allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / mips / au1000 / common / dbdma.c
blob6d15d7df15c4708e134ff4cc19044c16c471cb8b
1 /*
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/errno.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/module.h>
42 #include <asm/mach-au1x00/au1000.h>
43 #include <asm/mach-au1x00/au1xxx_dbdma.h>
44 #include <asm/system.h>
47 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
50 * The Descriptor Based DMA supports up to 16 channels.
52 * There are 32 devices defined. We keep an internal structure
53 * of devices using these channels, along with additional
54 * information.
56 * We allocate the descriptors and allow access to them through various
57 * functions. The drivers allocate the data buffers and assign them
58 * to the descriptors.
60 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
62 /* I couldn't find a macro that did this......
64 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
66 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
67 static int dbdma_initialized=0;
68 static void au1xxx_dbdma_init(void);
70 static dbdev_tab_t dbdev_tab[] = {
71 #ifdef CONFIG_SOC_AU1550
72 /* UARTS */
73 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
74 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
75 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
76 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
78 /* EXT DMA */
79 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
80 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
81 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
82 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
84 /* USB DEV */
85 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
86 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
87 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
88 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
89 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
90 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
92 /* PSC 0 */
93 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
94 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
96 /* PSC 1 */
97 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
98 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
100 /* PSC 2 */
101 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
102 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
104 /* PSC 3 */
105 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
106 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
108 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
109 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
111 /* MAC 0 */
112 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
113 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
115 /* MAC 1 */
116 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
117 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
119 #endif /* CONFIG_SOC_AU1550 */
121 #ifdef CONFIG_SOC_AU1200
122 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
123 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
124 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
125 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
127 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
130 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
131 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
132 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
133 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
135 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
136 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
137 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
138 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
140 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
141 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
143 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
144 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
145 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
147 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
148 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
149 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
151 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
152 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
153 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
154 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
158 #endif // CONFIG_SOC_AU1200
160 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
161 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
163 /* Provide 16 user definable device types */
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173 { ~0, 0, 0, 0, 0, 0, 0 },
174 { ~0, 0, 0, 0, 0, 0, 0 },
175 { ~0, 0, 0, 0, 0, 0, 0 },
176 { ~0, 0, 0, 0, 0, 0, 0 },
177 { ~0, 0, 0, 0, 0, 0, 0 },
178 { ~0, 0, 0, 0, 0, 0, 0 },
179 { ~0, 0, 0, 0, 0, 0, 0 },
182 #define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
184 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
186 static dbdev_tab_t *
187 find_dbdev_id (u32 id)
189 int i;
190 dbdev_tab_t *p;
191 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
192 p = &dbdev_tab[i];
193 if (p->dev_id == id)
194 return p;
196 return NULL;
199 void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
201 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
203 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
206 au1xxx_ddma_add_device(dbdev_tab_t *dev)
208 u32 ret = 0;
209 dbdev_tab_t *p=NULL;
210 static u16 new_id=0x1000;
212 p = find_dbdev_id(~0);
213 if ( NULL != p )
215 memcpy(p, dev, sizeof(dbdev_tab_t));
216 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id);
217 ret = p->dev_id;
218 new_id++;
219 #if 0
220 printk("add_device: id:%x flags:%x padd:%x\n",
221 p->dev_id, p->dev_flags, p->dev_physaddr );
222 #endif
225 return ret;
227 EXPORT_SYMBOL(au1xxx_ddma_add_device);
229 /* Allocate a channel and return a non-zero descriptor if successful.
232 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
233 void (*callback)(int, void *), void *callparam)
235 unsigned long flags;
236 u32 used, chan, rv;
237 u32 dcp;
238 int i;
239 dbdev_tab_t *stp, *dtp;
240 chan_tab_t *ctp;
241 au1x_dma_chan_t *cp;
243 /* We do the intialization on the first channel allocation.
