allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / powerpc / kernel / process.c
blob87c474d125d7a6cd4090480c3998dca890a05b05
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
51 extern unsigned long _get_SP(void);
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct *tsk)
65 if (tsk->thread.regs) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
88 preempt_enable();
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp);
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115 return 1;
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct *tsk)
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
148 preempt_enable();
152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 flush_altivec_to_thread(current);
155 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 return 1;
158 #endif /* CONFIG_ALTIVEC */
160 #ifdef CONFIG_SPE
162 void enable_kernel_spe(void)
164 WARN_ON(preemptible());
166 #ifdef CONFIG_SMP
167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 giveup_spe(current);
169 else
170 giveup_spe(NULL); /* just enable SPE for kernel - force */
171 #else
172 giveup_spe(last_task_used_spe);
173 #endif /* __SMP __ */
175 EXPORT_SYMBOL(enable_kernel_spe);
177 void flush_spe_to_thread(struct task_struct *tsk)
179 if (tsk->thread.regs) {
180 preempt_disable();
181 if (tsk->thread.regs->msr & MSR_SPE) {
182 #ifdef CONFIG_SMP
183 BUG_ON(tsk != current);
184 #endif
185 giveup_spe(tsk);
187 preempt_enable();
191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 flush_spe_to_thread(current);
194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 return 1;
198 #endif /* CONFIG_SPE */
200 #ifndef CONFIG_SMP
202 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203 * and the current task has some state, discard it.
205 void discard_lazy_cpu_state(void)
207 preempt_disable();
208 if (last_task_used_math == current)
209 last_task_used_math = NULL;
210 #ifdef CONFIG_ALTIVEC
211 if (last_task_used_altivec == current)
212 last_task_used_altivec = NULL;
213 #endif /* CONFIG_ALTIVEC */
214 #ifdef CONFIG_SPE
215 if (last_task_used_spe == current)
216 last_task_used_spe = NULL;
217 #endif
218 preempt_enable();
220 #endif /* CONFIG_SMP */
222 #ifdef CONFIG_PPC_MERGE /* XXX for now */
223 int set_dabr(unsigned long dabr)
225 if (ppc_md.set_dabr)
226 return ppc_md.set_dabr(dabr);
228 mtspr(SPRN_DABR, dabr);
229 return 0;
231 #endif
233 #ifdef CONFIG_PPC64
234 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
235 static DEFINE_PER_CPU(unsigned long, current_dabr);
236 #endif
238 struct task_struct *__switch_to(struct task_struct *prev,
239 struct task_struct *new)
241 struct thread_struct *new_thread, *old_thread;
242 unsigned long flags;
243 struct task_struct *last;
245 #ifdef CONFIG_SMP
246 /* avoid complexity of lazy save/restore of fpu
247 * by just saving it every time we switch out if
248 * this task used the fpu during the last quantum.
250 * If it tries to use the fpu again, it'll trap and
251 * reload its fp regs. So we don't have to do a restore
252 * every switch, just a save.
253 * -- Cort
255 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
256 giveup_fpu(prev);
257 #ifdef CONFIG_ALTIVEC
259 * If the previous thread used altivec in the last quantum
260 * (thus changing altivec regs) then save them.
261 * We used to check the VRSAVE register but not all apps
262 * set it, so we don't rely on it now (and in fact we need
263 * to save & restore VSCR even if VRSAVE == 0). -- paulus
265 * On SMP we always save/restore altivec regs just to avoid the
266 * complexity of changing processors.
267 * -- Cort
269 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
270 giveup_altivec(prev);
271 #endif /* CONFIG_ALTIVEC */
272 #ifdef CONFIG_SPE
274 * If the previous thread used spe in the last quantum
275 * (thus changing spe regs) then save them.
277 * On SMP we always save/restore spe regs just to avoid the
278 * complexity of changing processors.
