allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / powerpc / kernel / crash_dump.c
blob2f6f5a7bc69edc578bd617396b18b598046f6c7d
1 /*
2 * Routines for doing kexec-based kdump.
4 * Copyright (C) 2005, IBM Corp.
6 * Created by: Michael Ellerman
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #undef DEBUG
14 #include <linux/crash_dump.h>
15 #include <linux/bootmem.h>
16 #include <asm/kdump.h>
17 #include <asm/lmb.h>
18 #include <asm/firmware.h>
19 #include <asm/uaccess.h>
21 #ifdef DEBUG
22 #include <asm/udbg.h>
23 #define DBG(fmt...) udbg_printf(fmt)
24 #else
25 #define DBG(fmt...)
26 #endif
28 void reserve_kdump_trampoline(void)
30 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
33 static void __init create_trampoline(unsigned long addr)
35 /* The maximum range of a single instruction branch, is the current
36 * instruction's address + (32 MB - 4) bytes. For the trampoline we
37 * need to branch to current address + 32 MB. So we insert a nop at
38 * the trampoline address, then the next instruction (+ 4 bytes)
39 * does a branch to (32 MB - 4). The net effect is that when we
40 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
41 * two instructions it doesn't require any registers.
43 create_instruction(addr, 0x60000000); /* nop */
44 create_branch(addr + 4, addr + PHYSICAL_START, 0);
47 void __init setup_kdump_trampoline(void)
49 unsigned long i;
51 DBG(" -> setup_kdump_trampoline()\n");
53 for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
54 create_trampoline(i);
57 create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
58 create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
60 DBG(" <- setup_kdump_trampoline()\n");
63 #ifdef CONFIG_PROC_VMCORE
64 static int __init parse_elfcorehdr(char *p)
66 if (p)
67 elfcorehdr_addr = memparse(p, &p);
69 return 1;
71 __setup("elfcorehdr=", parse_elfcorehdr);
72 #endif
74 static int __init parse_savemaxmem(char *p)
76 if (p)
77 saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
79 return 1;
81 __setup("savemaxmem=", parse_savemaxmem);
83 /**
84 * copy_oldmem_page - copy one page from "oldmem"
85 * @pfn: page frame number to be copied
86 * @buf: target memory address for the copy; this can be in kernel address
87 * space or user address space (see @userbuf)
88 * @csize: number of bytes to copy
89 * @offset: offset in bytes into the page (based on pfn) to begin the copy
90 * @userbuf: if set, @buf is in user address space, use copy_to_user(),
91 * otherwise @buf is in kernel address space, use memcpy().
93 * Copy a page from "oldmem". For this page, there is no pte mapped
94 * in the current kernel. We stitch up a pte, similar to kmap_atomic.
96 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
97 size_t csize, unsigned long offset, int userbuf)
99 void *vaddr;
101 if (!csize)
102 return 0;
104 vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
106 if (userbuf) {
107 if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) {
108 iounmap(vaddr);
109 return -EFAULT;
111 } else
112 memcpy(buf, (vaddr + offset), csize);
114 iounmap(vaddr);
115 return csize;