allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
blob4ade55c5f33377eb5a5a89c82fc4b6648022aff6
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 2.00.00"
50 #include "powernow-k8.h"
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex);
55 static struct powernow_k8_data *powernow_data[NR_CPUS];
57 static int cpu_family = CPU_OPTERON;
59 #ifndef CONFIG_SMP
60 static cpumask_t cpu_core_map[1];
61 #endif
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
66 return 800 + (fid * 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32 find_khz_freq_from_fid(u32 fid)
73 return 1000 * find_freq_from_fid(fid);
76 /* Return a frequency in MHz, given an input fid and did */
77 static u32 find_freq_from_fiddid(u32 fid, u32 did)
79 return 100 * (fid + 0x10) >> did;
82 static u32 find_khz_freq_from_fiddid(u32 fid, u32 did)
84 return 1000 * find_freq_from_fiddid(fid, did);
87 static u32 find_fid_from_pstate(u32 pstate)
89 u32 hi, lo;
90 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
91 return lo & HW_PSTATE_FID_MASK;
94 static u32 find_did_from_pstate(u32 pstate)
96 u32 hi, lo;
97 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
98 return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
101 /* Return the vco fid for an input fid
103 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
104 * only from corresponding high fids. This returns "high" fid corresponding to
105 * "low" one.
107 static u32 convert_fid_to_vco_fid(u32 fid)
109 if (fid < HI_FID_TABLE_BOTTOM)
110 return 8 + (2 * fid);
111 else
112 return fid;
116 * Return 1 if the pending bit is set. Unless we just instructed the processor
117 * to transition to a new state, seeing this bit set is really bad news.
119 static int pending_bit_stuck(void)
121 u32 lo, hi;
123 if (cpu_family == CPU_HW_PSTATE)
124 return 0;
126 rdmsr(MSR_FIDVID_STATUS, lo, hi);
127 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
131 * Update the global current fid / vid values from the status msr.
132 * Returns 1 on error.
134 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
136 u32 lo, hi;
137 u32 i = 0;
139 if (cpu_family == CPU_HW_PSTATE) {
140 rdmsr(MSR_PSTATE_STATUS, lo, hi);
141 i = lo & HW_PSTATE_MASK;
142 rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi);
143 data->currfid = lo & HW_PSTATE_FID_MASK;
144 data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
145 return 0;
147 do {
148 if (i++ > 10000) {
149 dprintk("detected change pending stuck\n");
150 return 1;
152 rdmsr(MSR_FIDVID_STATUS, lo, hi);
153 } while (lo & MSR_S_LO_CHANGE_PENDING);
155 data->currvid = hi & MSR_S_HI_CURRENT_VID;
156 data->currfid = lo & MSR_S_LO_CURRENT_FID;
158 return 0;
161 /* the isochronous relief time */
162 static void count_off_irt(struct powernow_k8_data *data)
164 udelay((1 << data->irt) * 10);
165 return;
168 /* the voltage stabalization time */
169 static void count_off_vst(struct powernow_k8_data *data)
171 udelay(data->vstable * VST_UNITS_20US);
172 return;
175 /* need to init the control msr to a safe value (for each cpu) */
176 static void fidvid_msr_init(void)
178 u32 lo, hi;
179 u8 fid, vid;
181 rdmsr(MSR_FIDVID_STATUS, lo, hi);
182 vid = hi & MSR_S_HI_CURRENT_VID;
183 fid = lo & MSR_S_LO_CURRENT_FID;
184 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185 hi = MSR_C_HI_STP_GNT_BENIGN;
186 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187 wrmsr(MSR_FIDVID_CTL, lo, hi);
191 /* write the new fid value along with the other control fields to the msr */
192 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
194 u32 lo;
195 u32 savevid = data->currvid;
196 u32 i = 0;
198 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
199 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
200 return 1;
203 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
205 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
208 do {
209 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210 if (i++ > 100) {
211 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
212 return 1;
214 } while (query_current_values_with_pending_wait(data));
216 count_off_irt(data);
218 if (savevid != data->currvid) {
219 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
220 savevid, data->currvid);
221 return 1;
224 if (fid != data->currfid) {
225 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
226 data->currfid);
227 return 1;
230 return 0;
233 /* Write a new vid to the hardware */
234 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