244 * We have to wait because of the interrupt handler initialization
245 * which can't be done successfully during board set up.
247 if (!dbdma_initialized)
248 au1xxx_dbdma_init();
249 dbdma_initialized = 1;
251 if ((stp = find_dbdev_id(srcid)) == NULL)
252 return 0;
253 if ((dtp = find_dbdev_id(destid)) == NULL)
254 return 0;
256 used = 0;
257 rv = 0;
259 /* Check to see if we can get both channels.
261 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
262 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
263 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
264 /* Got source */
265 stp->dev_flags |= DEV_FLAGS_INUSE;
266 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
267 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
268 /* Got destination */
269 dtp->dev_flags |= DEV_FLAGS_INUSE;
271 else {
272 /* Can't get dest. Release src.
274 stp->dev_flags &= ~DEV_FLAGS_INUSE;
275 used++;
278 else {
279 used++;
281 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
283 if (!used) {
284 /* Let's see if we can allocate a channel for it.
286 ctp = NULL;
287 chan = 0;
288 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
289 for (i=0; i<NUM_DBDMA_CHANS; i++) {
290 if (chan_tab_ptr[i] == NULL) {
291 /* If kmalloc fails, it is caught below same
292 * as a channel not available.
294 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
295 chan_tab_ptr[i] = ctp;
296 break;
299 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
301 if (ctp != NULL) {
302 memset(ctp, 0, sizeof(chan_tab_t));
303 ctp->chan_index = chan = i;
304 dcp = DDMA_CHANNEL_BASE;
305 dcp += (0x0100 * chan);
306 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
307 cp = (au1x_dma_chan_t *)dcp;
308 ctp->chan_src = stp;
309 ctp->chan_dest = dtp;
310 ctp->chan_callback = callback;
311 ctp->chan_callparam = callparam;
313 /* Initialize channel configuration.
315 i = 0;
316 if (stp->dev_intlevel)
317 i |= DDMA_CFG_SED;
318 if (stp->dev_intpolarity)
319 i |= DDMA_CFG_SP;
320 if (dtp->dev_intlevel)
321 i |= DDMA_CFG_DED;
322 if (dtp->dev_intpolarity)
323 i |= DDMA_CFG_DP;
324 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
325 (dtp->dev_flags & DEV_FLAGS_SYNC))
326 i |= DDMA_CFG_SYNC;
327 cp->ddma_cfg = i;
328 au_sync();
330 /* Return a non-zero value that can be used to
331 * find the channel information in subsequent
332 * operations.
334 rv = (u32)(&chan_tab_ptr[chan]);
336 else {
337 /* Release devices */
338 stp->dev_flags &= ~DEV_FLAGS_INUSE;
339 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
342 return rv;
344 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
346 /* Set the device width if source or destination is a FIFO.
347 * Should be 8, 16, or 32 bits.
350 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
352 u32 rv;
353 chan_tab_t *ctp;
354 dbdev_tab_t *stp, *dtp;
356 ctp = *((chan_tab_t **)chanid);
357 stp = ctp->chan_src;
358 dtp = ctp->chan_dest;
359 rv = 0;
361 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
362 rv = stp->dev_devwidth;
363 stp->dev_devwidth = bits;
365 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
366 rv = dtp->dev_devwidth;
367 dtp->dev_devwidth = bits;
370 return rv;
372 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
374 /* Allocate a descriptor ring, initializing as much as possible.
377 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
379 int i;
380 u32 desc_base, srcid, destid;
381 u32 cmd0, cmd1, src1, dest1;
382 u32 src0, dest0;
383 chan_tab_t *ctp;
384 dbdev_tab_t *stp, *dtp;
385 au1x_ddma_desc_t *dp;
387 /* I guess we could check this to be within the
388 * range of the table......
390 ctp = *((chan_tab_t **)chanid);
391 stp = ctp->chan_src;
392 dtp = ctp->chan_dest;
394 /* The descriptors must be 32-byte aligned. There is a
395 * possibility the allocation will give us such an address,
396 * and if we try that first we are likely to not waste larger
397 * slabs of memory.
