allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / i386 / mach-voyager / voyager_smp.c
blobb87f8548e75ab4f51cc4885e9ba624afbc361c04
1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <asm/desc.h>
24 #include <asm/voyager.h>
25 #include <asm/vic.h>
26 #include <asm/mtrr.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlbflush.h>
29 #include <asm/arch_hooks.h>
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
37 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
38 * indexed physically */
39 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
40 EXPORT_SYMBOL(cpu_data);
42 /* physical ID of the CPU used to boot the system */
43 unsigned char boot_cpu_id;
45 /* The memory line addresses for the Quad CPIs */
46 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48 /* The masks for the Extended VIC processors, filled in by cat_init */
49 __u32 voyager_extended_vic_processors = 0;
51 /* Masks for the extended Quad processors which cannot be VIC booted */
52 __u32 voyager_allowed_boot_processors = 0;
54 /* The mask for the Quad Processors (both extended and non-extended) */
55 __u32 voyager_quad_processors = 0;
57 /* Total count of live CPUs, used in process.c to display
58 * the CPU information and in irq.c for the per CPU irq
59 * activity count. Finally exported by i386_ksyms.c */
60 static int voyager_extended_cpus = 1;
62 /* Have we found an SMP box - used by time.c to do the profiling
63 interrupt for timeslicing; do not set to 1 until the per CPU timer
64 interrupt is active */
65 int smp_found_config = 0;
67 /* Used for the invalidate map that's also checked in the spinlock */
68 static volatile unsigned long smp_invalidate_needed;
70 /* Bitmask of currently online CPUs - used by setup.c for
71 /proc/cpuinfo, visible externally but still physical */
72 cpumask_t cpu_online_map = CPU_MASK_NONE;
73 EXPORT_SYMBOL(cpu_online_map);
75 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
76 * by scheduler but indexed physically */
77 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
80 /* The internal functions */
81 static void send_CPI(__u32 cpuset, __u8 cpi);
82 static void ack_CPI(__u8 cpi);
83 static int ack_QIC_CPI(__u8 cpi);
84 static void ack_special_QIC_CPI(__u8 cpi);
85 static void ack_VIC_CPI(__u8 cpi);
86 static void send_CPI_allbutself(__u8 cpi);
87 static void mask_vic_irq(unsigned int irq);
88 static void unmask_vic_irq(unsigned int irq);
89 static unsigned int startup_vic_irq(unsigned int irq);
90 static void enable_local_vic_irq(unsigned int irq);
91 static void disable_local_vic_irq(unsigned int irq);
92 static void before_handle_vic_irq(unsigned int irq);
93 static void after_handle_vic_irq(unsigned int irq);
94 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
95 static void ack_vic_irq(unsigned int irq);
96 static void vic_enable_cpi(void);
97 static void do_boot_cpu(__u8 cpuid);
98 static void do_quad_bootstrap(void);
100 int hard_smp_processor_id(void);
101 int safe_smp_processor_id(void);
103 /* Inline functions */
104 static inline void
105 send_one_QIC_CPI(__u8 cpu, __u8 cpi)
107 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
108 (smp_processor_id() << 16) + cpi;
111 static inline void
112 send_QIC_CPI(__u32 cpuset, __u8 cpi)
114 int cpu;
116 for_each_online_cpu(cpu) {
117 if(cpuset & (1<<cpu)) {
118 #ifdef VOYAGER_DEBUG
119 if(!cpu_isset(cpu, cpu_online_map))
120 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
121 #endif
122 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
127 static inline void
128 wrapper_smp_local_timer_interrupt(void)
130 irq_enter();
131 smp_local_timer_interrupt();
132 irq_exit();
135 static inline void
136 send_one_CPI(__u8 cpu, __u8 cpi)
138 if(voyager_quad_processors & (1<<cpu))
139 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
140 else
141 send_CPI(1<<cpu, cpi);
144 static inline void
145 send_CPI_allbutself(__u8 cpi)
147 __u8 cpu = smp_processor_id();
148 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
149 send_CPI(mask, cpi);
152 static inline int
153 is_cpu_quad(void)
155 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
156 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
159 static inline int
160 is_cpu_extended(void)
162 __u8 cpu = hard_smp_processor_id();
164 return(voyager_extended_vic_processors & (1<<cpu));
167 static inline int
168 is_cpu_vic_boot(void)
170 __u8 cpu = hard_smp_processor_id();
172 return(voyager_extended_vic_processors
173 & voyager_allowed_boot_processors & (1<<cpu));
177 static inline void
178 ack_CPI(__u8 cpi)
180 switch(cpi) {
181 case VIC_CPU_BOOT_CPI:
182 if(is_cpu_quad() && !is_cpu_vic_boot())
183 ack_QIC_CPI(cpi);
184 else
185 ack_VIC_CPI(cpi);
186 break;
187 case VIC_SYS_INT:
188 case VIC_CMN_INT:
189 /* These are slightly strange. Even on the Quad card,
190 * They are vectored as VIC CPIs */
191 if(is_cpu_quad())
192 ack_special_QIC_CPI(cpi);
193 else
194 ack_VIC_CPI(cpi);
195 break;
196 default:
197 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
198 break;
202 /* local variables */
204 /* The VIC IRQ descriptors -- these look almost identical to the
205 * 8259 IRQs except that masks and things must be kept per processor
207 static struct irq_chip vic_chip = {
208 .name = "VIC",
209 .startup = startup_vic_irq,
210 .mask = mask_vic_irq,
211 .unmask = unmask_vic_irq,
212 .set_affinity = set_vic_irq_affinity,
215 /* used to count up as CPUs are brought on line (starts at 0) */
216 static int cpucount = 0;
218 /* steal a page from the bottom of memory for the trampoline and
219 * squirrel its address away here. This will be in kernel virtual
220 * space */
221 static __u32 trampoline_base;
223 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
224 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
225 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
226 static DEFINE_PER_CPU(int, prof_counter) = 1;
228 /* the map used to check if a CPU has booted */
229 static __u32 cpu_booted_map;
231 /* the synchronize flag used to hold all secondary CPUs spinning in
232 * a tight loop until the boot sequence is ready for them */
233 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
235 /* This is for the new dynamic CPU boot code */
236 cpumask_t cpu_callin_map = CPU_MASK_NONE;
237 cpumask_t cpu_callout_map = CPU_MASK_NONE;
238 EXPORT_SYMBOL(cpu_callout_map);
239 cpumask_t cpu_possible_map = CPU_MASK_NONE;
240 EXPORT_SYMBOL(cpu_possible_map);
242 /* The per processor IRQ masks (these are usually kept in sync) */
243 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
245 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
246 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
248 /* Lock for enable/disable of VIC interrupts */
249 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
251 /* The boot processor is correctly set up in PC mode when it
252 * comes up, but the secondaries need their master/slave 8259
253 * pairs initializing correctly */
255 /* Interrupt counters (per cpu) and total - used to try to
256 * even up the interrupt handling routines */
257 static long vic_intr_total = 0;
258 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
259 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
261 /* Since we can only use CPI0, we fake all the other CPIs */