236 u32 lo;
237 u32 savefid = data->currfid;
238 int i = 0;
240 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
241 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
242 return 1;
245 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid, lo, STOP_GRANT_5NS);
250 do {
251 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252 if (i++ > 100) {
253 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
254 return 1;
256 } while (query_current_values_with_pending_wait(data));
258 if (savefid != data->currfid) {
259 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
260 savefid, data->currfid);
261 return 1;
264 if (vid != data->currvid) {
265 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
266 data->currvid);
267 return 1;
270 return 0;
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
280 if ((data->currvid - reqvid) > step)
281 reqvid = data->currvid - step;
283 if (write_new_vid(data, reqvid))
284 return 1;
286 count_off_vst(data);
288 return 0;
291 /* Change hardware pstate by single MSR write */
292 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
294 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
295 data->currfid = find_fid_from_pstate(pstate);
296 return 0;
299 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
300 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
302 if (core_voltage_pre_transition(data, reqvid))
303 return 1;
305 if (core_frequency_transition(data, reqfid))
306 return 1;
308 if (core_voltage_post_transition(data, reqvid))
309 return 1;
311 if (query_current_values_with_pending_wait(data))
312 return 1;
314 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
315 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
316 smp_processor_id(),
317 reqfid, reqvid, data->currfid, data->currvid);
318 return 1;
321 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
322 smp_processor_id(), data->currfid, data->currvid);
324 return 0;
327 /* Phase 1 - core voltage transition ... setup voltage */
328 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
330 u32 rvosteps = data->rvo;
331 u32 savefid = data->currfid;
332 u32 maxvid, lo;
334 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
335 smp_processor_id(),
336 data->currfid, data->currvid, reqvid, data->rvo);
338 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
339 maxvid = 0x1f & (maxvid >> 16);
340 dprintk("ph1 maxvid=0x%x\n", maxvid);
341 if (reqvid < maxvid) /* lower numbers are higher voltages */
342 reqvid = maxvid;
344 while (data->currvid > reqvid) {
345 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
346 data->currvid, reqvid);
347 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
348 return 1;
351 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
352 if (data->currvid == maxvid) {
353 rvosteps = 0;
354 } else {
355 dprintk("ph1: changing vid for rvo, req 0x%x\n",
356 data->currvid - 1);
357 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
358 return 1;
359 rvosteps--;
363 if (query_current_values_with_pending_wait(data))
364 return 1;
366 if (savefid != data->currfid) {
367 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
368 return 1;
371 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
372 data->currfid, data->currvid);
374 return 0;
377 /* Phase 2 - core frequency transition */
378 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
380 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
382 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
383 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
384 reqfid, data->currfid);
385 return 1;
388 if (data->currfid == reqfid) {
389 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
390 return 0;
393 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
394 smp_processor_id(),
395 data->currfid, data->currvid, reqfid);
397 vcoreqfid = convert_fid_to_vco_fid(reqfid);
398 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
399 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
400 : vcoreqfid - vcocurrfid;
402 while (vcofiddiff > 2) {
403 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
405 if (reqfid > data->currfid) {
406 if (data->currfid > LO_FID_TABLE_TOP) {
407 if (write_new_fid(data, data->currfid + fid_interval)) {
408 return 1;
410 } else {
411 if (write_new_fid
412 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
413 return 1;
416 } else {
417 if (write_new_fid(data, data->currfid - fid_interval))
418 return 1;
421 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