280 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
281 giveup_spe(prev);
282 #endif /* CONFIG_SPE */
284 #else /* CONFIG_SMP */
285 #ifdef CONFIG_ALTIVEC
286 /* Avoid the trap. On smp this this never happens since
287 * we don't set last_task_used_altivec -- Cort
289 if (new->thread.regs && last_task_used_altivec == new)
290 new->thread.regs->msr |= MSR_VEC;
291 #endif /* CONFIG_ALTIVEC */
292 #ifdef CONFIG_SPE
293 /* Avoid the trap. On smp this this never happens since
294 * we don't set last_task_used_spe
296 if (new->thread.regs && last_task_used_spe == new)
297 new->thread.regs->msr |= MSR_SPE;
298 #endif /* CONFIG_SPE */
300 #endif /* CONFIG_SMP */
302 #ifdef CONFIG_PPC64 /* for now */
303 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
304 set_dabr(new->thread.dabr);
305 __get_cpu_var(current_dabr) = new->thread.dabr;
307 #endif /* CONFIG_PPC64 */
309 new_thread = &new->thread;
310 old_thread = &current->thread;
312 #ifdef CONFIG_PPC64
314 * Collect processor utilization data per process
316 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
317 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
318 long unsigned start_tb, current_tb;
319 start_tb = old_thread->start_tb;
320 cu->current_tb = current_tb = mfspr(SPRN_PURR);
321 old_thread->accum_tb += (current_tb - start_tb);
322 new_thread->start_tb = current_tb;
324 #endif
326 local_irq_save(flags);
328 account_system_vtime(current);
329 account_process_vtime(current);
330 calculate_steal_time();
332 last = _switch(old_thread, new_thread);
334 local_irq_restore(flags);
336 return last;
339 static int instructions_to_print = 16;
341 static void show_instructions(struct pt_regs *regs)
343 int i;
344 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
345 sizeof(int));
347 printk("Instruction dump:");
349 for (i = 0; i < instructions_to_print; i++) {
350 int instr;
352 if (!(i % 8))
353 printk("\n");
355 /* We use __get_user here *only* to avoid an OOPS on a
356 * bad address because the pc *should* only be a
357 * kernel address.
359 if (!__kernel_text_address(pc) ||
360 __get_user(instr, (unsigned int __user *)pc)) {
361 printk("XXXXXXXX ");
362 } else {
363 if (regs->nip == pc)
364 printk("<%08x> ", instr);
365 else
366 printk("%08x ", instr);
369 pc += sizeof(int);
372 printk("\n");
375 static struct regbit {
376 unsigned long bit;
377 const char *name;
378 } msr_bits[] = {
379 {MSR_EE, "EE"},
380 {MSR_PR, "PR"},
381 {MSR_FP, "FP"},
382 {MSR_ME, "ME"},
383 {MSR_IR, "IR"},
384 {MSR_DR, "DR"},
385 {0, NULL}
388 static void printbits(unsigned long val, struct regbit *bits)
390 const char *sep = "";
392 printk("<");
393 for (; bits->bit; ++bits)
394 if (val & bits->bit) {
395 printk("%s%s", sep, bits->name);
396 sep = ",";
398 printk(">");
401 #ifdef CONFIG_PPC64
402 #define REG "%016lx"
403 #define REGS_PER_LINE 4
404 #define LAST_VOLATILE 13
405 #else
406 #define REG "%08lx"
407 #define REGS_PER_LINE 8
408 #define LAST_VOLATILE 12
409 #endif
411 void show_regs(struct pt_regs * regs)
413 int i, trap;
415 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
416 regs->nip, regs->link, regs->ctr);
417 printk("REGS: %p TRAP: %04lx %s (%s)\n",
418 regs, regs->trap, print_tainted(), init_utsname()->release);
419 printk("MSR: "REG" ", regs->msr);
420 printbits(regs->msr, msr_bits);
421 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
422 trap = TRAP(regs);
423 if (trap == 0x300 || trap == 0x600)
424 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
425 printk("TASK = %p[%d] '%s' THREAD: %p",
426 current, current->pid, current->comm, task_thread_info(current));
428 #ifdef CONFIG_SMP
429 printk(" CPU: %d", smp_processor_id());