262 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
264 /* debugging routine to read the isr of the cpu's pic */
265 static inline __u16
266 vic_read_isr(void)
268 __u16 isr;
270 outb(0x0b, 0xa0);
271 isr = inb(0xa0) << 8;
272 outb(0x0b, 0x20);
273 isr |= inb(0x20);
275 return isr;
278 static __init void
279 qic_setup(void)
281 if(!is_cpu_quad()) {
282 /* not a quad, no setup */
283 return;
285 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
286 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
288 if(is_cpu_extended()) {
289 /* the QIC duplicate of the VIC base register */
290 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
291 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
293 /* FIXME: should set up the QIC timer and memory parity
294 * error vectors here */
298 static __init void
299 vic_setup_pic(void)
301 outb(1, VIC_REDIRECT_REGISTER_1);
302 /* clear the claim registers for dynamic routing */
303 outb(0, VIC_CLAIM_REGISTER_0);
304 outb(0, VIC_CLAIM_REGISTER_1);
306 outb(0, VIC_PRIORITY_REGISTER);
307 /* Set the Primary and Secondary Microchannel vector
308 * bases to be the same as the ordinary interrupts
310 * FIXME: This would be more efficient using separate
311 * vectors. */
312 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
313 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
314 /* Now initiallise the master PIC belonging to this CPU by
315 * sending the four ICWs */
317 /* ICW1: level triggered, ICW4 needed */
318 outb(0x19, 0x20);
320 /* ICW2: vector base */
321 outb(FIRST_EXTERNAL_VECTOR, 0x21);
323 /* ICW3: slave at line 2 */
324 outb(0x04, 0x21);
326 /* ICW4: 8086 mode */
327 outb(0x01, 0x21);
329 /* now the same for the slave PIC */
331 /* ICW1: level trigger, ICW4 needed */
332 outb(0x19, 0xA0);
334 /* ICW2: slave vector base */
335 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
337 /* ICW3: slave ID */
338 outb(0x02, 0xA1);
340 /* ICW4: 8086 mode */
341 outb(0x01, 0xA1);
344 static void
345 do_quad_bootstrap(void)
347 if(is_cpu_quad() && is_cpu_vic_boot()) {
348 int i;
349 unsigned long flags;
350 __u8 cpuid = hard_smp_processor_id();
352 local_irq_save(flags);
354 for(i = 0; i<4; i++) {
355 /* FIXME: this would be >>3 &0x7 on the 32 way */
356 if(((cpuid >> 2) & 0x03) == i)
357 /* don't lower our own mask! */
358 continue;
360 /* masquerade as local Quad CPU */
361 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
362 /* enable the startup CPI */
363 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
364 /* restore cpu id */
365 outb(0, QIC_PROCESSOR_ID);
367 local_irq_restore(flags);
372 /* Set up all the basic stuff: read the SMP config and make all the
373 * SMP information reflect only the boot cpu. All others will be
374 * brought on-line later. */
375 void __init
376 find_smp_config(void)
378 int i;
380 boot_cpu_id = hard_smp_processor_id();
382 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
384 /* initialize the CPU structures (moved from smp_boot_cpus) */
385 for(i=0; i<NR_CPUS; i++) {
386 cpu_irq_affinity[i] = ~0;
388 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
390 /* The boot CPU must be extended */
391 voyager_extended_vic_processors = 1<<boot_cpu_id;
392 /* initially, all of the first 8 cpu's can boot */
393 voyager_allowed_boot_processors = 0xff;
394 /* set up everything for just this CPU, we can alter
395 * this as we start the other CPUs later */
396 /* now get the CPU disposition from the extended CMOS */
397 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
398 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
399 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
400 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
401 cpu_possible_map = phys_cpu_present_map;
402 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
403 /* Here we set up the VIC to enable SMP */
404 /* enable the CPIs by writing the base vector to their register */
405 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
406 outb(1, VIC_REDIRECT_REGISTER_1);
407 /* set the claim registers for static routing --- Boot CPU gets
408 * all interrupts untill all other CPUs started */
409 outb(0xff, VIC_CLAIM_REGISTER_0);
410 outb(0xff, VIC_CLAIM_REGISTER_1);
411 /* Set the Primary and Secondary Microchannel vector
412 * bases to be the same as the ordinary interrupts
414 * FIXME: This would be more efficient using separate
415 * vectors. */
416 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
417 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
419 /* Finally tell the firmware that we're driving */
420 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
421 VOYAGER_SUS_IN_CONTROL_PORT);
423 current_thread_info()->cpu = boot_cpu_id;
424 x86_write_percpu(cpu_number, boot_cpu_id);
428 * The bootstrap kernel entry code has set these up. Save them
429 * for a given CPU, id is physical */
430 void __init
431 smp_store_cpu_info(int id)
433 struct cpuinfo_x86 *c=&cpu_data[id];
435 *c = boot_cpu_data;
437 identify_secondary_cpu(c);
440 /* set up the trampoline and return the physical address of the code */
441 static __u32 __init
442 setup_trampoline(void)
444 /* these two are global symbols in trampoline.S */
445 extern __u8 trampoline_end[];
446 extern __u8 trampoline_data[];
448 memcpy((__u8 *)trampoline_base, trampoline_data,
449 trampoline_end - trampoline_data);
450 return virt_to_phys((__u8 *)trampoline_base);
453 /* Routine initially called when a non-boot CPU is brought online */
454 static void __init
455 start_secondary(void *unused)
457 __u8 cpuid = hard_smp_processor_id();
458 /* external functions not defined in the headers */
459 extern void calibrate_delay(void);
461 cpu_init();
463 /* OK, we're in the routine */
464 ack_CPI(VIC_CPU_BOOT_CPI);
466 /* setup the 8259 master slave pair belonging to this CPU ---
467 * we won't actually receive any until the boot CPU
468 * relinquishes it's static routing mask */
469 vic_setup_pic();
471 qic_setup();
473 if(is_cpu_quad() && !is_cpu_vic_boot()) {
474 /* clear the boot CPI */
475 __u8 dummy;
477 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
478 printk("read dummy %d\n", dummy);
481 /* lower the mask to receive CPIs */
482 vic_enable_cpi();
484 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
486 /* enable interrupts */
487 local_irq_enable();
489 /* get our bogomips */
490 calibrate_delay();
492 /* save our processor parameters */
493 smp_store_cpu_info(cpuid);
495 /* if we're a quad, we may need to bootstrap other CPUs */
496 do_quad_bootstrap();
498 /* FIXME: this is rather a poor hack to prevent the CPU
499 * activating softirqs while it's supposed to be waiting for
500 * permission to proceed. Without this, the new per CPU stuff
501 * in the softirqs will fail */
502 local_irq_disable();
503 cpu_set(cpuid, cpu_callin_map);
505 /* signal that we're done */
506 cpu_booted_map = 1;
508 while (!cpu_isset(cpuid, smp_commenced_mask))
509 rep_nop();
510 local_irq_enable();
512 local_flush_tlb();
514 cpu_set(cpuid, cpu_online_map);
515 wmb();
516 cpu_idle();
520 /* Routine to kick start the given CPU and wait for it to report ready
521 * (or timeout in startup). When this routine returns, the requested
522 * CPU is either fully running and configured or known to be dead.