422 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
423 : vcoreqfid - vcocurrfid;
426 if (write_new_fid(data, reqfid))
427 return 1;
429 if (query_current_values_with_pending_wait(data))
430 return 1;
432 if (data->currfid != reqfid) {
433 printk(KERN_ERR PFX
434 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
435 data->currfid, reqfid);
436 return 1;
439 if (savevid != data->currvid) {
440 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
441 savevid, data->currvid);
442 return 1;
445 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
446 data->currfid, data->currvid);
448 return 0;
451 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
452 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
454 u32 savefid = data->currfid;
455 u32 savereqvid = reqvid;
457 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
458 smp_processor_id(),
459 data->currfid, data->currvid);
461 if (reqvid != data->currvid) {
462 if (write_new_vid(data, reqvid))
463 return 1;
465 if (savefid != data->currfid) {
466 printk(KERN_ERR PFX
467 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
468 savefid, data->currfid);
469 return 1;
472 if (data->currvid != reqvid) {
473 printk(KERN_ERR PFX
474 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
475 reqvid, data->currvid);
476 return 1;
480 if (query_current_values_with_pending_wait(data))
481 return 1;
483 if (savereqvid != data->currvid) {
484 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
485 return 1;
488 if (savefid != data->currfid) {
489 dprintk("ph3 failed, currfid changed 0x%x\n",
490 data->currfid);
491 return 1;
494 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
495 data->currfid, data->currvid);
497 return 0;
500 static int check_supported_cpu(unsigned int cpu)
502 cpumask_t oldmask = CPU_MASK_ALL;
503 u32 eax, ebx, ecx, edx;
504 unsigned int rc = 0;
506 oldmask = current->cpus_allowed;
507 set_cpus_allowed(current, cpumask_of_cpu(cpu));
509 if (smp_processor_id() != cpu) {
510 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
511 goto out;
514 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
515 goto out;
517 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
518 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
519 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
520 goto out;
522 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
523 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
524 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
525 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
526 goto out;
529 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
530 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
531 printk(KERN_INFO PFX
532 "No frequency change capabilities detected\n");
533 goto out;
536 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
537 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
538 printk(KERN_INFO PFX "Power state transitions not supported\n");
539 goto out;
541 } else { /* must be a HW Pstate capable processor */
542 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
543 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
544 cpu_family = CPU_HW_PSTATE;
545 else
546 goto out;
549 rc = 1;
551 out:
552 set_cpus_allowed(current, oldmask);
553 return rc;
556 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
558 unsigned int j;
559 u8 lastfid = 0xff;
561 for (j = 0; j < data->numps; j++) {
562 if (pst[j].vid > LEAST_VID) {
563 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
564 return -EINVAL;
566 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
567 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
568 return -ENODEV;
570 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
571 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
572 return -ENODEV;
574 if (pst[j].fid > MAX_FID) {
575 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
576 return -ENODEV;
578 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
579 /* Only first fid is allowed to be in "low" range */
580 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
581 return -EINVAL;
583 if (pst[j].fid < lastfid)
584 lastfid = pst[j].fid;
586 if (lastfid & 1) {
587 printk(KERN_ERR BFX "lastfid invalid\n");
588 return -EINVAL;
590 if (lastfid > LO_FID_TABLE_TOP)
591 printk(KERN_INFO BFX "first fid not from lo freq table\n");
593 return 0;
596 static void print_basics(struct powernow_k8_data *data)
598 int j;
599 for (j = 0; j < data->numps; j++) {