399 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
400 GFP_KERNEL|GFP_DMA);
401 if (desc_base == 0)
402 return 0;
404 if (desc_base & 0x1f) {
405 /* Lost....do it again, allocate extra, and round
406 * the address base.
408 kfree((const void *)desc_base);
409 i = entries * sizeof(au1x_ddma_desc_t);
410 i += (sizeof(au1x_ddma_desc_t) - 1);
411 if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
412 return 0;
414 ctp->cdb_membase = desc_base;
415 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
416 } else
417 ctp->cdb_membase = desc_base;
419 dp = (au1x_ddma_desc_t *)desc_base;
421 /* Keep track of the base descriptor.
423 ctp->chan_desc_base = dp;
425 /* Initialize the rings with as much information as we know.
427 srcid = stp->dev_id;
428 destid = dtp->dev_id;
430 cmd0 = cmd1 = src1 = dest1 = 0;
431 src0 = dest0 = 0;
433 cmd0 |= DSCR_CMD0_SID(srcid);
434 cmd0 |= DSCR_CMD0_DID(destid);
435 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
436 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
438 /* is it mem to mem transfer? */
439 if(((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
440 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) {
441 cmd0 |= DSCR_CMD0_MEM;
444 switch (stp->dev_devwidth) {
445 case 8:
446 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
447 break;
448 case 16:
449 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
450 break;
451 case 32:
452 default:
453 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
454 break;
457 switch (dtp->dev_devwidth) {
458 case 8:
459 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
460 break;
461 case 16:
462 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
463 break;
464 case 32:
465 default:
466 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
467 break;
470 /* If the device is marked as an in/out FIFO, ensure it is
471 * set non-coherent.
473 if (stp->dev_flags & DEV_FLAGS_IN)
474 cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
475 if (dtp->dev_flags & DEV_FLAGS_OUT)
476 cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
478 /* Set up source1. For now, assume no stride and increment.
479 * A channel attribute update can change this later.
481 switch (stp->dev_tsize) {
482 case 1:
483 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
484 break;
485 case 2:
486 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
487 break;
488 case 4:
489 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
490 break;
491 case 8:
492 default:
493 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
494 break;
497 /* If source input is fifo, set static address.
499 if (stp->dev_flags & DEV_FLAGS_IN) {
500 if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
501 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
502 else
503 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
506 if (stp->dev_physaddr)
507 src0 = stp->dev_physaddr;
509 /* Set up dest1. For now, assume no stride and increment.
510 * A channel attribute update can change this later.
512 switch (dtp->dev_tsize) {
513 case 1:
514 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
515 break;
516 case 2:
517 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
518 break;
519 case 4:
520 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
521 break;
522 case 8:
523 default:
524 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
525 break;
528 /* If destination output is fifo, set static address.
530 if (dtp->dev_flags & DEV_FLAGS_OUT) {
531 if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
532 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
533 else
534 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
536 if (dtp->dev_physaddr)
537 dest0 = dtp->dev_physaddr;
539 #if 0
540 printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
541 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
542 #endif
543 for (i=0; i<entries; i++) {
544 dp->dscr_cmd0 = cmd0;
545 dp->dscr_cmd1 = cmd1;
546 dp->dscr_source0 = src0;
547 dp->dscr_source1 = src1;
548 dp->dscr_dest0 = dest0;
549 dp->dscr_dest1 = dest1;
550 dp->dscr_stat = 0;
551 dp->sw_context = 0;
552 dp->sw_status = 0;
553 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
554 dp++;
557 /* Make last descrptor point to the first.
559 dp--;
560 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
561 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
563 return (u32)(ctp->chan_desc_base);
565 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
567 /* Put a source buffer into the DMA ring.