524 * We call this routine sequentially 1 CPU at a time, so no need for
525 * locking */
527 static void __init
528 do_boot_cpu(__u8 cpu)
530 struct task_struct *idle;
531 int timeout;
532 unsigned long flags;
533 int quad_boot = (1<<cpu) & voyager_quad_processors
534 & ~( voyager_extended_vic_processors
535 & voyager_allowed_boot_processors);
537 /* This is an area in head.S which was used to set up the
538 * initial kernel stack. We need to alter this to give the
539 * booting CPU a new stack (taken from its idle process) */
540 extern struct {
541 __u8 *esp;
542 unsigned short ss;
543 } stack_start;
544 /* This is the format of the CPI IDT gate (in real mode) which
545 * we're hijacking to boot the CPU */
546 union IDTFormat {
547 struct seg {
548 __u16 Offset;
549 __u16 Segment;
550 } idt;
551 __u32 val;
552 } hijack_source;
554 __u32 *hijack_vector;
555 __u32 start_phys_address = setup_trampoline();
557 /* There's a clever trick to this: The linux trampoline is
558 * compiled to begin at absolute location zero, so make the
559 * address zero but have the data segment selector compensate
560 * for the actual address */
561 hijack_source.idt.Offset = start_phys_address & 0x000F;
562 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
564 cpucount++;
565 alternatives_smp_switch(1);
567 idle = fork_idle(cpu);
568 if(IS_ERR(idle))
569 panic("failed fork for CPU%d", cpu);
570 idle->thread.eip = (unsigned long) start_secondary;
571 /* init_tasks (in sched.c) is indexed logically */
572 stack_start.esp = (void *) idle->thread.esp;
574 init_gdt(cpu);
575 per_cpu(current_task, cpu) = idle;
576 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
577 irq_ctx_init(cpu);
579 /* Note: Don't modify initial ss override */
580 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
581 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
582 hijack_source.idt.Offset, stack_start.esp));
584 /* init lowmem identity mapping */
585 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
586 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
587 flush_tlb_all();
589 if(quad_boot) {
590 printk("CPU %d: non extended Quad boot\n", cpu);
591 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
592 *hijack_vector = hijack_source.val;
593 } else {
594 printk("CPU%d: extended VIC boot\n", cpu);
595 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
596 *hijack_vector = hijack_source.val;
597 /* VIC errata, may also receive interrupt at this address */
598 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
599 *hijack_vector = hijack_source.val;
601 /* All non-boot CPUs start with interrupts fully masked. Need
602 * to lower the mask of the CPI we're about to send. We do
603 * this in the VIC by masquerading as the processor we're
604 * about to boot and lowering its interrupt mask */
605 local_irq_save(flags);
606 if(quad_boot) {
607 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
608 } else {
609 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
610 /* here we're altering registers belonging to `cpu' */
612 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
613 /* now go back to our original identity */
614 outb(boot_cpu_id, VIC_PROCESSOR_ID);
616 /* and boot the CPU */
618 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
620 cpu_booted_map = 0;
621 local_irq_restore(flags);
623 /* now wait for it to become ready (or timeout) */
624 for(timeout = 0; timeout < 50000; timeout++) {
625 if(cpu_booted_map)
626 break;
627 udelay(100);
629 /* reset the page table */
630 zap_low_mappings();
632 if (cpu_booted_map) {
633 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
634 cpu, smp_processor_id()));
636 printk("CPU%d: ", cpu);
637 print_cpu_info(&cpu_data[cpu]);
638 wmb();
639 cpu_set(cpu, cpu_callout_map);
640 cpu_set(cpu, cpu_present_map);
642 else {
643 printk("CPU%d FAILED TO BOOT: ", cpu);
644 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
645 printk("Stuck.\n");
646 else
647 printk("Not responding.\n");
649 cpucount--;
653 void __init
654 smp_boot_cpus(void)
656 int i;
658 /* CAT BUS initialisation must be done after the memory */
659 /* FIXME: The L4 has a catbus too, it just needs to be
660 * accessed in a totally different way */
661 if(voyager_level == 5) {
662 voyager_cat_init();
664 /* now that the cat has probed the Voyager System Bus, sanity
665 * check the cpu map */
666 if( ((voyager_quad_processors | voyager_extended_vic_processors)
667 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
668 /* should panic */
669 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
671 } else if(voyager_level == 4)
672 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
674 /* this sets up the idle task to run on the current cpu */
675 voyager_extended_cpus = 1;
676 /* Remove the global_irq_holder setting, it triggers a BUG() on
677 * schedule at the moment */
678 //global_irq_holder = boot_cpu_id;
680 /* FIXME: Need to do something about this but currently only works
681 * on CPUs with a tsc which none of mine have.
682 smp_tune_scheduling();
684 smp_store_cpu_info(boot_cpu_id);
685 printk("CPU%d: ", boot_cpu_id);
686 print_cpu_info(&cpu_data[boot_cpu_id]);
688 if(is_cpu_quad()) {
689 /* booting on a Quad CPU */
690 printk("VOYAGER SMP: Boot CPU is Quad\n");
691 qic_setup();
692 do_quad_bootstrap();
695 /* enable our own CPIs */
696 vic_enable_cpi();
698 cpu_set(boot_cpu_id, cpu_online_map);
699 cpu_set(boot_cpu_id, cpu_callout_map);
701 /* loop over all the extended VIC CPUs and boot them. The
702 * Quad CPUs must be bootstrapped by their extended VIC cpu */
703 for(i = 0; i < NR_CPUS; i++) {
704 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
705 continue;
706 do_boot_cpu(i);
707 /* This udelay seems to be needed for the Quad boots
708 * don't remove unless you know what you're doing */
709 udelay(1000);
711 /* we could compute the total bogomips here, but why bother?,
712 * Code added from smpboot.c */
714 unsigned long bogosum = 0;
715 for (i = 0; i < NR_CPUS; i++)
716 if (cpu_isset(i, cpu_online_map))
717 bogosum += cpu_data[i].loops_per_jiffy;
718 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
719 cpucount+1,
720 bogosum/(500000/HZ),
721 (bogosum/(5000/HZ))%100);
723 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
724 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
725 /* that's it, switch to symmetric mode */
726 outb(0, VIC_PRIORITY_REGISTER);
727 outb(0, VIC_CLAIM_REGISTER_0);
728 outb(0, VIC_CLAIM_REGISTER_1);
730 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
733 /* Reload the secondary CPUs task structure (this function does not
734 * return ) */
735 void __init
736 initialize_secondary(void)
738 #if 0
739 // AC kernels only
740 set_current(hard_get_current());
741 #endif
744 * We don't actually need to load the full TSS,
745 * basically just the stack pointer and the eip.