430 #endif /* CONFIG_SMP */
432 for (i = 0; i < 32; i++) {
433 if ((i % REGS_PER_LINE) == 0)
434 printk("\n" KERN_INFO "GPR%02d: ", i);
435 printk(REG " ", regs->gpr[i]);
436 if (i == LAST_VOLATILE && !FULL_REGS(regs))
437 break;
439 printk("\n");
440 #ifdef CONFIG_KALLSYMS
442 * Lookup NIP late so we have the best change of getting the
443 * above info out without failing
445 printk("NIP ["REG"] ", regs->nip);
446 print_symbol("%s\n", regs->nip);
447 printk("LR ["REG"] ", regs->link);
448 print_symbol("%s\n", regs->link);
449 #endif
450 show_stack(current, (unsigned long *) regs->gpr[1]);
451 if (!user_mode(regs))
452 show_instructions(regs);
455 void exit_thread(void)
457 discard_lazy_cpu_state();
460 void flush_thread(void)
462 #ifdef CONFIG_PPC64
463 struct thread_info *t = current_thread_info();
465 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
466 clear_ti_thread_flag(t, TIF_ABI_PENDING);
467 if (test_ti_thread_flag(t, TIF_32BIT))
468 clear_ti_thread_flag(t, TIF_32BIT);
469 else
470 set_ti_thread_flag(t, TIF_32BIT);
472 #endif
474 discard_lazy_cpu_state();
476 #ifdef CONFIG_PPC64 /* for now */
477 if (current->thread.dabr) {
478 current->thread.dabr = 0;
479 set_dabr(0);
481 #endif
484 void
485 release_thread(struct task_struct *t)
490 * This gets called before we allocate a new thread and copy
491 * the current task into it.
493 void prepare_to_copy(struct task_struct *tsk)
495 flush_fp_to_thread(current);
496 flush_altivec_to_thread(current);
497 flush_spe_to_thread(current);
501 * Copy a thread..
503 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
504 unsigned long unused, struct task_struct *p,
505 struct pt_regs *regs)
507 struct pt_regs *childregs, *kregs;
508 extern void ret_from_fork(void);
509 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
511 CHECK_FULL_REGS(regs);
512 /* Copy registers */
513 sp -= sizeof(struct pt_regs);
514 childregs = (struct pt_regs *) sp;
515 *childregs = *regs;
516 if ((childregs->msr & MSR_PR) == 0) {
517 /* for kernel thread, set `current' and stackptr in new task */
518 childregs->gpr[1] = sp + sizeof(struct pt_regs);
519 #ifdef CONFIG_PPC32
520 childregs->gpr[2] = (unsigned long) p;
521 #else
522 clear_tsk_thread_flag(p, TIF_32BIT);
523 #endif
524 p->thread.regs = NULL; /* no user register state */
525 } else {
526 childregs->gpr[1] = usp;
527 p->thread.regs = childregs;
528 if (clone_flags & CLONE_SETTLS) {
529 #ifdef CONFIG_PPC64
530 if (!test_thread_flag(TIF_32BIT))
531 childregs->gpr[13] = childregs->gpr[6];
532 else
533 #endif
534 childregs->gpr[2] = childregs->gpr[6];
537 childregs->gpr[3] = 0; /* Result from fork() */
538 sp -= STACK_FRAME_OVERHEAD;
541 * The way this works is that at some point in the future
542 * some task will call _switch to switch to the new task.
543 * That will pop off the stack frame created below and start
544 * the new task running at ret_from_fork. The new task will
545 * do some house keeping and then return from the fork or clone
546 * system call, using the stack frame created above.
548 sp -= sizeof(struct pt_regs);
549 kregs = (struct pt_regs *) sp;
550 sp -= STACK_FRAME_OVERHEAD;
551 p->thread.ksp = sp;
553 #ifdef CONFIG_PPC64
554 if (cpu_has_feature(CPU_FTR_SLB)) {
555 unsigned long sp_vsid = get_kernel_vsid(sp);
556 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
558 sp_vsid <<= SLB_VSID_SHIFT;
559 sp_vsid |= SLB_VSID_KERNEL | llp;
560 p->thread.ksp_vsid = sp_vsid;
564 * The PPC64 ABI makes use of a TOC to contain function
565 * pointers. The function (ret_from_except) is actually a pointer
566 * to the TOC entry. The first entry is a pointer to the actual
567 * function.