568 * This updates the source pointer and byte count. Normally used
569 * for memory to fifo transfers.
572 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
574 chan_tab_t *ctp;
575 au1x_ddma_desc_t *dp;
577 /* I guess we could check this to be within the
578 * range of the table......
580 ctp = *((chan_tab_t **)chanid);
582 /* We should have multiple callers for a particular channel,
583 * an interrupt doesn't affect this pointer nor the descriptor,
584 * so no locking should be needed.
586 dp = ctp->put_ptr;
588 /* If the descriptor is valid, we are way ahead of the DMA
589 * engine, so just return an error condition.
591 if (dp->dscr_cmd0 & DSCR_CMD0_V) {
592 return 0;
595 /* Load up buffer address and byte count.
597 dp->dscr_source0 = virt_to_phys(buf);
598 dp->dscr_cmd1 = nbytes;
599 /* Check flags */
600 if (flags & DDMA_FLAGS_IE)
601 dp->dscr_cmd0 |= DSCR_CMD0_IE;
602 if (flags & DDMA_FLAGS_NOIE)
603 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
606 * There is an errata on the Au1200/Au1550 parts that could result
607 * in "stale" data being DMA'd. It has to do with the snoop logic on
608 * the dache eviction buffer. NONCOHERENT_IO is on by default for
609 * these parts. If it is fixedin the future, these dma_cache_inv will
610 * just be nothing more than empty macros. See io.h.
611 * */
612 dma_cache_wback_inv((unsigned long)buf, nbytes);
613 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
614 au_sync();
615 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
616 ctp->chan_ptr->ddma_dbell = 0;
618 /* Get next descriptor pointer.
620 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
622 /* return something not zero.
624 return nbytes;
626 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
628 /* Put a destination buffer into the DMA ring.
629 * This updates the destination pointer and byte count. Normally used
630 * to place an empty buffer into the ring for fifo to memory transfers.
633 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
635 chan_tab_t *ctp;
636 au1x_ddma_desc_t *dp;
638 /* I guess we could check this to be within the
639 * range of the table......
641 ctp = *((chan_tab_t **)chanid);
643 /* We should have multiple callers for a particular channel,
644 * an interrupt doesn't affect this pointer nor the descriptor,
645 * so no locking should be needed.
647 dp = ctp->put_ptr;
649 /* If the descriptor is valid, we are way ahead of the DMA
650 * engine, so just return an error condition.
652 if (dp->dscr_cmd0 & DSCR_CMD0_V)
653 return 0;
655 /* Load up buffer address and byte count */
657 /* Check flags */
658 if (flags & DDMA_FLAGS_IE)
659 dp->dscr_cmd0 |= DSCR_CMD0_IE;
660 if (flags & DDMA_FLAGS_NOIE)
661 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
663 dp->dscr_dest0 = virt_to_phys(buf);
664 dp->dscr_cmd1 = nbytes;
665 #if 0
666 printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
667 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
668 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
669 #endif
671 * There is an errata on the Au1200/Au1550 parts that could result in
672 * "stale" data being DMA'd. It has to do with the snoop logic on the
673 * dache eviction buffer. NONCOHERENT_IO is on by default for these
674 * parts. If it is fixedin the future, these dma_cache_inv will just
675 * be nothing more than empty macros. See io.h.
676 * */
677 dma_cache_inv((unsigned long)buf,nbytes);
678 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
679 au_sync();
680 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
681 ctp->chan_ptr->ddma_dbell = 0;
683 /* Get next descriptor pointer.
685 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
687 /* return something not zero.
689 return nbytes;
691 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
693 /* Get a destination buffer into the DMA ring.
694 * Normally used to get a full buffer from the ring during fifo
695 * to memory transfers. This does not set the valid bit, you will
696 * have to put another destination buffer to keep the DMA going.
699 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
701 chan_tab_t *ctp;
702 au1x_ddma_desc_t *dp;
703 u32 rv;
705 /* I guess we could check this to be within the
706 * range of the table......