748 asm volatile(
749 "movl %0,%%esp\n\t"
750 "jmp *%1"
752 :"r" (current->thread.esp),"r" (current->thread.eip));
755 /* handle a Voyager SYS_INT -- If we don't, the base board will
756 * panic the system.
758 * System interrupts occur because some problem was detected on the
759 * various busses. To find out what you have to probe all the
760 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
761 fastcall void
762 smp_vic_sys_interrupt(struct pt_regs *regs)
764 ack_CPI(VIC_SYS_INT);
765 printk("Voyager SYSTEM INTERRUPT\n");
768 /* Handle a voyager CMN_INT; These interrupts occur either because of
769 * a system status change or because a single bit memory error
770 * occurred. FIXME: At the moment, ignore all this. */
771 fastcall void
772 smp_vic_cmn_interrupt(struct pt_regs *regs)
774 static __u8 in_cmn_int = 0;
775 static DEFINE_SPINLOCK(cmn_int_lock);
777 /* common ints are broadcast, so make sure we only do this once */
778 _raw_spin_lock(&cmn_int_lock);
779 if(in_cmn_int)
780 goto unlock_end;
782 in_cmn_int++;
783 _raw_spin_unlock(&cmn_int_lock);
785 VDEBUG(("Voyager COMMON INTERRUPT\n"));
787 if(voyager_level == 5)
788 voyager_cat_do_common_interrupt();
790 _raw_spin_lock(&cmn_int_lock);
791 in_cmn_int = 0;
792 unlock_end:
793 _raw_spin_unlock(&cmn_int_lock);
794 ack_CPI(VIC_CMN_INT);
798 * Reschedule call back. Nothing to do, all the work is done
799 * automatically when we return from the interrupt. */
800 static void
801 smp_reschedule_interrupt(void)
803 /* do nothing */
806 static struct mm_struct * flush_mm;
807 static unsigned long flush_va;
808 static DEFINE_SPINLOCK(tlbstate_lock);
809 #define FLUSH_ALL 0xffffffff
812 * We cannot call mmdrop() because we are in interrupt context,
813 * instead update mm->cpu_vm_mask.
815 * We need to reload %cr3 since the page tables may be going
816 * away from under us..
818 static inline void
819 leave_mm (unsigned long cpu)
821 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
822 BUG();
823 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
824 load_cr3(swapper_pg_dir);
829 * Invalidate call-back
831 static void
832 smp_invalidate_interrupt(void)
834 __u8 cpu = smp_processor_id();
836 if (!test_bit(cpu, &smp_invalidate_needed))
837 return;
838 /* This will flood messages. Don't uncomment unless you see
839 * Problems with cross cpu invalidation
840 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
841 smp_processor_id()));
844 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
845 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
846 if (flush_va == FLUSH_ALL)
847 local_flush_tlb();
848 else
849 __flush_tlb_one(flush_va);
850 } else
851 leave_mm(cpu);
853 smp_mb__before_clear_bit();
854 clear_bit(cpu, &smp_invalidate_needed);
855 smp_mb__after_clear_bit();
858 /* All the new flush operations for 2.4 */
861 /* This routine is called with a physical cpu mask */
862 static void
863 voyager_flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
864 unsigned long va)
866 int stuck = 50000;
868 if (!cpumask)
869 BUG();
870 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
871 BUG();
872 if (cpumask & (1 << smp_processor_id()))
873 BUG();
874 if (!mm)
875 BUG();
877 spin_lock(&tlbstate_lock);
879 flush_mm = mm;
880 flush_va = va;
881 atomic_set_mask(cpumask, &smp_invalidate_needed);
883 * We have to send the CPI only to
884 * CPUs affected.
886 send_CPI(cpumask, VIC_INVALIDATE_CPI);
888 while (smp_invalidate_needed) {
889 mb();
890 if(--stuck == 0) {
891 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
892 break;
896 /* Uncomment only to debug invalidation problems
897 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
900 flush_mm = NULL;
901 flush_va = 0;
902 spin_unlock(&tlbstate_lock);
905 void
906 flush_tlb_current_task(void)
908 struct mm_struct *mm = current->mm;
909 unsigned long cpu_mask;
911 preempt_disable();
913 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
914 local_flush_tlb();
915 if (cpu_mask)
916 voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
918 preempt_enable();
922 void
923 flush_tlb_mm (struct mm_struct * mm)
925 unsigned long cpu_mask;
927 preempt_disable();
929 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
931 if (current->active_mm == mm) {
932 if (current->mm)
933 local_flush_tlb();
934 else
935 leave_mm(smp_processor_id());
937 if (cpu_mask)
938 voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
940 preempt_enable();
943 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
945 struct mm_struct *mm = vma->vm_mm;
946 unsigned long cpu_mask;
948 preempt_disable();
950 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
951 if (current->active_mm == mm) {
952 if(current->mm)
953 __flush_tlb_one(va);
954 else
955 leave_mm(smp_processor_id());
958 if (cpu_mask)
959 voyager_flush_tlb_others(cpu_mask, mm, va);
961 preempt_enable();
963 EXPORT_SYMBOL(flush_tlb_page);
965 /* enable the requested IRQs */
966 static void
967 smp_enable_irq_interrupt(void)
969 __u8 irq;
970 __u8 cpu = get_cpu();
972 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
973 vic_irq_enable_mask[cpu]));
975 spin_lock(&vic_irq_lock);
976 for(irq = 0; irq < 16; irq++) {
977 if(vic_irq_enable_mask[cpu] & (1<<irq))
978 enable_local_vic_irq(irq);
980 vic_irq_enable_mask[cpu] = 0;
981 spin_unlock(&vic_irq_lock);
983 put_cpu_no_resched();
987 * CPU halt call-back
989 static void
990 smp_stop_cpu_function(void *dummy)
992 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
993 cpu_clear(smp_processor_id(), cpu_online_map);
994 local_irq_disable();
995 for(;;)
996 halt();
999 static DEFINE_SPINLOCK(call_lock);
1001 struct call_data_struct {
1002 void (*func) (void *info);
1003 void *info;
1004 volatile unsigned long started;
1005 volatile unsigned long finished;
1006 int wait;
1009 static struct call_data_struct * call_data;
1011 /* execute a thread on a new CPU. The function to be called must be
1012 * previously set up. This is used to schedule a function for
1013 * execution on all CPU's - set up the function then broadcast a
1014 * function_interrupt CPI to come here on each CPU */
1015 static void
1016 smp_call_function_interrupt(void)
1018 void (*func) (void *info) = call_data->func;
1019 void *info = call_data->info;
1020 /* must take copy of wait because call_data may be replaced
1021 * unless the function is waiting for us to finish */
1022 int wait = call_data->wait;