600 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
601 if (cpu_family == CPU_HW_PSTATE) {
602 printk(KERN_INFO PFX " %d : fid 0x%x gid 0x%x (%d MHz)\n", j, (data->powernow_table[j].index & 0xff00) >> 8,
603 (data->powernow_table[j].index & 0xff0000) >> 16,
604 data->powernow_table[j].frequency/1000);
605 } else {
606 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n", j,
607 data->powernow_table[j].index & 0xff,
608 data->powernow_table[j].frequency/1000,
609 data->powernow_table[j].index >> 8);
613 if (data->batps)
614 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
617 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
619 struct cpufreq_frequency_table *powernow_table;
620 unsigned int j;
622 if (data->batps) { /* use ACPI support to get full speed on mains power */
623 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
624 data->numps = data->batps;
627 for ( j=1; j<data->numps; j++ ) {
628 if (pst[j-1].fid >= pst[j].fid) {
629 printk(KERN_ERR PFX "PST out of sequence\n");
630 return -EINVAL;
634 if (data->numps < 2) {
635 printk(KERN_ERR PFX "no p states to transition\n");
636 return -ENODEV;
639 if (check_pst_table(data, pst, maxvid))
640 return -EINVAL;
642 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
643 * (data->numps + 1)), GFP_KERNEL);
644 if (!powernow_table) {
645 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
646 return -ENOMEM;
649 for (j = 0; j < data->numps; j++) {
650 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
651 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
652 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
654 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
655 powernow_table[data->numps].index = 0;
657 if (query_current_values_with_pending_wait(data)) {
658 kfree(powernow_table);
659 return -EIO;
662 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
663 data->powernow_table = powernow_table;
664 if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
665 print_basics(data);
667 for (j = 0; j < data->numps; j++)
668 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
669 return 0;
671 dprintk("currfid/vid do not match PST, ignoring\n");
672 return 0;
675 /* Find and validate the PSB/PST table in BIOS. */
676 static int find_psb_table(struct powernow_k8_data *data)
678 struct psb_s *psb;
679 unsigned int i;
680 u32 mvs;
681 u8 maxvid;
682 u32 cpst = 0;
683 u32 thiscpuid;
685 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
686 /* Scan BIOS looking for the signature. */
687 /* It can not be at ffff0 - it is too big. */
689 psb = phys_to_virt(i);
690 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
691 continue;
693 dprintk("found PSB header at 0x%p\n", psb);
695 dprintk("table vers: 0x%x\n", psb->tableversion);
696 if (psb->tableversion != PSB_VERSION_1_4) {
697 printk(KERN_ERR BFX "PSB table is not v1.4\n");
698 return -ENODEV;
701 dprintk("flags: 0x%x\n", psb->flags1);
702 if (psb->flags1) {
703 printk(KERN_ERR BFX "unknown flags\n");
704 return -ENODEV;
707 data->vstable = psb->vstable;
708 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
710 dprintk("flags2: 0x%x\n", psb->flags2);
711 data->rvo = psb->flags2 & 3;
712 data->irt = ((psb->flags2) >> 2) & 3;
713 mvs = ((psb->flags2) >> 4) & 3;
714 data->vidmvs = 1 << mvs;
715 data->batps = ((psb->flags2) >> 6) & 3;
717 dprintk("ramp voltage offset: %d\n", data->rvo);
718 dprintk("isochronous relief time: %d\n", data->irt);
719 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
721 dprintk("numpst: 0x%x\n", psb->num_tables);
722 cpst = psb->num_tables;
723 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
724 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
725 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
726 cpst = 1;
729 if (cpst != 1) {
730 printk(KERN_ERR BFX "numpst must be 1\n");
731 return -ENODEV;
734 data->plllock = psb->plllocktime;
735 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
736 dprintk("maxfid: 0x%x\n", psb->maxfid);
737 dprintk("maxvid: 0x%x\n", psb->maxvid);
738 maxvid = psb->maxvid;
740 data->numps = psb->numps;
741 dprintk("numpstates: 0x%x\n", data->numps);
742 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
745 * If you see this message, complain to BIOS manufacturer. If
746 * he tells you "we do not support Linux" or some similar
747 * nonsense, remember that Windows 2000 uses the same legacy
748 * mechanism that the old Linux PSB driver uses. Tell them it
749 * is broken with Windows 2000.
751 * The reference to the AMD documentation is chapter 9 in the
752 * BIOS and Kernel Developer's Guide, which is available on
753 * www.amd.com
755 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
756 return -ENODEV;
759 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
760 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
762 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
763 return;
765 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
766 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
767 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
768 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
769 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
770 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
773 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
775 struct cpufreq_frequency_table *powernow_table;
776 int ret_val;
778 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
779 dprintk("register performance failed: bad ACPI data\n");
780 return -EIO;
783 /* verify the data contained in the ACPI structures */
784 if (data->acpi_data.state_count <= 1) {
785 dprintk("No ACPI P-States\n");
786 goto err_out;
789 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
790 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
791 dprintk("Invalid control/status registers (%x - %x)\n",
792 data->acpi_data.control_register.space_id,
793 data->acpi_data.status_register.space_id);
794 goto err_out;
797 /* fill in data->powernow_table */
798 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
799 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
800 if (!powernow_table) {
801 dprintk("powernow_table memory alloc failure\n");
802 goto err_out;
805 if (cpu_family == CPU_HW_PSTATE)
806 ret_val = fill_powernow_table_pstate(data, powernow_table);
807 else
808 ret_val = fill_powernow_table_fidvid(data, powernow_table);
809 if (ret_val)
810 goto err_out_mem;
812 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
813 powernow_table[data->acpi_data.state_count].index = 0;
814 data->powernow_table = powernow_table;
816 /* fill in data */
817 data->numps = data->acpi_data.state_count;
818 if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
819 print_basics(data);
820 powernow_k8_acpi_pst_values(data, 0);
822 /* notify BIOS that we exist */
823 acpi_processor_notify_smm(THIS_MODULE);
825 return 0;
827 err_out_mem:
828 kfree(powernow_table);
830 err_out:
831 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
833 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
834 data->acpi_data.state_count = 0;
836 return -ENODEV;
839 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
841 int i;
843 for (i = 0; i < data->acpi_data.state_count; i++) {
844 u32 index;
845 u32 hi = 0, lo = 0;
846 u32 fid;
847 u32 did;
849 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
850 if (index > MAX_HW_PSTATE) {
851 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
852 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
854 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
855 if (!(hi & HW_PSTATE_VALID_MASK)) {
856 dprintk("invalid pstate %d, ignoring\n", index);
857 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
858 continue;
861 fid = lo & HW_PSTATE_FID_MASK;
862 did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
864 dprintk(" %d : fid 0x%x, did 0x%x\n", index, fid, did);
866 powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT);
868 powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did);
870 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
871 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
872 powernow_table[i].frequency,
873 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
874 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
875 continue;
878 return 0;
881 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
883 int i;
884 int cntlofreq = 0;
885 for (i = 0; i < data->acpi_data.state_count; i++) {
886 u32 fid;
887 u32 vid;
889 if (data->exttype) {
890 fid = data->acpi_data.states[i].status & EXT_FID_MASK;
891 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
892 } else {
893 fid = data->acpi_data.states[i].control & FID_MASK;
894 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
897 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
899 powernow_table[i].index = fid; /* lower 8 bits */
900 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
901 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
903 /* verify frequency is OK */
904 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
905 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
906 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
907 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
908 continue;
911 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
912 if (vid == VID_OFF) {
913 dprintk("invalid vid %u, ignoring\n", vid);
914 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
915 continue;
918 /* verify only 1 entry from the lo frequency table */
919 if (fid < HI_FID_TABLE_BOTTOM) {
920 if (cntlofreq) {
921 /* if both entries are the same, ignore this one ... */
922 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
923 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
924 printk(KERN_ERR PFX "Too many lo freq table entries\n");
925 return 1;
928 dprintk("double low frequency table entry, ignoring it.\n");
929 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
930 continue;
931 } else
932 cntlofreq = i;
935 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
936 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
937 powernow_table[i].frequency,
938 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
939 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
940 continue;
943 return 0;
946 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
948 if (data->acpi_data.state_count)
949 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
952 #else
953 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
954 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
955 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
956 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
958 /* Take a frequency, and issue the fid/vid transition command */
959 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
961 u32 fid = 0;
962 u32 vid = 0;
963 int res, i;
964 struct cpufreq_freqs freqs;
966 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
968 /* fid/vid correctness check for k8 */
969 /* fid are the lower 8 bits of the index we stored into
970 * the cpufreq frequency table in find_psb_table, vid
971 * are the upper 8 bits.