708 ctp = *((chan_tab_t **)chanid);
710 /* We should have multiple callers for a particular channel,
711 * an interrupt doesn't affect this pointer nor the descriptor,
712 * so no locking should be needed.
714 dp = ctp->get_ptr;
716 /* If the descriptor is valid, we are way ahead of the DMA
717 * engine, so just return an error condition.
719 if (dp->dscr_cmd0 & DSCR_CMD0_V)
720 return 0;
722 /* Return buffer address and byte count.
724 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
725 *nbytes = dp->dscr_cmd1;
726 rv = dp->dscr_stat;
728 /* Get next descriptor pointer.
730 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
732 /* return something not zero.
734 return rv;
737 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
739 void
740 au1xxx_dbdma_stop(u32 chanid)
742 chan_tab_t *ctp;
743 au1x_dma_chan_t *cp;
744 int halt_timeout = 0;
746 ctp = *((chan_tab_t **)chanid);
748 cp = ctp->chan_ptr;
749 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
750 au_sync();
751 while (!(cp->ddma_stat & DDMA_STAT_H)) {
752 udelay(1);
753 halt_timeout++;
754 if (halt_timeout > 100) {
755 printk("warning: DMA channel won't halt\n");
756 break;
759 /* clear current desc valid and doorbell */
760 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
761 au_sync();
763 EXPORT_SYMBOL(au1xxx_dbdma_stop);
765 /* Start using the current descriptor pointer. If the dbdma encounters
766 * a not valid descriptor, it will stop. In this case, we can just
767 * continue by adding a buffer to the list and starting again.
769 void
770 au1xxx_dbdma_start(u32 chanid)
772 chan_tab_t *ctp;
773 au1x_dma_chan_t *cp;
775 ctp = *((chan_tab_t **)chanid);
776 cp = ctp->chan_ptr;
777 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
778 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
779 au_sync();
780 cp->ddma_dbell = 0;
781 au_sync();
783 EXPORT_SYMBOL(au1xxx_dbdma_start);
785 void
786 au1xxx_dbdma_reset(u32 chanid)
788 chan_tab_t *ctp;
789 au1x_ddma_desc_t *dp;
791 au1xxx_dbdma_stop(chanid);
793 ctp = *((chan_tab_t **)chanid);
794 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
796 /* Run through the descriptors and reset the valid indicator.
798 dp = ctp->chan_desc_base;
800 do {
801 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
802 /* reset our SW status -- this is used to determine
803 * if a descriptor is in use by upper level SW. Since
804 * posting can reset 'V' bit.
806 dp->sw_status = 0;
807 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
808 } while (dp != ctp->chan_desc_base);
810 EXPORT_SYMBOL(au1xxx_dbdma_reset);
813 au1xxx_get_dma_residue(u32 chanid)
815 chan_tab_t *ctp;
816 au1x_dma_chan_t *cp;
817 u32 rv;
819 ctp = *((chan_tab_t **)chanid);
820 cp = ctp->chan_ptr;
822 /* This is only valid if the channel is stopped.
824 rv = cp->ddma_bytecnt;
825 au_sync();
827 return rv;
830 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
832 void
833 au1xxx_dbdma_chan_free(u32 chanid)
835 chan_tab_t *ctp;
836 dbdev_tab_t *stp, *dtp;
838 ctp = *((chan_tab_t **)chanid);
839 stp = ctp->chan_src;
840 dtp = ctp->chan_dest;
842 au1xxx_dbdma_stop(chanid);
844 kfree((void *)ctp->cdb_membase);
846 stp->dev_flags &= ~DEV_FLAGS_INUSE;
847 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
848 chan_tab_ptr[ctp->chan_index] = NULL;
850 kfree(ctp);
852 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
854 static irqreturn_t
855 dbdma_interrupt(int irq, void *dev_id)
857 u32 intstat;
858 u32 chan_index;
859 chan_tab_t *ctp;
860 au1x_ddma_desc_t *dp;
861 au1x_dma_chan_t *cp;
863 intstat = dbdma_gptr->ddma_intstat;
864 au_sync();
865 chan_index = au_ffs(intstat) - 1;
867 ctp = chan_tab_ptr[chan_index];
868 cp = ctp->chan_ptr;
869 dp = ctp->cur_ptr;
871 /* Reset interrupt.