1023 __u8 cpu = smp_processor_id();
1026 * Notify initiating CPU that I've grabbed the data and am
1027 * about to execute the function
1029 mb();
1030 if(!test_and_clear_bit(cpu, &call_data->started)) {
1031 /* If the bit wasn't set, this could be a replay */
1032 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1033 return;
1036 * At this point the info structure may be out of scope unless wait==1
1038 irq_enter();
1039 (*func)(info);
1040 irq_exit();
1041 if (wait) {
1042 mb();
1043 clear_bit(cpu, &call_data->finished);
1047 static int
1048 voyager_smp_call_function_mask (cpumask_t cpumask,
1049 void (*func) (void *info), void *info,
1050 int wait)
1052 struct call_data_struct data;
1053 u32 mask = cpus_addr(cpumask)[0];
1055 mask &= ~(1<<smp_processor_id());
1057 if (!mask)
1058 return 0;
1060 /* Can deadlock when called with interrupts disabled */
1061 WARN_ON(irqs_disabled());
1063 data.func = func;
1064 data.info = info;
1065 data.started = mask;
1066 data.wait = wait;
1067 if (wait)
1068 data.finished = mask;
1070 spin_lock(&call_lock);
1071 call_data = &data;
1072 wmb();
1073 /* Send a message to all other CPUs and wait for them to respond */
1074 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1076 /* Wait for response */
1077 while (data.started)
1078 barrier();
1080 if (wait)
1081 while (data.finished)
1082 barrier();
1084 spin_unlock(&call_lock);
1086 return 0;
1089 /* Sorry about the name. In an APIC based system, the APICs
1090 * themselves are programmed to send a timer interrupt. This is used
1091 * by linux to reschedule the processor. Voyager doesn't have this,
1092 * so we use the system clock to interrupt one processor, which in
1093 * turn, broadcasts a timer CPI to all the others --- we receive that
1094 * CPI here. We don't use this actually for counting so losing
1095 * ticks doesn't matter
1097 * FIXME: For those CPU's which actually have a local APIC, we could
1098 * try to use it to trigger this interrupt instead of having to
1099 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1100 * no local APIC, so I can't do this
1102 * This function is currently a placeholder and is unused in the code */
1103 fastcall void
1104 smp_apic_timer_interrupt(struct pt_regs *regs)
1106 struct pt_regs *old_regs = set_irq_regs(regs);
1107 wrapper_smp_local_timer_interrupt();
1108 set_irq_regs(old_regs);
1111 /* All of the QUAD interrupt GATES */
1112 fastcall void
1113 smp_qic_timer_interrupt(struct pt_regs *regs)
1115 struct pt_regs *old_regs = set_irq_regs(regs);
1116 ack_QIC_CPI(QIC_TIMER_CPI);
1117 wrapper_smp_local_timer_interrupt();
1118 set_irq_regs(old_regs);
1121 fastcall void
1122 smp_qic_invalidate_interrupt(struct pt_regs *regs)
1124 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1125 smp_invalidate_interrupt();
1128 fastcall void
1129 smp_qic_reschedule_interrupt(struct pt_regs *regs)
1131 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1132 smp_reschedule_interrupt();
1135 fastcall void
1136 smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1138 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1139 smp_enable_irq_interrupt();
1142 fastcall void
1143 smp_qic_call_function_interrupt(struct pt_regs *regs)
1145 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1146 smp_call_function_interrupt();
1149 fastcall void
1150 smp_vic_cpi_interrupt(struct pt_regs *regs)
1152 struct pt_regs *old_regs = set_irq_regs(regs);
1153 __u8 cpu = smp_processor_id();
1155 if(is_cpu_quad())
1156 ack_QIC_CPI(VIC_CPI_LEVEL0);
1157 else
1158 ack_VIC_CPI(VIC_CPI_LEVEL0);
1160 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1161 wrapper_smp_local_timer_interrupt();
1162 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1163 smp_invalidate_interrupt();
1164 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1165 smp_reschedule_interrupt();
1166 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1167 smp_enable_irq_interrupt();
1168 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1169 smp_call_function_interrupt();
1170 set_irq_regs(old_regs);
1173 static void
1174 do_flush_tlb_all(void* info)
1176 unsigned long cpu = smp_processor_id();
1178 __flush_tlb_all();
1179 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1180 leave_mm(cpu);
1184 /* flush the TLB of every active CPU in the system */
1185 void
1186 flush_tlb_all(void)
1188 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1191 /* used to set up the trampoline for other CPUs when the memory manager
1192 * is sorted out */
1193 void __init
1194 smp_alloc_memory(void)
1196 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1197 if(__pa(trampoline_base) >= 0x93000)
1198 BUG();
1201 /* send a reschedule CPI to one CPU by physical CPU number*/
1202 static void
1203 voyager_smp_send_reschedule(int cpu)
1205 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1210 hard_smp_processor_id(void)
1212 __u8 i;
1213 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1214 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1215 return cpumask & 0x1F;
1217 for(i = 0; i < 8; i++) {
1218 if(cpumask & (1<<i))
1219 return i;
1221 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1222 return 0;
1226 safe_smp_processor_id(void)
1228 return hard_smp_processor_id();
1231 /* broadcast a halt to all other CPUs */
1232 static void
1233 voyager_smp_send_stop(void)
1235 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1238 /* this function is triggered in time.c when a clock tick fires
1239 * we need to re-broadcast the tick to all CPUs */
1240 void
1241 smp_vic_timer_interrupt(void)
1243 send_CPI_allbutself(VIC_TIMER_CPI);
1244 smp_local_timer_interrupt();
1247 /* local (per CPU) timer interrupt. It does both profiling and
1248 * process statistics/rescheduling.
1250 * We do profiling in every local tick, statistics/rescheduling
1251 * happen only every 'profiling multiplier' ticks. The default
1252 * multiplier is 1 and it can be changed by writing the new multiplier
1253 * value into /proc/profile.
1255 void
1256 smp_local_timer_interrupt(void)
1258 int cpu = smp_processor_id();
1259 long weight;
1261 profile_tick(CPU_PROFILING);
1262 if (--per_cpu(prof_counter, cpu) <= 0) {
1264 * The multiplier may have changed since the last time we got
1265 * to this point as a result of the user writing to
1266 * /proc/profile. In this case we need to adjust the APIC
1267 * timer accordingly.
