allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / ia64 / kernel / time.c
blob3486fe7d6e65df00db95a4b93ff442cc2b14090d
1 /*
2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
23 #include <asm/machvec.h>
24 #include <asm/delay.h>
25 #include <asm/hw_irq.h>
26 #include <asm/ptrace.h>
27 #include <asm/sal.h>
28 #include <asm/sections.h>
29 #include <asm/system.h>
31 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
33 #ifdef CONFIG_IA64_DEBUG_IRQ
35 unsigned long last_cli_ip;
36 EXPORT_SYMBOL(last_cli_ip);
38 #endif
40 static struct time_interpolator itc_interpolator = {
41 .shift = 16,
42 .mask = 0xffffffffffffffffLL,
43 .source = TIME_SOURCE_CPU
46 static irqreturn_t
47 timer_interrupt (int irq, void *dev_id)
49 unsigned long new_itm;
51 if (unlikely(cpu_is_offline(smp_processor_id()))) {
52 return IRQ_HANDLED;
55 platform_timer_interrupt(irq, dev_id);
57 new_itm = local_cpu_data->itm_next;
59 if (!time_after(ia64_get_itc(), new_itm))
60 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
61 ia64_get_itc(), new_itm);
63 profile_tick(CPU_PROFILING);
65 while (1) {
66 update_process_times(user_mode(get_irq_regs()));
68 new_itm += local_cpu_data->itm_delta;
70 if (smp_processor_id() == time_keeper_id) {
72 * Here we are in the timer irq handler. We have irqs locally
73 * disabled, but we don't know if the timer_bh is running on
74 * another CPU. We need to avoid to SMP race by acquiring the
75 * xtime_lock.
77 write_seqlock(&xtime_lock);
78 do_timer(1);
79 local_cpu_data->itm_next = new_itm;
80 write_sequnlock(&xtime_lock);
81 } else
82 local_cpu_data->itm_next = new_itm;
84 if (time_after(new_itm, ia64_get_itc()))
85 break;
88 * Allow IPIs to interrupt the timer loop.
90 local_irq_enable();
91 local_irq_disable();
94 do {
96 * If we're too close to the next clock tick for
97 * comfort, we increase the safety margin by
98 * intentionally dropping the next tick(s). We do NOT
99 * update itm.next because that would force us to call
100 * do_timer() which in turn would let our clock run
101 * too fast (with the potentially devastating effect
102 * of losing monotony of time).
104 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
105 new_itm += local_cpu_data->itm_delta;
106 ia64_set_itm(new_itm);
107 /* double check, in case we got hit by a (slow) PMI: */
108 } while (time_after_eq(ia64_get_itc(), new_itm));
109 return IRQ_HANDLED;
113 * Encapsulate access to the itm structure for SMP.
115 void
116 ia64_cpu_local_tick (void)
118 int cpu = smp_processor_id();
119 unsigned long shift = 0, delta;
121 /* arrange for the cycle counter to generate a timer interrupt: */
122 ia64_set_itv(IA64_TIMER_VECTOR);
124 delta = local_cpu_data->itm_delta;
126 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
127 * same time:
129 if (cpu) {
130 unsigned long hi = 1UL << ia64_fls(cpu);
131 shift = (2*(cpu - hi) + 1) * delta/hi/2;
133 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
134 ia64_set_itm(local_cpu_data->itm_next);
137 static int nojitter;
139 static int __init nojitter_setup(char *str)
141 nojitter = 1;
142 printk("Jitter checking for ITC timers disabled\n");
143 return 1;
146 __setup("nojitter", nojitter_setup);
149 void __devinit
150 ia64_init_itm (void)
152 unsigned long platform_base_freq, itc_freq;
153 struct pal_freq_ratio itc_ratio, proc_ratio;
154 long status, platform_base_drift, itc_drift;
157 * According to SAL v2.6, we need to use a SAL call to determine the platform base
158 * frequency and then a PAL call to determine the frequency ratio between the ITC
159 * and the base frequency.
161 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
162 &platform_base_freq, &platform_base_drift);
163 if (status != 0) {
164 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
165 } else {
166 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
167 if (status != 0)
168 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
170 if (status != 0) {
171 /* invent "random" values */
172 printk(KERN_ERR
173 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
174 platform_base_freq = 100000000;
175 platform_base_drift = -1; /* no drift info */
176 itc_ratio.num = 3;
177 itc_ratio.den = 1;
179 if (platform_base_freq < 40000000) {
180 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
181 platform_base_freq);
182 platform_base_freq = 75000000;
183 platform_base_drift = -1;
185 if (!proc_ratio.den)
186 proc_ratio.den = 1; /* avoid division by zero */
187 if (!itc_ratio.den)
188 itc_ratio.den = 1; /* avoid division by zero */
190 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
192 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
193 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
194 "ITC freq=%lu.%03luMHz", smp_processor_id(),
195 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
196 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
198 if (platform_base_drift != -1) {
199 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
200 printk("+/-%ldppm\n", itc_drift);
201 } else {
202 itc_drift = -1;
203 printk("\n");
206 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
207 local_cpu_data->itc_freq = itc_freq;
208 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
209 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
210 + itc_freq/2)/itc_freq;
212 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
213 itc_interpolator.frequency = local_cpu_data->itc_freq;
214 itc_interpolator.drift = itc_drift;
215 #ifdef CONFIG_SMP
216 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
217 * Jitter compensation requires a cmpxchg which may limit
218 * the scalability of the syscalls for retrieving time.
219 * The ITC synchronization is usually successful to within a few
220 * ITC ticks but this is not a sure thing. If you need to improve
221 * timer performance in SMP situations then boot the kernel with the
222 * "nojitter" option. However, doing so may result in time fluctuating (maybe
223 * even going backward) if the ITC offsets between the individual CPUs
224 * are too large.
226 if (!nojitter) itc_interpolator.jitter = 1;
227 #endif
228 register_time_interpolator(&itc_interpolator);
231 /* Setup the CPU local timer tick */
232 ia64_cpu_local_tick();
235 static struct irqaction timer_irqaction = {
236 .handler = timer_interrupt,
237 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
238 .name = "timer"
241 void __devinit ia64_disable_timer(void)
243 ia64_set_itv(1 << 16);
246 void __init
247 time_init (void)
249 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
250 efi_gettimeofday(&xtime);
251 ia64_init_itm();
254 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
255 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
257 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
261 * Generic udelay assumes that if preemption is allowed and the thread
262 * migrates to another CPU, that the ITC values are synchronized across
263 * all CPUs.
265 static void
266 ia64_itc_udelay (unsigned long usecs)
268 unsigned long start = ia64_get_itc();
269 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
271 while (time_before(ia64_get_itc(), end))
272 cpu_relax();
275 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
277 void
278 udelay (unsigned long usecs)
280 (*ia64_udelay)(usecs);
282 EXPORT_SYMBOL(udelay);
284 static unsigned long long ia64_itc_printk_clock(void)
286 if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
287 return sched_clock();
288 return 0;
291 static unsigned long long ia64_default_printk_clock(void)
293 return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
294 (1000000000/HZ);
297 unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
299 unsigned long long printk_clock(void)
301 return ia64_printk_clock();
304 void __init
305 ia64_setup_printk_clock(void)
307 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
308 ia64_printk_clock = ia64_itc_printk_clock;