569 kregs->nip = *((unsigned long *)ret_from_fork);
570 #else
571 kregs->nip = (unsigned long)ret_from_fork;
572 #endif
574 return 0;
578 * Set up a thread for executing a new program
580 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
582 #ifdef CONFIG_PPC64
583 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
584 #endif
586 set_fs(USER_DS);
589 * If we exec out of a kernel thread then thread.regs will not be
590 * set. Do it now.
592 if (!current->thread.regs) {
593 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
594 current->thread.regs = regs - 1;
597 memset(regs->gpr, 0, sizeof(regs->gpr));
598 regs->ctr = 0;
599 regs->link = 0;
600 regs->xer = 0;
601 regs->ccr = 0;
602 regs->gpr[1] = sp;
604 #ifdef CONFIG_PPC32
605 regs->mq = 0;
606 regs->nip = start;
607 regs->msr = MSR_USER;
608 #else
609 if (!test_thread_flag(TIF_32BIT)) {
610 unsigned long entry, toc;
612 /* start is a relocated pointer to the function descriptor for
613 * the elf _start routine. The first entry in the function
614 * descriptor is the entry address of _start and the second
615 * entry is the TOC value we need to use.
617 __get_user(entry, (unsigned long __user *)start);
618 __get_user(toc, (unsigned long __user *)start+1);
620 /* Check whether the e_entry function descriptor entries
621 * need to be relocated before we can use them.
623 if (load_addr != 0) {
624 entry += load_addr;
625 toc += load_addr;
627 regs->nip = entry;
628 regs->gpr[2] = toc;
629 regs->msr = MSR_USER64;
630 } else {
631 regs->nip = start;
632 regs->gpr[2] = 0;
633 regs->msr = MSR_USER32;
635 #endif
637 discard_lazy_cpu_state();
638 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
639 current->thread.fpscr.val = 0;
640 #ifdef CONFIG_ALTIVEC
641 memset(current->thread.vr, 0, sizeof(current->thread.vr));
642 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
643 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
644 current->thread.vrsave = 0;
645 current->thread.used_vr = 0;
646 #endif /* CONFIG_ALTIVEC */
647 #ifdef CONFIG_SPE
648 memset(current->thread.evr, 0, sizeof(current->thread.evr));
649 current->thread.acc = 0;
650 current->thread.spefscr = 0;
651 current->thread.used_spe = 0;
652 #endif /* CONFIG_SPE */
655 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
656 | PR_FP_EXC_RES | PR_FP_EXC_INV)
658 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
660 struct pt_regs *regs = tsk->thread.regs;
662 /* This is a bit hairy. If we are an SPE enabled processor
663 * (have embedded fp) we store the IEEE exception enable flags in
664 * fpexc_mode. fpexc_mode is also used for setting FP exception
665 * mode (asyn, precise, disabled) for 'Classic' FP. */
666 if (val & PR_FP_EXC_SW_ENABLE) {
667 #ifdef CONFIG_SPE
668 tsk->thread.fpexc_mode = val &
669 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
670 return 0;
671 #else
672 return -EINVAL;
673 #endif
676 /* on a CONFIG_SPE this does not hurt us. The bits that
677 * __pack_fe01 use do not overlap with bits used for
678 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
679 * on CONFIG_SPE implementations are reserved so writing to
680 * them does not change anything */
681 if (val > PR_FP_EXC_PRECISE)
682 return -EINVAL;
683 tsk->thread.fpexc_mode = __pack_fe01(val);
684 if (regs != NULL && (regs->msr & MSR_FP) != 0)
685 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
686 | tsk->thread.fpexc_mode;
687 return 0;
690 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
692 unsigned int val;
694 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
695 #ifdef CONFIG_SPE
696 val = tsk->thread.fpexc_mode;
697 #else
698 return -EINVAL;
699 #endif
700 else
701 val = __unpack_fe01(tsk->thread.fpexc_mode);
702 return put_user(val, (unsigned int __user *) adr);
705 int set_endian(struct task_struct *tsk, unsigned int val)
707 struct pt_regs *regs = tsk->thread.regs;
709 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
710 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
711 return -EINVAL;
713 if (regs == NULL)
714 return -EINVAL;
716 if (val == PR_ENDIAN_BIG)
717 regs->msr &= ~MSR_LE;
718 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
719 regs->msr |= MSR_LE;
720 else
721 return -EINVAL;
723 return 0;
726 int get_endian(struct task_struct *tsk, unsigned long adr)
728 struct pt_regs *regs = tsk->thread.regs;
729 unsigned int val;
731 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
732 !cpu_has_feature(CPU_FTR_REAL_LE))
733 return -EINVAL;
735 if (regs == NULL)
736 return -EINVAL;
738 if (regs->msr & MSR_LE) {
739 if (cpu_has_feature(CPU_FTR_REAL_LE))
740 val = PR_ENDIAN_LITTLE;
741 else
742 val = PR_ENDIAN_PPC_LITTLE;
743 } else
744 val = PR_ENDIAN_BIG;
746 return put_user(val, (unsigned int __user *)adr);
749 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
751 tsk->thread.align_ctl = val;
752 return 0;
755 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
757 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
760 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
762 int sys_clone(unsigned long clone_flags, unsigned long usp,
763 int __user *parent_tidp, void __user *child_threadptr,
764 int __user *child_tidp, int p6,
765 struct pt_regs *regs)
767 CHECK_FULL_REGS(regs);
768 if (usp == 0)
769 usp = regs->gpr[1]; /* stack pointer for child */
770 #ifdef CONFIG_PPC64
771 if (test_thread_flag(TIF_32BIT)) {
772 parent_tidp = TRUNC_PTR(parent_tidp);
773 child_tidp = TRUNC_PTR(child_tidp);
775 #endif
776 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
779 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
780 unsigned long p4, unsigned long p5, unsigned long p6,
781 struct pt_regs *regs)
783 CHECK_FULL_REGS(regs);
784 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
787 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
788 unsigned long p4, unsigned long p5, unsigned long p6,
789 struct pt_regs *regs)
791 CHECK_FULL_REGS(regs);
792 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
793 regs, 0, NULL, NULL);
796 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
797 unsigned long a3, unsigned long a4, unsigned long a5,
798 struct pt_regs *regs)
800 int error;
801 char *filename;
803 filename = getname((char __user *) a0);
804 error = PTR_ERR(filename);
805 if (IS_ERR(filename))
806 goto out;
807 flush_fp_to_thread(current);
808 flush_altivec_to_thread(current);
809 flush_spe_to_thread(current);
810 error = do_execve(filename, (char __user * __user *) a1,
811 (char __user * __user *) a2, regs);
812 if (error == 0) {
813 task_lock(current);
814 current->ptrace &= ~PT_DTRACE;
815 task_unlock(current);
817 putname(filename);
818 out:
819 return error;
822 #ifdef CONFIG_IRQSTACKS
823 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
824 unsigned long nbytes)
826 unsigned long stack_page;
827 unsigned long cpu = task_cpu(p);
830 * Avoid crashing if the stack has overflowed and corrupted
831 * task_cpu(p), which is in the thread_info struct.
833 if (cpu < NR_CPUS && cpu_possible(cpu)) {
834 stack_page = (unsigned long) hardirq_ctx[cpu];
835 if (sp >= stack_page + sizeof(struct thread_struct)
836 && sp <= stack_page + THREAD_SIZE - nbytes)
837 return 1;
839 stack_page = (unsigned long) softirq_ctx[cpu];
840 if (sp >= stack_page + sizeof(struct thread_struct)
841 && sp <= stack_page + THREAD_SIZE - nbytes)
842 return 1;
844 return 0;
847 #else
848 #define valid_irq_stack(sp, p, nb) 0
849 #endif /* CONFIG_IRQSTACKS */
851 int validate_sp(unsigned long sp, struct task_struct *p,
852 unsigned long nbytes)
854 unsigned long stack_page = (unsigned long)task_stack_page(p);
856 if (sp >= stack_page + sizeof(struct thread_struct)
857 && sp <= stack_page + THREAD_SIZE - nbytes)
858 return 1;
860 return valid_irq_stack(sp, p, nbytes);
863 #ifdef CONFIG_PPC64
864 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
865 #define FRAME_LR_SAVE 2
866 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
867 #define REGS_MARKER 0x7265677368657265ul
868 #define FRAME_MARKER 12
869 #else
870 #define MIN_STACK_FRAME 16
871 #define FRAME_LR_SAVE 1
872 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
873 #define REGS_MARKER 0x72656773ul
874 #define FRAME_MARKER 2
875 #endif
877 EXPORT_SYMBOL(validate_sp);
879 unsigned long get_wchan(struct task_struct *p)
881 unsigned long ip, sp;
882 int count = 0;
884 if (!p || p == current || p->state == TASK_RUNNING)
885 return 0;
887 sp = p->thread.ksp;
888 if (!validate_sp(sp, p, MIN_STACK_FRAME))
889 return 0;
891 do {
892 sp = *(unsigned long *)sp;
893 if (!validate_sp(sp, p, MIN_STACK_FRAME))
894 return 0;
895 if (count > 0) {
896 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
897 if (!in_sched_functions(ip))
898 return ip;
900 } while (count++ < 16);
901 return 0;
904 static int kstack_depth_to_print = 64;
906 void show_stack(struct task_struct *tsk, unsigned long *stack)
908 unsigned long sp, ip, lr, newsp;
909 int count = 0;
910 int firstframe = 1;
912 sp = (unsigned long) stack;
913 if (tsk == NULL)
914 tsk = current;
915 if (sp == 0) {
916 if (tsk == current)
917 asm("mr %0,1" : "=r" (sp));
918 else
919 sp = tsk->thread.ksp;
922 lr = 0;
923 printk("Call Trace:\n");
924 do {
925 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
926 return;
928 stack = (unsigned long *) sp;
929 newsp = stack[0];
930 ip = stack[FRAME_LR_SAVE];
931 if (!firstframe || ip != lr) {
932 printk("["REG"] ["REG"] ", sp, ip);
933 print_symbol("%s", ip);
934 if (firstframe)
935 printk(" (unreliable)");
936 printk("\n");
938 firstframe = 0;
941 * See if this is an exception frame.
942 * We look for the "regshere" marker in the current frame.
944 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
945 && stack[FRAME_MARKER] == REGS_MARKER) {
946 struct pt_regs *regs = (struct pt_regs *)
947 (sp + STACK_FRAME_OVERHEAD);
948 printk("--- Exception: %lx", regs->trap);
949 print_symbol(" at %s\n", regs->nip);
950 lr = regs->link;
951 print_symbol(" LR = %s\n", lr);
952 firstframe = 1;
955 sp = newsp;
956 } while (count++ < kstack_depth_to_print);
959 void dump_stack(void)
961 show_stack(current, NULL);
963 EXPORT_SYMBOL(dump_stack);
965 #ifdef CONFIG_PPC64
966 void ppc64_runlatch_on(void)
968 unsigned long ctrl;
970 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
971 HMT_medium();
973 ctrl = mfspr(SPRN_CTRLF);
974 ctrl |= CTRL_RUNLATCH;
975 mtspr(SPRN_CTRLT, ctrl);
977 set_thread_flag(TIF_RUNLATCH);
981 void ppc64_runlatch_off(void)
983 unsigned long ctrl;
985 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
986 HMT_medium();
988 clear_thread_flag(TIF_RUNLATCH);
990 ctrl = mfspr(SPRN_CTRLF);
991 ctrl &= ~CTRL_RUNLATCH;
992 mtspr(SPRN_CTRLT, ctrl);
995 #endif