1269 * Interrupts are already masked off at this point.
1271 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1272 if (per_cpu(prof_counter, cpu) !=
1273 per_cpu(prof_old_multiplier, cpu)) {
1274 /* FIXME: need to update the vic timer tick here */
1275 per_cpu(prof_old_multiplier, cpu) =
1276 per_cpu(prof_counter, cpu);
1279 update_process_times(user_mode_vm(get_irq_regs()));
1282 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1283 /* only extended VIC processors participate in
1284 * interrupt distribution */
1285 return;
1288 * We take the 'long' return path, and there every subsystem
1289 * grabs the apropriate locks (kernel lock/ irq lock).
1291 * we might want to decouple profiling from the 'long path',
1292 * and do the profiling totally in assembly.
1294 * Currently this isn't too much of an issue (performance wise),
1295 * we can take more than 100K local irqs per second on a 100 MHz P5.
1298 if((++vic_tick[cpu] & 0x7) != 0)
1299 return;
1300 /* get here every 16 ticks (about every 1/6 of a second) */
1302 /* Change our priority to give someone else a chance at getting
1303 * the IRQ. The algorithm goes like this:
1305 * In the VIC, the dynamically routed interrupt is always
1306 * handled by the lowest priority eligible (i.e. receiving
1307 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1308 * lowest processor number gets it.
1310 * The priority of a CPU is controlled by a special per-CPU
1311 * VIC priority register which is 3 bits wide 0 being lowest
1312 * and 7 highest priority..
1314 * Therefore we subtract the average number of interrupts from
1315 * the number we've fielded. If this number is negative, we
1316 * lower the activity count and if it is positive, we raise
1317 * it.
1319 * I'm afraid this still leads to odd looking interrupt counts:
1320 * the totals are all roughly equal, but the individual ones
1321 * look rather skewed.
1323 * FIXME: This algorithm is total crap when mixed with SMP
1324 * affinity code since we now try to even up the interrupt
1325 * counts when an affinity binding is keeping them on a
1326 * particular CPU*/
1327 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1328 - vic_intr_total) >> 4;
1329 weight += 4;
1330 if(weight > 7)
1331 weight = 7;
1332 if(weight < 0)
1333 weight = 0;
1335 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1337 #ifdef VOYAGER_DEBUG
1338 if((vic_tick[cpu] & 0xFFF) == 0) {
1339 /* print this message roughly every 25 secs */
1340 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1341 cpu, vic_tick[cpu], weight);
1343 #endif
1346 /* setup the profiling timer */
1347 int
1348 setup_profiling_timer(unsigned int multiplier)
1350 int i;
1352 if ( (!multiplier))
1353 return -EINVAL;
1356 * Set the new multiplier for each CPU. CPUs don't start using the
1357 * new values until the next timer interrupt in which they do process
1358 * accounting.
1360 for (i = 0; i < NR_CPUS; ++i)
1361 per_cpu(prof_multiplier, i) = multiplier;
1363 return 0;
1366 /* This is a bit of a mess, but forced on us by the genirq changes
1367 * there's no genirq handler that really does what voyager wants
1368 * so hack it up with the simple IRQ handler */
1369 static void fastcall
1370 handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1372 before_handle_vic_irq(irq);
1373 handle_simple_irq(irq, desc);
1374 after_handle_vic_irq(irq);
1378 /* The CPIs are handled in the per cpu 8259s, so they must be
1379 * enabled to be received: FIX: enabling the CPIs in the early
1380 * boot sequence interferes with bug checking; enable them later
1381 * on in smp_init */
1382 #define VIC_SET_GATE(cpi, vector) \
1383 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1384 #define QIC_SET_GATE(cpi, vector) \
1385 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1387 void __init
1388 smp_intr_init(void)
1390 int i;
1392 /* initialize the per cpu irq mask to all disabled */
1393 for(i = 0; i < NR_CPUS; i++)
1394 vic_irq_mask[i] = 0xFFFF;
1396 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1398 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1399 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1401 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1402 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1403 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1404 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1405 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1408 /* now put the VIC descriptor into the first 48 IRQs
1410 * This is for later: first 16 correspond to PC IRQs; next 16
1411 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1412 for(i = 0; i < 48; i++)
1413 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1416 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1417 * processor to receive CPI */
1418 static void
1419 send_CPI(__u32 cpuset, __u8 cpi)
1421 int cpu;
1422 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1424 if(cpi < VIC_START_FAKE_CPI) {
1425 /* fake CPI are only used for booting, so send to the
1426 * extended quads as well---Quads must be VIC booted */
1427 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1428 return;
1430 if(quad_cpuset)
1431 send_QIC_CPI(quad_cpuset, cpi);
1432 cpuset &= ~quad_cpuset;
1433 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1434 if(cpuset == 0)
1435 return;
1436 for_each_online_cpu(cpu) {
1437 if(cpuset & (1<<cpu))
1438 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1440 if(cpuset)
1441 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1444 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1445 * set the cache line to shared by reading it.
1447 * DON'T make this inline otherwise the cache line read will be
1448 * optimised away
1449 * */
1450 static int
1451 ack_QIC_CPI(__u8 cpi) {
1452 __u8 cpu = hard_smp_processor_id();
1454 cpi &= 7;
1456 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1457 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1460 static void
1461 ack_special_QIC_CPI(__u8 cpi)
1463 switch(cpi) {
1464 case VIC_CMN_INT:
1465 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1466 break;
1467 case VIC_SYS_INT:
1468 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1469 break;
1471 /* also clear at the VIC, just in case (nop for non-extended proc) */
1472 ack_VIC_CPI(cpi);
1475 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1476 static void
1477 ack_VIC_CPI(__u8 cpi)
1479 #ifdef VOYAGER_DEBUG
1480 unsigned long flags;
1481 __u16 isr;
1482 __u8 cpu = smp_processor_id();
1484 local_irq_save(flags);
1485 isr = vic_read_isr();
1486 if((isr & (1<<(cpi &7))) == 0) {
1487 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1489 #endif
1490 /* send specific EOI; the two system interrupts have
1491 * bit 4 set for a separate vector but behave as the
1492 * corresponding 3 bit intr */
1493 outb_p(0x60|(cpi & 7),0x20);
1495 #ifdef VOYAGER_DEBUG
1496 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1497 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1499 local_irq_restore(flags);
1500 #endif
1503 /* cribbed with thanks from irq.c */
1504 #define __byte(x,y) (((unsigned char *)&(y))[x])
1505 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1506 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1508 static unsigned int
1509 startup_vic_irq(unsigned int irq)
1511 unmask_vic_irq(irq);
1513 return 0;
1516 /* The enable and disable routines. This is where we run into
1517 * conflicting architectural philosophy. Fundamentally, the voyager
1518 * architecture does not expect to have to disable interrupts globally
1519 * (the IRQ controllers belong to each CPU). The processor masquerade
1520 * which is used to start the system shouldn't be used in a running OS
1521 * since it will cause great confusion if two separate CPUs drive to
1522 * the same IRQ controller (I know, I've tried it).
1524 * The solution is a variant on the NCR lazy SPL design:
1526 * 1) To disable an interrupt, do nothing (other than set the
1527 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1529 * 2) If the interrupt dares to come in, raise the local mask against
1530 * it (this will result in all the CPU masks being raised
1531 * eventually).
1533 * 3) To enable the interrupt, lower the mask on the local CPU and
1534 * broadcast an Interrupt enable CPI which causes all other CPUs to
1535 * adjust their masks accordingly. */
1537 static void
1538 unmask_vic_irq(unsigned int irq)
1540 /* linux doesn't to processor-irq affinity, so enable on
1541 * all CPUs we know about */
1542 int cpu = smp_processor_id(), real_cpu;
1543 __u16 mask = (1<<irq);
1544 __u32 processorList = 0;
1545 unsigned long flags;
1547 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1548 irq, cpu, cpu_irq_affinity[cpu]));
1549 spin_lock_irqsave(&vic_irq_lock, flags);
1550 for_each_online_cpu(real_cpu) {
1551 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1552 continue;
1553 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1554 /* irq has no affinity for this CPU, ignore */
1555 continue;
1557 if(real_cpu == cpu) {
1558 enable_local_vic_irq(irq);
1560 else if(vic_irq_mask[real_cpu] & mask) {
1561 vic_irq_enable_mask[real_cpu] |= mask;
1562 processorList |= (1<<real_cpu);
1565 spin_unlock_irqrestore(&vic_irq_lock, flags);
1566 if(processorList)
1567 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1570 static void
1571 mask_vic_irq(unsigned int irq)
1573 /* lazy disable, do nothing */
1576 static void
1577 enable_local_vic_irq(unsigned int irq)
1579 __u8 cpu = smp_processor_id();
1580 __u16 mask = ~(1 << irq);
1581 __u16 old_mask = vic_irq_mask[cpu];
1583 vic_irq_mask[cpu] &= mask;
1584 if(vic_irq_mask[cpu] == old_mask)
1585 return;
1587 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1588 irq, cpu));
1590 if (irq & 8) {
1591 outb_p(cached_A1(cpu),0xA1);
1592 (void)inb_p(0xA1);
1594 else {
1595 outb_p(cached_21(cpu),0x21);
1596 (void)inb_p(0x21);
1600 static void
1601 disable_local_vic_irq(unsigned int irq)
1603 __u8 cpu = smp_processor_id();
1604 __u16 mask = (1 << irq);
1605 __u16 old_mask = vic_irq_mask[cpu];
1607 if(irq == 7)
1608 return;
1610 vic_irq_mask[cpu] |= mask;
1611 if(old_mask == vic_irq_mask[cpu])
1612 return;
1614 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1615 irq, cpu));
1617 if (irq & 8) {
1618 outb_p(cached_A1(cpu),0xA1);
1619 (void)inb_p(0xA1);
1621 else {
1622 outb_p(cached_21(cpu),0x21);
1623 (void)inb_p(0x21);
1627 /* The VIC is level triggered, so the ack can only be issued after the
1628 * interrupt completes. However, we do Voyager lazy interrupt
1629 * handling here: It is an extremely expensive operation to mask an
1630 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1631 * this interrupt actually comes in, then we mask and ack here to push
1632 * the interrupt off to another CPU */
1633 static void
1634 before_handle_vic_irq(unsigned int irq)
1636 irq_desc_t *desc = irq_desc + irq;
1637 __u8 cpu = smp_processor_id();
1639 _raw_spin_lock(&vic_irq_lock);
1640 vic_intr_total++;
1641 vic_intr_count[cpu]++;
1643 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1644 /* The irq is not in our affinity mask, push it off
1645 * onto another CPU */
1646 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1647 irq, cpu));
1648 disable_local_vic_irq(irq);
1649 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1650 * actually calling the interrupt routine */
1651 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1652 } else if(desc->status & IRQ_DISABLED) {
1653 /* Damn, the interrupt actually arrived, do the lazy
1654 * disable thing. The interrupt routine in irq.c will
1655 * not handle a IRQ_DISABLED interrupt, so nothing more
1656 * need be done here */
1657 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1658 irq, cpu));
1659 disable_local_vic_irq(irq);
1660 desc->status |= IRQ_REPLAY;
1661 } else {
1662 desc->status &= ~IRQ_REPLAY;
1665 _raw_spin_unlock(&vic_irq_lock);
1668 /* Finish the VIC interrupt: basically mask */
1669 static void
1670 after_handle_vic_irq(unsigned int irq)
1672 irq_desc_t *desc = irq_desc + irq;
1674 _raw_spin_lock(&vic_irq_lock);
1676 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1677 #ifdef VOYAGER_DEBUG
1678 __u16 isr;
1679 #endif
1681 desc->status = status;
1682 if ((status & IRQ_DISABLED))
1683 disable_local_vic_irq(irq);
1684 #ifdef VOYAGER_DEBUG
1685 /* DEBUG: before we ack, check what's in progress */
1686 isr = vic_read_isr();
1687 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1688 int i;
1689 __u8 cpu = smp_processor_id();
1690 __u8 real_cpu;
1691 int mask; /* Um... initialize me??? --RR */
1693 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1694 cpu, irq);
1695 for_each_possible_cpu(real_cpu, mask) {
1697 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1698 VIC_PROCESSOR_ID);
1699 isr = vic_read_isr();
1700 if(isr & (1<<irq)) {
1701 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1702 real_cpu, irq);
1703 ack_vic_irq(irq);
1705 outb(cpu, VIC_PROCESSOR_ID);
1708 #endif /* VOYAGER_DEBUG */
1709 /* as soon as we ack, the interrupt is eligible for
1710 * receipt by another CPU so everything must be in
1711 * order here */
1712 ack_vic_irq(irq);
1713 if(status & IRQ_REPLAY) {
1714 /* replay is set if we disable the interrupt
1715 * in the before_handle_vic_irq() routine, so
1716 * clear the in progress bit here to allow the
1717 * next CPU to handle this correctly */
1718 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1720 #ifdef VOYAGER_DEBUG
1721 isr = vic_read_isr();
1722 if((isr & (1<<irq)) != 0)
1723 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1724 irq, isr);
1725 #endif /* VOYAGER_DEBUG */
1727 _raw_spin_unlock(&vic_irq_lock);
1729 /* All code after this point is out of the main path - the IRQ
1730 * may be intercepted by another CPU if reasserted */
1734 /* Linux processor - interrupt affinity manipulations.
1736 * For each processor, we maintain a 32 bit irq affinity mask.
1737 * Initially it is set to all 1's so every processor accepts every
1738 * interrupt. In this call, we change the processor's affinity mask:
1740 * Change from enable to disable:
1742 * If the interrupt ever comes in to the processor, we will disable it
1743 * and ack it to push it off to another CPU, so just accept the mask here.
1745 * Change from disable to enable:
1747 * change the mask and then do an interrupt enable CPI to re-enable on
1748 * the selected processors */
1750 void
1751 set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1753 /* Only extended processors handle interrupts */
1754 unsigned long real_mask;
1755 unsigned long irq_mask = 1 << irq;
1756 int cpu;
1758 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1760 if(cpus_addr(mask)[0] == 0)
1761 /* can't have no cpu's to accept the interrupt -- extremely
1762 * bad things will happen */
1763 return;
1765 if(irq == 0)
1766 /* can't change the affinity of the timer IRQ. This
1767 * is due to the constraint in the voyager
1768 * architecture that the CPI also comes in on and IRQ
1769 * line and we have chosen IRQ0 for this. If you
1770 * raise the mask on this interrupt, the processor
1771 * will no-longer be able to accept VIC CPIs */
1772 return;
1774 if(irq >= 32)
1775 /* You can only have 32 interrupts in a voyager system
1776 * (and 32 only if you have a secondary microchannel
1777 * bus) */
1778 return;
1780 for_each_online_cpu(cpu) {
1781 unsigned long cpu_mask = 1 << cpu;
1783 if(cpu_mask & real_mask) {
1784 /* enable the interrupt for this cpu */
1785 cpu_irq_affinity[cpu] |= irq_mask;
1786 } else {
1787 /* disable the interrupt for this cpu */
1788 cpu_irq_affinity[cpu] &= ~irq_mask;
1791 /* this is magic, we now have the correct affinity maps, so
1792 * enable the interrupt. This will send an enable CPI to
1793 * those cpu's who need to enable it in their local masks,
1794 * causing them to correct for the new affinity . If the
1795 * interrupt is currently globally disabled, it will simply be
1796 * disabled again as it comes in (voyager lazy disable). If
1797 * the affinity map is tightened to disable the interrupt on a
1798 * cpu, it will be pushed off when it comes in */
1799 unmask_vic_irq(irq);
1802 static void
1803 ack_vic_irq(unsigned int irq)
1805 if (irq & 8) {
1806 outb(0x62,0x20); /* Specific EOI to cascade */
1807 outb(0x60|(irq & 7),0xA0);
1808 } else {
1809 outb(0x60 | (irq & 7),0x20);
1813 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1814 * but are not vectored by it. This means that the 8259 mask must be
1815 * lowered to receive them */
1816 static __init void
1817 vic_enable_cpi(void)
1819 __u8 cpu = smp_processor_id();
1821 /* just take a copy of the current mask (nop for boot cpu) */
1822 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1824 enable_local_vic_irq(VIC_CPI_LEVEL0);
1825 enable_local_vic_irq(VIC_CPI_LEVEL1);
1826 /* for sys int and cmn int */
1827 enable_local_vic_irq(7);
1829 if(is_cpu_quad()) {
1830 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1831 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1832 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1833 cpu, QIC_CPI_ENABLE));
1836 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1837 cpu, vic_irq_mask[cpu]));
1840 void
1841 voyager_smp_dump()
1843 int old_cpu = smp_processor_id(), cpu;
1845 /* dump the interrupt masks of each processor */
1846 for_each_online_cpu(cpu) {
1847 __u16 imr, isr, irr;
1848 unsigned long flags;
1850 local_irq_save(flags);
1851 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1852 imr = (inb(0xa1) << 8) | inb(0x21);
1853 outb(0x0a, 0xa0);
1854 irr = inb(0xa0) << 8;
1855 outb(0x0a, 0x20);
1856 irr |= inb(0x20);
1857 outb(0x0b, 0xa0);
1858 isr = inb(0xa0) << 8;
1859 outb(0x0b, 0x20);
1860 isr |= inb(0x20);
1861 outb(old_cpu, VIC_PROCESSOR_ID);
1862 local_irq_restore(flags);
1863 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1864 cpu, vic_irq_mask[cpu], imr, irr, isr);
1865 #if 0
1866 /* These lines are put in to try to unstick an un ack'd irq */
1867 if(isr != 0) {
1868 int irq;
1869 for(irq=0; irq<16; irq++) {
1870 if(isr & (1<<irq)) {
1871 printk("\tCPU%d: ack irq %d\n",
1872 cpu, irq);
1873 local_irq_save(flags);
1874 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1875 VIC_PROCESSOR_ID);
1876 ack_vic_irq(irq);
1877 outb(old_cpu, VIC_PROCESSOR_ID);
1878 local_irq_restore(flags);
1882 #endif
1886 void
1887 smp_voyager_power_off(void *dummy)
1889 if(smp_processor_id() == boot_cpu_id)
1890 voyager_power_off();
1891 else
1892 smp_stop_cpu_function(NULL);
1895 static void __init
1896 voyager_smp_prepare_cpus(unsigned int max_cpus)
1898 /* FIXME: ignore max_cpus for now */
1899 smp_boot_cpus();
1902 static void __devinit voyager_smp_prepare_boot_cpu(void)
1904 init_gdt(smp_processor_id());
1905 switch_to_new_gdt();
1907 cpu_set(smp_processor_id(), cpu_online_map);
1908 cpu_set(smp_processor_id(), cpu_callout_map);
1909 cpu_set(smp_processor_id(), cpu_possible_map);
1910 cpu_set(smp_processor_id(), cpu_present_map);
1913 static int __devinit
1914 voyager_cpu_up(unsigned int cpu)
1916 /* This only works at boot for x86. See "rewrite" above. */
1917 if (cpu_isset(cpu, smp_commenced_mask))
1918 return -ENOSYS;
1920 /* In case one didn't come up */
1921 if (!cpu_isset(cpu, cpu_callin_map))
1922 return -EIO;
1923 /* Unleash the CPU! */
1924 cpu_set(cpu, smp_commenced_mask);
1925 while (!cpu_isset(cpu, cpu_online_map))
1926 mb();
1927 return 0;
1930 static void __init
1931 voyager_smp_cpus_done(unsigned int max_cpus)
1933 zap_low_mappings();
1936 void __init
1937 smp_setup_processor_id(void)
1939 current_thread_info()->cpu = hard_smp_processor_id();
1940 x86_write_percpu(cpu_number, hard_smp_processor_id());
1943 struct smp_ops smp_ops = {
1944 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1945 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1946 .cpu_up = voyager_cpu_up,
1947 .smp_cpus_done = voyager_smp_cpus_done,
1949 .smp_send_stop = voyager_smp_send_stop,
1950 .smp_send_reschedule = voyager_smp_send_reschedule,
1951 .smp_call_function_mask = voyager_smp_call_function_mask,