allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / ia64 / kernel / mca.c
blob1ead5ea6c5ce71afaf259eb6629abc8f65a0c11e
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/bootmem.h>
67 #include <linux/acpi.h>
68 #include <linux/timer.h>
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/smp.h>
72 #include <linux/workqueue.h>
73 #include <linux/cpumask.h>
74 #include <linux/kdebug.h>
76 #include <asm/delay.h>
77 #include <asm/machvec.h>
78 #include <asm/meminit.h>
79 #include <asm/page.h>
80 #include <asm/ptrace.h>
81 #include <asm/system.h>
82 #include <asm/sal.h>
83 #include <asm/mca.h>
84 #include <asm/kexec.h>
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
89 #include "mca_drv.h"
90 #include "entry.h"
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
98 /* Used by mca_asm.S */
99 u32 ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
105 unsigned long __per_cpu_mca[NR_CPUS];
107 /* In mca_asm.S */
108 extern void ia64_os_init_dispatch_monarch (void);
109 extern void ia64_os_init_dispatch_slave (void);
111 static int monarch_cpu = -1;
113 static ia64_mc_info_t ia64_mc_info;
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118 #define CPE_HISTORY_LENGTH 5
119 #define CMC_HISTORY_LENGTH 5
121 #ifdef CONFIG_ACPI
122 static struct timer_list cpe_poll_timer;
123 #endif
124 static struct timer_list cmc_poll_timer;
126 * This variable tells whether we are currently in polling mode.
127 * Start with this in the wrong state so we won't play w/ timers
128 * before the system is ready.
130 static int cmc_polling_enabled = 1;
133 * Clearing this variable prevents CPE polling from getting activated
134 * in mca_late_init. Use it if your system doesn't provide a CPEI,
135 * but encounters problems retrieving CPE logs. This should only be
136 * necessary for debugging.
138 static int cpe_poll_enabled = 1;
140 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
142 static int mca_init __initdata;
145 * limited & delayed printing support for MCA/INIT handler
148 #define mprintk(fmt...) ia64_mca_printk(fmt)
150 #define MLOGBUF_SIZE (512+256*NR_CPUS)
151 #define MLOGBUF_MSGMAX 256
152 static char mlogbuf[MLOGBUF_SIZE];
153 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
154 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
155 static unsigned long mlogbuf_start;
156 static unsigned long mlogbuf_end;
157 static unsigned int mlogbuf_finished = 0;
158 static unsigned long mlogbuf_timestamp = 0;
160 static int loglevel_save = -1;
161 #define BREAK_LOGLEVEL(__console_loglevel) \
162 oops_in_progress = 1; \
163 if (loglevel_save < 0) \
164 loglevel_save = __console_loglevel; \
165 __console_loglevel = 15;
167 #define RESTORE_LOGLEVEL(__console_loglevel) \
168 if (loglevel_save >= 0) { \
169 __console_loglevel = loglevel_save; \
170 loglevel_save = -1; \
172 mlogbuf_finished = 0; \
173 oops_in_progress = 0;
176 * Push messages into buffer, print them later if not urgent.
178 void ia64_mca_printk(const char *fmt, ...)
180 va_list args;
181 int printed_len;
182 char temp_buf[MLOGBUF_MSGMAX];
183 char *p;
185 va_start(args, fmt);
186 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
187 va_end(args);
189 /* Copy the output into mlogbuf */
190 if (oops_in_progress) {
191 /* mlogbuf was abandoned, use printk directly instead. */
192 printk(temp_buf);
193 } else {
194 spin_lock(&mlogbuf_wlock);
195 for (p = temp_buf; *p; p++) {
196 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
197 if (next != mlogbuf_start) {
198 mlogbuf[mlogbuf_end] = *p;
199 mlogbuf_end = next;
200 } else {
201 /* buffer full */
202 break;
205 mlogbuf[mlogbuf_end] = '\0';
206 spin_unlock(&mlogbuf_wlock);
209 EXPORT_SYMBOL(ia64_mca_printk);
212 * Print buffered messages.
213 * NOTE: call this after returning normal context. (ex. from salinfod)
215 void ia64_mlogbuf_dump(void)
217 char temp_buf[MLOGBUF_MSGMAX];
218 char *p;
219 unsigned long index;
220 unsigned long flags;
221 unsigned int printed_len;
223 /* Get output from mlogbuf */
224 while (mlogbuf_start != mlogbuf_end) {
225 temp_buf[0] = '\0';
226 p = temp_buf;
227 printed_len = 0;
229 spin_lock_irqsave(&mlogbuf_rlock, flags);
231 index = mlogbuf_start;
232 while (index != mlogbuf_end) {
233 *p = mlogbuf[index];
234 index = (index + 1) % MLOGBUF_SIZE;
235 if (!*p)
236 break;
237 p++;
238 if (++printed_len >= MLOGBUF_MSGMAX - 1)
239 break;
241 *p = '\0';
242 if (temp_buf[0])
243 printk(temp_buf);
244 mlogbuf_start = index;
246 mlogbuf_timestamp = 0;
247 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
250 EXPORT_SYMBOL(ia64_mlogbuf_dump);
253 * Call this if system is going to down or if immediate flushing messages to
254 * console is required. (ex. recovery was failed, crash dump is going to be
255 * invoked, long-wait rendezvous etc.)
256 * NOTE: this should be called from monarch.
258 static void ia64_mlogbuf_finish(int wait)
260 BREAK_LOGLEVEL(console_loglevel);
262 spin_lock_init(&mlogbuf_rlock);
263 ia64_mlogbuf_dump();
264 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
265 "MCA/INIT might be dodgy or fail.\n");
267 if (!wait)
268 return;
270 /* wait for console */
271 printk("Delaying for 5 seconds...\n");
272 udelay(5*1000000);
274 mlogbuf_finished = 1;
278 * Print buffered messages from INIT context.