873 cp->ddma_irq = 0;
874 au_sync();
876 if (ctp->chan_callback)
877 (ctp->chan_callback)(irq, ctp->chan_callparam);
879 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
880 return IRQ_RETVAL(1);
883 static void au1xxx_dbdma_init(void)
885 int irq_nr;
887 dbdma_gptr->ddma_config = 0;
888 dbdma_gptr->ddma_throttle = 0;
889 dbdma_gptr->ddma_inten = 0xffff;
890 au_sync();
892 #if defined(CONFIG_SOC_AU1550)
893 irq_nr = AU1550_DDMA_INT;
894 #elif defined(CONFIG_SOC_AU1200)
895 irq_nr = AU1200_DDMA_INT;
896 #else
897 #error Unknown Au1x00 SOC
898 #endif
900 if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
901 "Au1xxx dbdma", (void *)dbdma_gptr))
902 printk("Can't get 1550 dbdma irq");
905 void
906 au1xxx_dbdma_dump(u32 chanid)
908 chan_tab_t *ctp;
909 au1x_ddma_desc_t *dp;
910 dbdev_tab_t *stp, *dtp;
911 au1x_dma_chan_t *cp;
912 u32 i = 0;
914 ctp = *((chan_tab_t **)chanid);
915 stp = ctp->chan_src;
916 dtp = ctp->chan_dest;
917 cp = ctp->chan_ptr;
919 printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
920 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
921 printk("desc base %x, get %x, put %x, cur %x\n",
922 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
923 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
925 printk("dbdma chan %x\n", (u32)cp);
926 printk("cfg %08x, desptr %08x, statptr %08x\n",
927 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
928 printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
929 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
932 /* Run through the descriptors
934 dp = ctp->chan_desc_base;
936 do {
937 printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
938 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
939 printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
940 dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
941 printk("stat %08x, nxtptr %08x\n",
942 dp->dscr_stat, dp->dscr_nxtptr);
943 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
944 } while (dp != ctp->chan_desc_base);
947 /* Put a descriptor into the DMA ring.
948 * This updates the source/destination pointers and byte count.
951 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
953 chan_tab_t *ctp;
954 au1x_ddma_desc_t *dp;
955 u32 nbytes=0;
957 /* I guess we could check this to be within the
958 * range of the table......
960 ctp = *((chan_tab_t **)chanid);
962 /* We should have multiple callers for a particular channel,
963 * an interrupt doesn't affect this pointer nor the descriptor,
964 * so no locking should be needed.
966 dp = ctp->put_ptr;
968 /* If the descriptor is valid, we are way ahead of the DMA
969 * engine, so just return an error condition.
971 if (dp->dscr_cmd0 & DSCR_CMD0_V)
972 return 0;
974 /* Load up buffer addresses and byte count.
976 dp->dscr_dest0 = dscr->dscr_dest0;
977 dp->dscr_source0 = dscr->dscr_source0;
978 dp->dscr_dest1 = dscr->dscr_dest1;
979 dp->dscr_source1 = dscr->dscr_source1;
980 dp->dscr_cmd1 = dscr->dscr_cmd1;
981 nbytes = dscr->dscr_cmd1;
982 /* Allow the caller to specifiy if an interrupt is generated */
983 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
984 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
985 ctp->chan_ptr->ddma_dbell = 0;
987 /* Get next descriptor pointer.
989 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
991 /* return something not zero.
993 return nbytes;
996 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */