later because we don't yet have
764 * all of the BD control/status set properly.
765 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
766 while (cp->cp_cpcr & CPM_CR_FLG);
769 /* Initialize function code registers for big-endian.
771 ep->sen_genscc.scc_rfcr = SCC_EB;
772 ep->sen_genscc.scc_tfcr = SCC_EB;
774 /* Set maximum bytes per receive buffer.
775 * This appears to be an Ethernet frame size, not the buffer
776 * fragment size. It must be a multiple of four.
778 ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
780 /* Set CRC preset and mask.
782 ep->sen_cpres = 0xffffffff;
783 ep->sen_cmask = 0xdebb20e3;
785 ep->sen_crcec = 0; /* CRC Error counter */
786 ep->sen_alec = 0; /* alignment error counter */
787 ep->sen_disfc = 0; /* discard frame counter */
789 ep->sen_pads = 0x8888; /* Tx short frame pad character */
790 ep->sen_retlim = 15; /* Retry limit threshold */
792 ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
793 ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
795 ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
796 ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
798 /* Clear hash tables.
800 ep->sen_gaddr1 = 0;
801 ep->sen_gaddr2 = 0;
802 ep->sen_gaddr3 = 0;
803 ep->sen_gaddr4 = 0;
804 ep->sen_iaddr1 = 0;
805 ep->sen_iaddr2 = 0;
806 ep->sen_iaddr3 = 0;
807 ep->sen_iaddr4 = 0;
809 /* Set Ethernet station address.
811 eap = (unsigned char *)&(ep->sen_paddrh);
812 for (i=5; i>=0; i--)
813 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
815 ep->sen_pper = 0; /* 'cause the book says so */
816 ep->sen_taddrl = 0; /* temp address (LSB) */
817 ep->sen_taddrm = 0;
818 ep->sen_taddrh = 0; /* temp address (MSB) */
820 /* Now allocate the host memory pages and initialize the
821 * buffer descriptors.
823 bdp = cep->tx_bd_base;
824 for (i=0; i<TX_RING_SIZE; i++) {
826 /* Initialize the BD for every fragment in the page.
828 bdp->cbd_sc = 0;
829 bdp->cbd_bufaddr = 0;
830 bdp++;
833 /* Set the last buffer to wrap.
835 bdp--;
836 bdp->cbd_sc |= BD_SC_WRAP;
838 bdp = cep->rx_bd_base;
839 k = 0;
840 for (i=0; i<CPM_ENET_RX_PAGES; i++) {
842 /* Allocate a page.
844 ba = (unsigned char *)dma_alloc_coherent(NULL, PAGE_SIZE,
845 &mem_addr, GFP_KERNEL);
846 /* BUG: no check for failure */
848 /* Initialize the BD for every fragment in the page.
850 for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
851 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
852 bdp->cbd_bufaddr = mem_addr;
853 cep->rx_vaddr[k++] = ba;
854 mem_addr += CPM_ENET_RX_FRSIZE;
855 ba += CPM_ENET_RX_FRSIZE;
856 bdp++;
860 /* Set the last buffer to wrap.
862 bdp--;
863 bdp->cbd_sc |= BD_SC_WRAP;
865 /* Let's re-initialize the channel now. We have to do it later
866 * than the manual describes because we have just now finished
867 * the BD initialization.
869 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG;
870 while (cp->cp_cpcr & CPM_CR_FLG);
872 cep->skb_cur = cep->skb_dirty = 0;
874 sccp->scc_scce = 0xffff; /* Clear any pending events */
876 /* Enable interrupts for transmit error, complete frame
877 * received, and any transmit buffer we have also set the
878 * interrupt flag.
880 sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
882 /* Install our interrupt handler.
884 cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev);
886 /* Set GSMR_H to enable all normal operating modes.
887 * Set GSMR_L to enable Ethernet to MC68160.
889 sccp->scc_gsmrh = 0;
890 sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
892 /* Set sync/delimiters.
894 sccp->scc_dsr = 0xd555;
896 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
897 * start frame search 22 bit times after RENA.
899 sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
901 /* It is now OK to enable the Ethernet transmitter.
902 * Unfortunately, there are board implementation differences here.
904 #if (!defined (PB_ENET_TENA) && defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
905 immap->im_ioport.iop_pcpar |= PC_ENET_TENA;
906 immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;
907 #elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
908 cp->cp_pbpar |= PB_ENET_TENA;
909 cp->cp_pbdir |= PB_ENET_TENA;
910 #elif ( !defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && defined (PE_ENET_TENA))
911 cp->cp_pepar |= PE_ENET_TENA;
912 cp->cp_pedir &= ~PE_ENET_TENA;
913 cp->cp_peso |= PE_ENET_TENA;
914 #else
915 #error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA, PE_ENET_TENA
916 #endif
918 #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
919 /* And while we are here, set the configuration to enable ethernet.
921 *((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
922 *((volatile uint *)RPX_CSR_ADDR) |=
923 (BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
924 #endif
926 #ifdef CONFIG_BSEIP
927 /* BSE uses port B and C for PHY control.
929 cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS);
930 cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
931 cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
933 immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK;
934 immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK;
935 immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK;
936 immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK;
937 #endif
939 #ifdef CONFIG_FADS
940 cp->cp_pbpar |= PB_ENET_TENA;
941 cp->cp_pbdir |= PB_ENET_TENA;
943 /* Enable the EEST PHY.
945 *((volatile uint *)BCSR1) &= ~BCSR1_ETHEN;
946 #endif
948 #ifdef CONFIG_MPC885ADS
950 /* Deassert PHY reset and enable the PHY.
953 volatile uint __iomem *bcsr = ioremap(BCSR_ADDR, BCSR_SIZE);
954 uint tmp;
956 tmp = in_be32(bcsr + 1 /* BCSR1 */);
957 tmp |= BCSR1_ETHEN;
958 out_be32(bcsr + 1, tmp);
959 tmp = in_be32(bcsr + 4 /* BCSR4 */);
960 tmp |= BCSR4_ETH10_RST;
961 out_be32(bcsr + 4, tmp);
962 iounmap(bcsr);
965 /* On MPC885ADS SCC ethernet PHY defaults to the full duplex mode
966 * upon reset. SCC is set to half duplex by default. So this
967 * inconsistency should be better fixed by the software.
969 #endif
971 dev->base_addr = (unsigned long)ep;
972 #if 0
973 dev->name = "CPM_ENET";
974 #endif
976 /* The CPM Ethernet specific entries in the device structure. */
977 dev->open = scc_enet_open;
978 dev->hard_start_xmit = scc_enet_start_xmit;
979 dev->tx_timeout = scc_enet_timeout;
980 dev->watchdog_timeo = TX_TIMEOUT;
981 dev->stop = scc_enet_close;
982 dev->get_stats = scc_enet_get_stats;
983 dev->set_multicast_list = set_multicast_list;
985 err = register_netdev(dev);
986 if (err) {
987 free_netdev(dev);
988 return err;
991 /* And last, enable the transmit and receive processing.
993 sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
995 printk("%s: CPM ENET Version 0.2 on SCC%d, ", dev->name, SCC_ENET+1);
996 for (i=0; i<5; i++)
997 printk("%02x:", dev->dev_addr[i]);
998 printk("%02x\n", dev->dev_addr[5]);
1000 return 0;
1003 module_init(scc_enet_init);