280 static void ia64_mlogbuf_dump_from_init(void)
282 if (mlogbuf_finished)
283 return;
285 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
286 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
287 " and the system seems to be messed up.\n");
288 ia64_mlogbuf_finish(0);
289 return;
292 if (!spin_trylock(&mlogbuf_rlock)) {
293 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
294 "Generated messages other than stack dump will be "
295 "buffered to mlogbuf and will be printed later.\n");
296 printk(KERN_ERR "INIT: If messages would not printed after "
297 "this INIT, wait 30sec and assert INIT again.\n");
298 if (!mlogbuf_timestamp)
299 mlogbuf_timestamp = jiffies;
300 return;
302 spin_unlock(&mlogbuf_rlock);
303 ia64_mlogbuf_dump();
306 static void inline
307 ia64_mca_spin(const char *func)
309 if (monarch_cpu == smp_processor_id())
310 ia64_mlogbuf_finish(0);
311 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
312 while (1)
313 cpu_relax();
316 * IA64_MCA log support
318 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
319 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
321 typedef struct ia64_state_log_s
323 spinlock_t isl_lock;
324 int isl_index;
325 unsigned long isl_count;
326 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
327 } ia64_state_log_t;
329 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
331 #define IA64_LOG_ALLOCATE(it, size) \
332 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
333 (ia64_err_rec_t *)alloc_bootmem(size); \
334 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
335 (ia64_err_rec_t *)alloc_bootmem(size);}
336 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
337 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
338 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
339 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
340 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
341 #define IA64_LOG_INDEX_INC(it) \
342 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
343 ia64_state_log[it].isl_count++;}
344 #define IA64_LOG_INDEX_DEC(it) \
345 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
346 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
347 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
348 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
351 * ia64_log_init
352 * Reset the OS ia64 log buffer
353 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
354 * Outputs : None
356 static void __init
357 ia64_log_init(int sal_info_type)
359 u64 max_size = 0;
361 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
362 IA64_LOG_LOCK_INIT(sal_info_type);
364 // SAL will tell us the maximum size of any error record of this type
365 max_size = ia64_sal_get_state_info_size(sal_info_type);
366 if (!max_size)
367 /* alloc_bootmem() doesn't like zero-sized allocations! */
368 return;
370 // set up OS data structures to hold error info
371 IA64_LOG_ALLOCATE(sal_info_type, max_size);
372 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
373 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
377 * ia64_log_get
379 * Get the current MCA log from SAL and copy it into the OS log buffer.
381 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
382 * irq_safe whether you can use printk at this point
383 * Outputs : size (total record length)
384 * *buffer (ptr to error record)
387 static u64
388 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
390 sal_log_record_header_t *log_buffer;
391 u64 total_len = 0;
392 unsigned long s;
394 IA64_LOG_LOCK(sal_info_type);
396 /* Get the process state information */
397 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
399 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
401 if (total_len) {
402 IA64_LOG_INDEX_INC(sal_info_type);
403 IA64_LOG_UNLOCK(sal_info_type);
404 if (irq_safe) {
405 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
406 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
408 *buffer = (u8 *) log_buffer;
409 return total_len;
410 } else {
411 IA64_LOG_UNLOCK(sal_info_type);
412 return 0;
417 * ia64_mca_log_sal_error_record
419 * This function retrieves a specified error record type from SAL
420 * and wakes up any processes waiting for error records.
422 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
423 * FIXME: remove MCA and irq_safe.
425 static void
426 ia64_mca_log_sal_error_record(int sal_info_type)
428 u8 *buffer;
429 sal_log_record_header_t *rh;
430 u64 size;
431 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
432 #ifdef IA64_MCA_DEBUG_INFO
433 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
434 #endif
436 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
437 if (!size)
438 return;
440 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
442 if (irq_safe)
443 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
444 smp_processor_id(),
445 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
447 /* Clear logs from corrected errors in case there's no user-level logger */
448 rh = (sal_log_record_header_t *)buffer;
449 if (rh->severity == sal_log_severity_corrected)
450 ia64_sal_clear_state_info(sal_info_type);
454 * search_mca_table
455 * See if the MCA surfaced in an instruction range
456 * that has been tagged as recoverable.
458 * Inputs
459 * first First address range to check
460 * last Last address range to check
461 * ip Instruction pointer, address we are looking for
463 * Return value:
464 * 1 on Success (in the table)/ 0 on Failure (not in the table)
467 search_mca_table (const struct mca_table_entry *first,
468 const struct mca_table_entry *last,
469 unsigned long ip)
471 const struct mca_table_entry *curr;
472 u64 curr_start, curr_end;
474 curr = first;
475 while (curr <= last) {
476 curr_start = (u64) &curr->start_addr + curr->start_addr;
477 curr_end = (u64) &curr->end_addr + curr->end_addr;
479 if ((ip >= curr_start) && (ip <= curr_end)) {
480 return 1;
482 curr++;
484 return 0;
487 /* Given an address, look for it in the mca tables. */
488 int mca_recover_range(unsigned long addr)
490 extern struct mca_table_entry __start___mca_table[];
491 extern struct mca_table_entry __stop___mca_table[];
493 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
495 EXPORT_SYMBOL_GPL(mca_recover_range);
497 #ifdef CONFIG_ACPI
499 int cpe_vector = -1;
500 int ia64_cpe_irq = -1;
502 static irqreturn_t
503 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
505 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
506 static int index;
507 static DEFINE_SPINLOCK(cpe_history_lock);
509 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
510 __FUNCTION__, cpe_irq, smp_processor_id());
512 /* SAL spec states this should run w/ interrupts enabled */
513 local_irq_enable();
515 spin_lock(&cpe_history_lock);
516 if (!cpe_poll_enabled && cpe_vector >= 0) {
518 int i, count = 1; /* we know 1 happened now */
519 unsigned long now = jiffies;
521 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
522 if (now - cpe_history[i] <= HZ)
523 count++;
526 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
527 if (count >= CPE_HISTORY_LENGTH) {
529 cpe_poll_enabled = 1;
530 spin_unlock(&cpe_history_lock);
531 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
534 * Corrected errors will still be corrected, but
535 * make sure there's a log somewhere that indicates
536 * something is generating more than we can handle.
538 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
540 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
542 /* lock already released, get out now */
543 goto out;
544 } else {
545 cpe_history[index++] = now;
546 if (index == CPE_HISTORY_LENGTH)
547 index = 0;
550 spin_unlock(&cpe_history_lock);
551 out:
552 /* Get the CPE error record and log it */
553 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
555 return IRQ_HANDLED;
558 #endif /* CONFIG_ACPI */
560 #ifdef CONFIG_ACPI
562 * ia64_mca_register_cpev
564 * Register the corrected platform error vector with SAL.
566 * Inputs
567 * cpev Corrected Platform Error Vector number
569 * Outputs
570 * None
572 static void __init
573 ia64_mca_register_cpev (int cpev)
575 /* Register the CPE interrupt vector with SAL */
576 struct ia64_sal_retval isrv;
578 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
579 if (isrv.status) {
580 printk(KERN_ERR "Failed to register Corrected Platform "
581 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
582 return;
585 IA64_MCA_DEBUG("%s: corrected platform error "
586 "vector %#x registered\n", __FUNCTION__, cpev);
588 #endif /* CONFIG_ACPI */
591 * ia64_mca_cmc_vector_setup
593 * Setup the corrected machine check vector register in the processor.
594 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
595 * This function is invoked on a per-processor basis.
597 * Inputs
598 * None
600 * Outputs
601 * None
603 void __cpuinit
604 ia64_mca_cmc_vector_setup (void)
606 cmcv_reg_t cmcv;
608 cmcv.cmcv_regval = 0;
609 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
610 cmcv.cmcv_vector = IA64_CMC_VECTOR;
611 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
613 IA64_MCA_DEBUG("%s: CPU %d corrected "
614 "machine check vector %#x registered.\n",
615 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
617 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
618 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
622 * ia64_mca_cmc_vector_disable
624 * Mask the corrected machine check vector register in the processor.
625 * This function is invoked on a per-processor basis.
627 * Inputs
628 * dummy(unused)
630 * Outputs
631 * None
633 static void
634 ia64_mca_cmc_vector_disable (void *dummy)
636 cmcv_reg_t cmcv;
638 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
641 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643 IA64_MCA_DEBUG("%s: CPU %d corrected "
644 "machine check vector %#x disabled.\n",
645 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
649 * ia64_mca_cmc_vector_enable
651 * Unmask the corrected machine check vector register in the processor.
652 * This function is invoked on a per-processor basis.
654 * Inputs
655 * dummy(unused)
657 * Outputs
658 * None
660 static void
661 ia64_mca_cmc_vector_enable (void *dummy)
663 cmcv_reg_t cmcv;
665 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
667 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
668 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
670 IA64_MCA_DEBUG("%s: CPU %d corrected "
671 "machine check vector %#x enabled.\n",
672 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
676 * ia64_mca_cmc_vector_disable_keventd
678 * Called via keventd (smp_call_function() is not safe in interrupt context) to
679 * disable the cmc interrupt vector.
681 static void
682 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
684 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
688 * ia64_mca_cmc_vector_enable_keventd
690 * Called via keventd (smp_call_function() is not safe in interrupt context) to
691 * enable the cmc interrupt vector.
693 static void
694 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
696 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
700 * ia64_mca_wakeup
702 * Send an inter-cpu interrupt to wake-up a particular cpu
703 * and mark that cpu to be out of rendez.
705 * Inputs : cpuid
706 * Outputs : None
708 static void
709 ia64_mca_wakeup(int cpu)
711 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
712 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
717 * ia64_mca_wakeup_all
719 * Wakeup all the cpus which have rendez'ed previously.
721 * Inputs : None
722 * Outputs : None
724 static void
725 ia64_mca_wakeup_all(void)
727 int cpu;
729 /* Clear the Rendez checkin flag for all cpus */
730 for_each_online_cpu(cpu) {
731 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
732 ia64_mca_wakeup(cpu);
738 * ia64_mca_rendez_interrupt_handler
740 * This is handler used to put slave processors into spinloop
741 * while the monarch processor does the mca handling and later
742 * wake each slave up once the monarch is done.
744 * Inputs : None
745 * Outputs : None
747 static irqreturn_t
748 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
750 unsigned long flags;
751 int cpu = smp_processor_id();
752 struct ia64_mca_notify_die nd =
753 { .sos = NULL, .monarch_cpu = &monarch_cpu };
755 /* Mask all interrupts */
756 local_irq_save(flags);
757 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
758 (long)&nd, 0, 0) == NOTIFY_STOP)
759 ia64_mca_spin(__FUNCTION__);
761 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
762 /* Register with the SAL monarch that the slave has
763 * reached SAL
765 ia64_sal_mc_rendez();
767 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
768 (long)&nd, 0, 0) == NOTIFY_STOP)
769 ia64_mca_spin(__FUNCTION__);
771 /* Wait for the monarch cpu to exit. */
772 while (monarch_cpu != -1)
773 cpu_relax(); /* spin until monarch leaves */
775 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
776 (long)&nd, 0, 0) == NOTIFY_STOP)
777 ia64_mca_spin(__FUNCTION__);
779 /* Enable all interrupts */
780 local_irq_restore(flags);
781 return IRQ_HANDLED;
785 * ia64_mca_wakeup_int_handler
787 * The interrupt handler for processing the inter-cpu interrupt to the
788 * slave cpu which was spinning in the rendez loop.
789 * Since this spinning is done by turning off the interrupts and
790 * polling on the wakeup-interrupt bit in the IRR, there is
791 * nothing useful to be done in the handler.
793 * Inputs : wakeup_irq (Wakeup-interrupt bit)
794 * arg (Interrupt handler specific argument)
795 * Outputs : None
798 static irqreturn_t
799 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
801 return IRQ_HANDLED;
804 /* Function pointer for extra MCA recovery */
805 int (*ia64_mca_ucmc_extension)
806 (void*,struct ia64_sal_os_state*)
807 = NULL;
810 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
812 if (ia64_mca_ucmc_extension)
813 return 1;
815 ia64_mca_ucmc_extension = fn;
816 return 0;
819 void
820 ia64_unreg_MCA_extension(void)
822 if (ia64_mca_ucmc_extension)
823 ia64_mca_ucmc_extension = NULL;
826 EXPORT_SYMBOL(ia64_reg_MCA_extension);
827 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
830 static inline void
831 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
833 u64 fslot, tslot, nat;
834 *tr = *fr;
835 fslot = ((unsigned long)fr >> 3) & 63;
836 tslot = ((unsigned long)tr >> 3) & 63;
837 *tnat &= ~(1UL << tslot);
838 nat = (fnat >> fslot) & 1;
839 *tnat |= (nat << tslot);
842 /* Change the comm field on the MCA/INT task to include the pid that
843 * was interrupted, it makes for easier debugging. If that pid was 0
844 * (swapper or nested MCA/INIT) then use the start of the previous comm
845 * field suffixed with its cpu.
848 static void
849 ia64_mca_modify_comm(const struct task_struct *previous_current)
851 char *p, comm[sizeof(current->comm)];
852 if (previous_current->pid)
853 snprintf(comm, sizeof(comm), "%s %d",
854 current->comm, previous_current->pid);
855 else {
856 int l;
857 if ((p = strchr(previous_current->comm, ' ')))
858 l = p - previous_current->comm;
859 else
860 l = strlen(previous_current->comm);
861 snprintf(comm, sizeof(comm), "%s %*s %d",
862 current->comm, l, previous_current->comm,
863 task_thread_info(previous_current)->cpu);
865 memcpy(current->comm, comm, sizeof(current->comm));
868 /* On entry to this routine, we are running on the per cpu stack, see
869 * mca_asm.h. The original stack has not been touched by this event. Some of
870 * the original stack's registers will be in the RBS on this stack. This stack
871 * also contains a partial pt_regs and switch_stack, the rest of the data is in
872 * PAL minstate.
874 * The first thing to do is modify the original stack to look like a blocked
875 * task so we can run backtrace on the original task. Also mark the per cpu
876 * stack as current to ensure that we use the correct task state, it also means
877 * that we can do backtrace on the MCA/INIT handler code itself.
880 static struct task_struct *
881 ia64_mca_modify_original_stack(struct pt_regs *regs,
882 const struct switch_stack *sw,
883 struct ia64_sal_os_state *sos,
884 const char *type)
886 char *p;
887 ia64_va va;
888 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
889 const pal_min_state_area_t *ms = sos->pal_min_state;
890 struct task_struct *previous_current;
891 struct pt_regs *old_regs;
892 struct switch_stack *old_sw;
893 unsigned size = sizeof(struct pt_regs) +
894 sizeof(struct switch_stack) + 16;
895 u64 *old_bspstore, *old_bsp;
896 u64 *new_bspstore, *new_bsp;
897 u64 old_unat, old_rnat, new_rnat, nat;
898 u64 slots, loadrs = regs->loadrs;
899 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
900 u64 ar_bspstore = regs->ar_bspstore;
901 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
902 const u64 *bank;
903 const char *msg;
904 int cpu = smp_processor_id();
906 previous_current = curr_task(cpu);
907 set_curr_task(cpu, current);
908 if ((p = strchr(current->comm, ' ')))
909 *p = '\0';
911 /* Best effort attempt to cope with MCA/INIT delivered while in
912 * physical mode.
914 regs->cr_ipsr = ms->pmsa_ipsr;
915 if (ia64_psr(regs)->dt == 0) {
916 va.l = r12;
917 if (va.f.reg == 0) {
918 va.f.reg = 7;
919 r12 = va.l;
921 va.l = r13;
922 if (va.f.reg == 0) {
923 va.f.reg = 7;
924 r13 = va.l;
927 if (ia64_psr(regs)->rt == 0) {
928 va.l = ar_bspstore;
929 if (va.f.reg == 0) {
930 va.f.reg = 7;
931 ar_bspstore = va.l;
933 va.l = ar_bsp;
934 if (va.f.reg == 0) {
935 va.f.reg = 7;
936 ar_bsp = va.l;
940 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941 * have been copied to the old stack, the old stack may fail the
942 * validation tests below. So ia64_old_stack() must restore the dirty
943 * registers from the new stack. The old and new bspstore probably
944 * have different alignments, so loadrs calculated on the old bsp
945 * cannot be used to restore from the new bsp. Calculate a suitable
946 * loadrs for the new stack and save it in the new pt_regs, where
947 * ia64_old_stack() can get it.
949 old_bspstore = (u64 *)ar_bspstore;
950 old_bsp = (u64 *)ar_bsp;
951 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
952 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
953 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
954 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
956 /* Verify the previous stack state before we change it */
957 if (user_mode(regs)) {
958 msg = "occurred in user space";
959 /* previous_current is guaranteed to be valid when the task was
960 * in user space, so ...
962 ia64_mca_modify_comm(previous_current);
963 goto no_mod;
966 if (!mca_recover_range(ms->pmsa_iip)) {
967 if (r13 != sos->prev_IA64_KR_CURRENT) {
968 msg = "inconsistent previous current and r13";
969 goto no_mod;
971 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
972 msg = "inconsistent r12 and r13";
973 goto no_mod;
975 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
976 msg = "inconsistent ar.bspstore and r13";
977 goto no_mod;
979 va.p = old_bspstore;
980 if (va.f.reg < 5) {
981 msg = "old_bspstore is in the wrong region";
982 goto no_mod;
984 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
985 msg = "inconsistent ar.bsp and r13";
986 goto no_mod;
988 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
989 if (ar_bspstore + size > r12) {
990 msg = "no room for blocked state";
991 goto no_mod;
995 ia64_mca_modify_comm(previous_current);
997 /* Make the original task look blocked. First stack a struct pt_regs,
998 * describing the state at the time of interrupt. mca_asm.S built a
999 * partial pt_regs, copy it and fill in the blanks using minstate.
1001 p = (char *)r12 - sizeof(*regs);
1002 old_regs = (struct pt_regs *)p;
1003 memcpy(old_regs, regs, sizeof(*regs));
1004 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005 * pmsa_{xip,xpsr,xfs}
1007 if (ia64_psr(regs)->ic) {
1008 old_regs->cr_iip = ms->pmsa_iip;
1009 old_regs->cr_ipsr = ms->pmsa_ipsr;
1010 old_regs->cr_ifs = ms->pmsa_ifs;
1011 } else {
1012 old_regs->cr_iip = ms->pmsa_xip;
1013 old_regs->cr_ipsr = ms->pmsa_xpsr;
1014 old_regs->cr_ifs = ms->pmsa_xfs;
1016 old_regs->pr = ms->pmsa_pr;
1017 old_regs->b0 = ms->pmsa_br0;
1018 old_regs->loadrs = loadrs;
1019 old_regs->ar_rsc = ms->pmsa_rsc;
1020 old_unat = old_regs->ar_unat;
1021 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1022 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1023 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1024 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1025 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1026 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1027 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1028 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1029 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1030 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1031 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1032 if (ia64_psr(old_regs)->bn)
1033 bank = ms->pmsa_bank1_gr;
1034 else
1035 bank = ms->pmsa_bank0_gr;
1036 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1037 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1038 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1039 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1040 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1041 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1042 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1043 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1044 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1045 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1046 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1047 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1048 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1049 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1050 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1051 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1053 /* Next stack a struct switch_stack. mca_asm.S built a partial
1054 * switch_stack, copy it and fill in the blanks using pt_regs and
1055 * minstate.
1057 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058 * ar.pfs is set to 0.
1060 * unwind.c::unw_unwind() does special processing for interrupt frames.
1061 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1063 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1064 * switch_stack on the original stack so it will unwind correctly when
1065 * unwind.c reads pt_regs.
1067 * thread.ksp is updated to point to the synthesized switch_stack.
1069 p -= sizeof(struct switch_stack);
1070 old_sw = (struct switch_stack *)p;
1071 memcpy(old_sw, sw, sizeof(*sw));
1072 old_sw->caller_unat = old_unat;
1073 old_sw->ar_fpsr = old_regs->ar_fpsr;
1074 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1075 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1076 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1077 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1078 old_sw->b0 = (u64)ia64_leave_kernel;
1079 old_sw->b1 = ms->pmsa_br1;
1080 old_sw->ar_pfs = 0;
1081 old_sw->ar_unat = old_unat;
1082 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1083 previous_current->thread.ksp = (u64)p - 16;
1085 /* Finally copy the original stack's registers back to its RBS.
1086 * Registers from ar.bspstore through ar.bsp at the time of the event
1087 * are in the current RBS, copy them back to the original stack. The
1088 * copy must be done register by register because the original bspstore
1089 * and the current one have different alignments, so the saved RNAT
1090 * data occurs at different places.
1092 * mca_asm does cover, so the old_bsp already includes all registers at
1093 * the time of MCA/INIT. It also does flushrs, so all registers before
1094 * this function have been written to backing store on the MCA/INIT
1095 * stack.
1097 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1098 old_rnat = regs->ar_rnat;
1099 while (slots--) {
1100 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1101 new_rnat = ia64_get_rnat(new_bspstore++);
1103 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1104 *old_bspstore++ = old_rnat;
1105 old_rnat = 0;
1107 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1108 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1109 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1110 *old_bspstore++ = *new_bspstore++;
1112 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1113 old_sw->ar_rnat = old_rnat;
1115 sos->prev_task = previous_current;
1116 return previous_current;
1118 no_mod:
1119 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1120 smp_processor_id(), type, msg);
1121 return previous_current;
1124 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1125 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1126 * not entered rendezvous yet then wait a bit. The assumption is that any
1127 * slave that has not rendezvoused after a reasonable time is never going to do
1128 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1129 * interrupt, as well as cpus that receive the INIT slave event.
1132 static void
1133 ia64_wait_for_slaves(int monarch, const char *type)
1135 int c, wait = 0, missing = 0;
1136 for_each_online_cpu(c) {
1137 if (c == monarch)
1138 continue;
1139 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1140 udelay(1000); /* short wait first */
1141 wait = 1;
1142 break;
1145 if (!wait)
1146 goto all_in;
1147 for_each_online_cpu(c) {
1148 if (c == monarch)
1149 continue;
1150 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1152 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1153 missing = 1;
1154 break;
1157 if (!missing)
1158 goto all_in;
1160 * Maybe slave(s) dead. Print buffered messages immediately.
1162 ia64_mlogbuf_finish(0);
1163 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1164 for_each_online_cpu(c) {
1165 if (c == monarch)
1166 continue;
1167 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1168 mprintk(" %d", c);
1170 mprintk("\n");
1171 return;
1173 all_in:
1174 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1175 return;
1179 * ia64_mca_handler
1181 * This is uncorrectable machine check handler called from OS_MCA
1182 * dispatch code which is in turn called from SAL_CHECK().
1183 * This is the place where the core of OS MCA handling is done.
1184 * Right now the logs are extracted and displayed in a well-defined
1185 * format. This handler code is supposed to be run only on the
1186 * monarch processor. Once the monarch is done with MCA handling
1187 * further MCA logging is enabled by clearing logs.
1188 * Monarch also has the duty of sending wakeup-IPIs to pull the
1189 * slave processors out of rendezvous spinloop.
1191 void
1192 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1193 struct ia64_sal_os_state *sos)
1195 int recover, cpu = smp_processor_id();
1196 struct task_struct *previous_current;
1197 struct ia64_mca_notify_die nd =
1198 { .sos = sos, .monarch_cpu = &monarch_cpu };
1200 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1201 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1203 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1204 monarch_cpu = cpu;
1205 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1206 == NOTIFY_STOP)
1207 ia64_mca_spin(__FUNCTION__);
1208 ia64_wait_for_slaves(cpu, "MCA");
1210 /* Wakeup all the processors which are spinning in the rendezvous loop.
1211 * They will leave SAL, then spin in the OS with interrupts disabled
1212 * until this monarch cpu leaves the MCA handler. That gets control
1213 * back to the OS so we can backtrace the other cpus, backtrace when
1214 * spinning in SAL does not work.
1216 ia64_mca_wakeup_all();
1217 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1218 == NOTIFY_STOP)
1219 ia64_mca_spin(__FUNCTION__);
1221 /* Get the MCA error record and log it */
1222 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1224 /* MCA error recovery */
1225 recover = (ia64_mca_ucmc_extension
1226 && ia64_mca_ucmc_extension(
1227 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1228 sos));
1230 if (recover) {
1231 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1232 rh->severity = sal_log_severity_corrected;
1233 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1234 sos->os_status = IA64_MCA_CORRECTED;
1235 } else {
1236 /* Dump buffered message to console */
1237 ia64_mlogbuf_finish(1);
1238 #ifdef CONFIG_KEXEC
1239 atomic_set(&kdump_in_progress, 1);
1240 monarch_cpu = -1;
1241 #endif
1243 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1244 == NOTIFY_STOP)
1245 ia64_mca_spin(__FUNCTION__);
1247 set_curr_task(cpu, previous_current);
1248 monarch_cpu = -1;
1251 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1252 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1255 * ia64_mca_cmc_int_handler
1257 * This is corrected machine check interrupt handler.
1258 * Right now the logs are extracted and displayed in a well-defined
1259 * format.
1261 * Inputs
1262 * interrupt number
1263 * client data arg ptr
1265 * Outputs
1266 * None
1268 static irqreturn_t
1269 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1271 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1272 static int index;
1273 static DEFINE_SPINLOCK(cmc_history_lock);
1275 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1276 __FUNCTION__, cmc_irq, smp_processor_id());
1278 /* SAL spec states this should run w/ interrupts enabled */
1279 local_irq_enable();
1281 spin_lock(&cmc_history_lock);
1282 if (!cmc_polling_enabled) {
1283 int i, count = 1; /* we know 1 happened now */
1284 unsigned long now = jiffies;
1286 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1287 if (now - cmc_history[i] <= HZ)
1288 count++;
1291 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1292 if (count >= CMC_HISTORY_LENGTH) {
1294 cmc_polling_enabled = 1;
1295 spin_unlock(&cmc_history_lock);
1296 /* If we're being hit with CMC interrupts, we won't
1297 * ever execute the schedule_work() below. Need to
1298 * disable CMC interrupts on this processor now.
1300 ia64_mca_cmc_vector_disable(NULL);
1301 schedule_work(&cmc_disable_work);
1304 * Corrected errors will still be corrected, but
1305 * make sure there's a log somewhere that indicates
1306 * something is generating more than we can handle.
1308 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1310 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1312 /* lock already released, get out now */
1313 goto out;
1314 } else {
1315 cmc_history[index++] = now;
1316 if (index == CMC_HISTORY_LENGTH)
1317 index = 0;
1320 spin_unlock(&cmc_history_lock);
1321 out:
1322 /* Get the CMC error record and log it */
1323 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1325 return IRQ_HANDLED;
1329 * ia64_mca_cmc_int_caller
1331 * Triggered by sw interrupt from CMC polling routine. Calls
1332 * real interrupt handler and either triggers a sw interrupt
1333 * on the next cpu or does cleanup at the end.
1335 * Inputs
1336 * interrupt number
1337 * client data arg ptr
1338 * Outputs
1339 * handled
1341 static irqreturn_t
1342 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1344 static int start_count = -1;
1345 unsigned int cpuid;
1347 cpuid = smp_processor_id();
1349 /* If first cpu, update count */
1350 if (start_count == -1)
1351 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1353 ia64_mca_cmc_int_handler(cmc_irq, arg);
1355 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1357 if (cpuid < NR_CPUS) {
1358 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1359 } else {
1360 /* If no log record, switch out of polling mode */
1361 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1363 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1364 schedule_work(&cmc_enable_work);
1365 cmc_polling_enabled = 0;
1367 } else {
1369 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1372 start_count = -1;
1375 return IRQ_HANDLED;
1379 * ia64_mca_cmc_poll
1381 * Poll for Corrected Machine Checks (CMCs)
1383 * Inputs : dummy(unused)
1384 * Outputs : None
1387 static void
1388 ia64_mca_cmc_poll (unsigned long dummy)
1390 /* Trigger a CMC interrupt cascade */
1391 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1395 * ia64_mca_cpe_int_caller
1397 * Triggered by sw interrupt from CPE polling routine. Calls
1398 * real interrupt handler and either triggers a sw interrupt
1399 * on the next cpu or does cleanup at the end.
1401 * Inputs
1402 * interrupt number
1403 * client data arg ptr
1404 * Outputs
1405 * handled
1407 #ifdef CONFIG_ACPI
1409 static irqreturn_t
1410 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1412 static int start_count = -1;
1413 static int poll_time = MIN_CPE_POLL_INTERVAL;
1414 unsigned int cpuid;
1416 cpuid = smp_processor_id();
1418 /* If first cpu, update count */
1419 if (start_count == -1)
1420 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1422 ia64_mca_cpe_int_handler(cpe_irq, arg);
1424 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1426 if (cpuid < NR_CPUS) {
1427 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1428 } else {
1430 * If a log was recorded, increase our polling frequency,
1431 * otherwise, backoff or return to interrupt mode.
1433 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1434 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1435 } else if (cpe_vector < 0) {
1436 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1437 } else {
1438 poll_time = MIN_CPE_POLL_INTERVAL;
1440 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1441 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1442 cpe_poll_enabled = 0;
1445 if (cpe_poll_enabled)
1446 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1447 start_count = -1;
1450 return IRQ_HANDLED;
1454 * ia64_mca_cpe_poll
1456 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1457 * on first cpu, from there it will trickle through all the cpus.
1459 * Inputs : dummy(unused)
1460 * Outputs : None
1463 static void
1464 ia64_mca_cpe_poll (unsigned long dummy)
1466 /* Trigger a CPE interrupt cascade */
1467 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1470 #endif /* CONFIG_ACPI */
1472 static int
1473 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1475 int c;
1476 struct task_struct *g, *t;
1477 if (val != DIE_INIT_MONARCH_PROCESS)
1478 return NOTIFY_DONE;
1479 #ifdef CONFIG_KEXEC
1480 if (atomic_read(&kdump_in_progress))
1481 return NOTIFY_DONE;
1482 #endif
1485 * FIXME: mlogbuf will brim over with INIT stack dumps.
1486 * To enable show_stack from INIT, we use oops_in_progress which should
1487 * be used in real oops. This would cause something wrong after INIT.
1489 BREAK_LOGLEVEL(console_loglevel);
1490 ia64_mlogbuf_dump_from_init();
1492 printk(KERN_ERR "Processes interrupted by INIT -");
1493 for_each_online_cpu(c) {
1494 struct ia64_sal_os_state *s;
1495 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1496 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1497 g = s->prev_task;
1498 if (g) {
1499 if (g->pid)
1500 printk(" %d", g->pid);
1501 else
1502 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1505 printk("\n\n");
1506 if (read_trylock(&tasklist_lock)) {
1507 do_each_thread (g, t) {
1508 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1509 show_stack(t, NULL);
1510 } while_each_thread (g, t);
1511 read_unlock(&tasklist_lock);
1513 /* FIXME: This will not restore zapped printk locks. */
1514 RESTORE_LOGLEVEL(console_loglevel);
1515 return NOTIFY_DONE;
1519 * C portion of the OS INIT handler
1521 * Called from ia64_os_init_dispatch
1523 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1524 * this event. This code is used for both monarch and slave INIT events, see
1525 * sos->monarch.
1527 * All INIT events switch to the INIT stack and change the previous process to
1528 * blocked status. If one of the INIT events is the monarch then we are
1529 * probably processing the nmi button/command. Use the monarch cpu to dump all
1530 * the processes. The slave INIT events all spin until the monarch cpu
1531 * returns. We can also get INIT slave events for MCA, in which case the MCA
1532 * process is the monarch.
1535 void
1536 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1537 struct ia64_sal_os_state *sos)
1539 static atomic_t slaves;
1540 static atomic_t monarchs;
1541 struct task_struct *previous_current;
1542 int cpu = smp_processor_id();
1543 struct ia64_mca_notify_die nd =
1544 { .sos = sos, .monarch_cpu = &monarch_cpu };
1546 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1548 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1549 sos->proc_state_param, cpu, sos->monarch);
1550 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1552 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1553 sos->os_status = IA64_INIT_RESUME;
1555 /* FIXME: Workaround for broken proms that drive all INIT events as
1556 * slaves. The last slave that enters is promoted to be a monarch.
1557 * Remove this code in September 2006, that gives platforms a year to
1558 * fix their proms and get their customers updated.
1560 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1561 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1562 __FUNCTION__, cpu);
1563 atomic_dec(&slaves);
1564 sos->monarch = 1;
1567 /* FIXME: Workaround for broken proms that drive all INIT events as
1568 * monarchs. Second and subsequent monarchs are demoted to slaves.
1569 * Remove this code in September 2006, that gives platforms a year to
1570 * fix their proms and get their customers updated.
1572 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1573 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1574 __FUNCTION__, cpu);
1575 atomic_dec(&monarchs);
1576 sos->monarch = 0;
1579 if (!sos->monarch) {
1580 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1581 while (monarch_cpu == -1)
1582 cpu_relax(); /* spin until monarch enters */
1583 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1584 == NOTIFY_STOP)
1585 ia64_mca_spin(__FUNCTION__);
1586 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1587 == NOTIFY_STOP)
1588 ia64_mca_spin(__FUNCTION__);
1589 while (monarch_cpu != -1)
1590 cpu_relax(); /* spin until monarch leaves */
1591 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1592 == NOTIFY_STOP)
1593 ia64_mca_spin(__FUNCTION__);
1594 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1595 set_curr_task(cpu, previous_current);
1596 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1597 atomic_dec(&slaves);
1598 return;
1601 monarch_cpu = cpu;
1602 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1603 == NOTIFY_STOP)
1604 ia64_mca_spin(__FUNCTION__);
1607 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1608 * generated via the BMC's command-line interface, but since the console is on the
1609 * same serial line, the user will need some time to switch out of the BMC before
1610 * the dump begins.
1612 mprintk("Delaying for 5 seconds...\n");
1613 udelay(5*1000000);
1614 ia64_wait_for_slaves(cpu, "INIT");
1615 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1616 * to default_monarch_init_process() above and just print all the
1617 * tasks.
1619 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1620 == NOTIFY_STOP)
1621 ia64_mca_spin(__FUNCTION__);
1622 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1623 == NOTIFY_STOP)
1624 ia64_mca_spin(__FUNCTION__);
1625 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1626 atomic_dec(&monarchs);
1627 set_curr_task(cpu, previous_current);
1628 monarch_cpu = -1;
1629 return;
1632 static int __init
1633 ia64_mca_disable_cpe_polling(char *str)
1635 cpe_poll_enabled = 0;
1636 return 1;
1639 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1641 static struct irqaction cmci_irqaction = {
1642 .handler = ia64_mca_cmc_int_handler,
1643 .flags = IRQF_DISABLED,
1644 .name = "cmc_hndlr"
1647 static struct irqaction cmcp_irqaction = {
1648 .handler = ia64_mca_cmc_int_caller,
1649 .flags = IRQF_DISABLED,
1650 .name = "cmc_poll"
1653 static struct irqaction mca_rdzv_irqaction = {
1654 .handler = ia64_mca_rendez_int_handler,
1655 .flags = IRQF_DISABLED,
1656 .name = "mca_rdzv"
1659 static struct irqaction mca_wkup_irqaction = {
1660 .handler = ia64_mca_wakeup_int_handler,
1661 .flags = IRQF_DISABLED,
1662 .name = "mca_wkup"
1665 #ifdef CONFIG_ACPI
1666 static struct irqaction mca_cpe_irqaction = {
1667 .handler = ia64_mca_cpe_int_handler,
1668 .flags = IRQF_DISABLED,
1669 .name = "cpe_hndlr"
1672 static struct irqaction mca_cpep_irqaction = {
1673 .handler = ia64_mca_cpe_int_caller,
1674 .flags = IRQF_DISABLED,
1675 .name = "cpe_poll"
1677 #endif /* CONFIG_ACPI */
1679 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1680 * these stacks can never sleep, they cannot return from the kernel to user
1681 * space, they do not appear in a normal ps listing. So there is no need to
1682 * format most of the fields.
1685 static void __cpuinit
1686 format_mca_init_stack(void *mca_data, unsigned long offset,
1687 const char *type, int cpu)
1689 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1690 struct thread_info *ti;
1691 memset(p, 0, KERNEL_STACK_SIZE);
1692 ti = task_thread_info(p);
1693 ti->flags = _TIF_MCA_INIT;
1694 ti->preempt_count = 1;
1695 ti->task = p;
1696 ti->cpu = cpu;
1697 p->stack = ti;
1698 p->state = TASK_UNINTERRUPTIBLE;
1699 cpu_set(cpu, p->cpus_allowed);
1700 INIT_LIST_HEAD(&p->tasks);
1701 p->parent = p->real_parent = p->group_leader = p;
1702 INIT_LIST_HEAD(&p->children);
1703 INIT_LIST_HEAD(&p->sibling);
1704 strncpy(p->comm, type, sizeof(p->comm)-1);
1707 /* Do per-CPU MCA-related initialization. */
1709 void __cpuinit
1710 ia64_mca_cpu_init(void *cpu_data)
1712 void *pal_vaddr;
1713 static int first_time = 1;
1715 if (first_time) {
1716 void *mca_data;
1717 int cpu;
1719 first_time = 0;
1720 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1721 * NR_CPUS + KERNEL_STACK_SIZE);
1722 mca_data = (void *)(((unsigned long)mca_data +
1723 KERNEL_STACK_SIZE - 1) &
1724 (-KERNEL_STACK_SIZE));
1725 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1726 format_mca_init_stack(mca_data,
1727 offsetof(struct ia64_mca_cpu, mca_stack),
1728 "MCA", cpu);
1729 format_mca_init_stack(mca_data,
1730 offsetof(struct ia64_mca_cpu, init_stack),
1731 "INIT", cpu);
1732 __per_cpu_mca[cpu] = __pa(mca_data);
1733 mca_data += sizeof(struct ia64_mca_cpu);
1738 * The MCA info structure was allocated earlier and its
1739 * physical address saved in __per_cpu_mca[cpu]. Copy that
1740 * address * to ia64_mca_data so we can access it as a per-CPU
1741 * variable.
1743 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1746 * Stash away a copy of the PTE needed to map the per-CPU page.
1747 * We may need it during MCA recovery.
1749 __get_cpu_var(ia64_mca_per_cpu_pte) =
1750 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1753 * Also, stash away a copy of the PAL address and the PTE
1754 * needed to map it.
1756 pal_vaddr = efi_get_pal_addr();
1757 if (!pal_vaddr)
1758 return;
1759 __get_cpu_var(ia64_mca_pal_base) =
1760 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1761 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1762 PAGE_KERNEL));
1766 * ia64_mca_init
1768 * Do all the system level mca specific initialization.
1770 * 1. Register spinloop and wakeup request interrupt vectors
1772 * 2. Register OS_MCA handler entry point
1774 * 3. Register OS_INIT handler entry point
1776 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1778 * Note that this initialization is done very early before some kernel
1779 * services are available.
1781 * Inputs : None
1783 * Outputs : None
1785 void __init
1786 ia64_mca_init(void)
1788 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1789 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1790 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1791 int i;
1792 s64 rc;
1793 struct ia64_sal_retval isrv;
1794 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1795 static struct notifier_block default_init_monarch_nb = {
1796 .notifier_call = default_monarch_init_process,
1797 .priority = 0/* we need to notified last */
1800 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1802 /* Clear the Rendez checkin flag for all cpus */
1803 for(i = 0 ; i < NR_CPUS; i++)
1804 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1807 * Register the rendezvous spinloop and wakeup mechanism with SAL
1810 /* Register the rendezvous interrupt vector with SAL */
1811 while (1) {
1812 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1813 SAL_MC_PARAM_MECHANISM_INT,
1814 IA64_MCA_RENDEZ_VECTOR,
1815 timeout,
1816 SAL_MC_PARAM_RZ_ALWAYS);
1817 rc = isrv.status;
1818 if (rc == 0)
1819 break;
1820 if (rc == -2) {
1821 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1822 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1823 timeout = isrv.v0;
1824 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1825 continue;
1827 printk(KERN_ERR "Failed to register rendezvous interrupt "
1828 "with SAL (status %ld)\n", rc);
1829 return;
1832 /* Register the wakeup interrupt vector with SAL */
1833 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1834 SAL_MC_PARAM_MECHANISM_INT,
1835 IA64_MCA_WAKEUP_VECTOR,
1836 0, 0);
1837 rc = isrv.status;
1838 if (rc) {
1839 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1840 "(status %ld)\n", rc);
1841 return;
1844 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1846 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1848 * XXX - disable SAL checksum by setting size to 0; should be
1849 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1851 ia64_mc_info.imi_mca_handler_size = 0;
1853 /* Register the os mca handler with SAL */
1854 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1855 ia64_mc_info.imi_mca_handler,
1856 ia64_tpa(mca_hldlr_ptr->gp),
1857 ia64_mc_info.imi_mca_handler_size,
1858 0, 0, 0)))
1860 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1861 "(status %ld)\n", rc);
1862 return;
1865 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1866 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1869 * XXX - disable SAL checksum by setting size to 0, should be
1870 * size of the actual init handler in mca_asm.S.
1872 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1873 ia64_mc_info.imi_monarch_init_handler_size = 0;
1874 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1875 ia64_mc_info.imi_slave_init_handler_size = 0;
1877 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1878 ia64_mc_info.imi_monarch_init_handler);
1880 /* Register the os init handler with SAL */
1881 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1882 ia64_mc_info.imi_monarch_init_handler,
1883 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1884 ia64_mc_info.imi_monarch_init_handler_size,
1885 ia64_mc_info.imi_slave_init_handler,
1886 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1887 ia64_mc_info.imi_slave_init_handler_size)))
1889 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1890 "(status %ld)\n", rc);
1891 return;
1893 if (register_die_notifier(&default_init_monarch_nb)) {
1894 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1895 return;
1898 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1901 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1902 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1904 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1905 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1906 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1908 /* Setup the MCA rendezvous interrupt vector */
1909 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1911 /* Setup the MCA wakeup interrupt vector */
1912 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1914 #ifdef CONFIG_ACPI
1915 /* Setup the CPEI/P handler */
1916 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1917 #endif
1919 /* Initialize the areas set aside by the OS to buffer the
1920 * platform/processor error states for MCA/INIT/CMC
1921 * handling.
1923 ia64_log_init(SAL_INFO_TYPE_MCA);
1924 ia64_log_init(SAL_INFO_TYPE_INIT);
1925 ia64_log_init(SAL_INFO_TYPE_CMC);
1926 ia64_log_init(SAL_INFO_TYPE_CPE);
1928 mca_init = 1;
1929 printk(KERN_INFO "MCA related initialization done\n");
1933 * ia64_mca_late_init
1935 * Opportunity to setup things that require initialization later
1936 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1937 * platform doesn't support an interrupt driven mechanism.
1939 * Inputs : None
1940 * Outputs : Status
1942 static int __init
1943 ia64_mca_late_init(void)
1945 if (!mca_init)
1946 return 0;
1948 /* Setup the CMCI/P vector and handler */
1949 init_timer(&cmc_poll_timer);
1950 cmc_poll_timer.function = ia64_mca_cmc_poll;
1952 /* Unmask/enable the vector */
1953 cmc_polling_enabled = 0;
1954 schedule_work(&cmc_enable_work);
1956 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1958 #ifdef CONFIG_ACPI
1959 /* Setup the CPEI/P vector and handler */
1960 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1961 init_timer(&cpe_poll_timer);
1962 cpe_poll_timer.function = ia64_mca_cpe_poll;
1965 irq_desc_t *desc;
1966 unsigned int irq;
1968 if (cpe_vector >= 0) {
1969 /* If platform supports CPEI, enable the irq. */
1970 cpe_poll_enabled = 0;
1971 for (irq = 0; irq < NR_IRQS; ++irq)
1972 if (irq_to_vector(irq) == cpe_vector) {
1973 desc = irq_desc + irq;
1974 desc->status |= IRQ_PER_CPU;
1975 setup_irq(irq, &mca_cpe_irqaction);
1976 ia64_cpe_irq = irq;
1978 ia64_mca_register_cpev(cpe_vector);
1979 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1980 } else {
1981 /* If platform doesn't support CPEI, get the timer going. */
1982 if (cpe_poll_enabled) {
1983 ia64_mca_cpe_poll(0UL);
1984 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1988 #endif
1990 return 0;
1993 device_initcall(ia64_mca_late_init);