973 fid = data->powernow_table[index].index & 0xFF;
974 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
976 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
978 if (query_current_values_with_pending_wait(data))
979 return 1;
981 if ((data->currvid == vid) && (data->currfid == fid)) {
982 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
983 fid, vid);
984 return 0;
987 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
988 printk(KERN_ERR PFX
989 "ignoring illegal change in lo freq table-%x to 0x%x\n",
990 data->currfid, fid);
991 return 1;
994 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
995 smp_processor_id(), fid, vid);
996 freqs.old = find_khz_freq_from_fid(data->currfid);
997 freqs.new = find_khz_freq_from_fid(fid);
999 for_each_cpu_mask(i, *(data->available_cores)) {
1000 freqs.cpu = i;
1001 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1004 res = transition_fid_vid(data, fid, vid);
1005 freqs.new = find_khz_freq_from_fid(data->currfid);
1007 for_each_cpu_mask(i, *(data->available_cores)) {
1008 freqs.cpu = i;
1009 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1011 return res;
1014 /* Take a frequency, and issue the hardware pstate transition command */
1015 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1017 u32 fid = 0;
1018 u32 did = 0;
1019 u32 pstate = 0;
1020 int res, i;
1021 struct cpufreq_freqs freqs;
1023 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1025 /* get fid did for hardware pstate transition */
1026 pstate = index & HW_PSTATE_MASK;
1027 if (pstate > MAX_HW_PSTATE)
1028 return 0;
1029 fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT;
1030 did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT;
1031 freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1032 freqs.new = find_khz_freq_from_fiddid(fid, did);
1034 for_each_cpu_mask(i, *(data->available_cores)) {
1035 freqs.cpu = i;
1036 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1039 res = transition_pstate(data, pstate);
1040 data->currfid = find_fid_from_pstate(pstate);
1041 data->currdid = find_did_from_pstate(pstate);
1042 freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1044 for_each_cpu_mask(i, *(data->available_cores)) {
1045 freqs.cpu = i;
1046 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1048 return res;
1051 /* Driver entry point to switch to the target frequency */
1052 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1054 cpumask_t oldmask = CPU_MASK_ALL;
1055 struct powernow_k8_data *data = powernow_data[pol->cpu];
1056 u32 checkfid;
1057 u32 checkvid;
1058 unsigned int newstate;
1059 int ret = -EIO;
1061 if (!data)
1062 return -EINVAL;
1064 checkfid = data->currfid;
1065 checkvid = data->currvid;
1067 /* only run on specific CPU from here on */
1068 oldmask = current->cpus_allowed;
1069 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1071 if (smp_processor_id() != pol->cpu) {
1072 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1073 goto err_out;
1076 if (pending_bit_stuck()) {
1077 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1078 goto err_out;
1081 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1082 pol->cpu, targfreq, pol->min, pol->max, relation);
1084 if (query_current_values_with_pending_wait(data))
1085 goto err_out;
1087 if (cpu_family == CPU_HW_PSTATE)
1088 dprintk("targ: curr fid 0x%x, did 0x%x\n",
1089 data->currfid, data->currvid);
1090 else {
1091 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1092 data->currfid, data->currvid);
1094 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1095 printk(KERN_INFO PFX
1096 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1097 checkfid, data->currfid, checkvid, data->currvid);
1101 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1102 goto err_out;
1104 mutex_lock(&fidvid_mutex);
1106 powernow_k8_acpi_pst_values(data, newstate);
1108 if (cpu_family == CPU_HW_PSTATE)
1109 ret = transition_frequency_pstate(data, newstate);
1110 else
1111 ret = transition_frequency_fidvid(data, newstate);
1112 if (ret) {
1113 printk(KERN_ERR PFX "transition frequency failed\n");
1114 ret = 1;
1115 mutex_unlock(&fidvid_mutex);
1116 goto err_out;
1118 mutex_unlock(&fidvid_mutex);
1120 if (cpu_family == CPU_HW_PSTATE)
1121 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1122 else
1123 pol->cur = find_khz_freq_from_fid(data->currfid);
1124 ret = 0;
1126 err_out:
1127 set_cpus_allowed(current, oldmask);
1128 return ret;
1131 /* Driver entry point to verify the policy and range of frequencies */
1132 static int powernowk8_verify(struct cpufreq_policy *pol)
1134 struct powernow_k8_data *data = powernow_data[pol->cpu];
1136 if (!data)
1137 return -EINVAL;
1139 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1142 /* per CPU init entry point to the driver */
1143 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1145 struct powernow_k8_data *data;
1146 cpumask_t oldmask = CPU_MASK_ALL;
1147 int rc;
1149 if (!cpu_online(pol->cpu))
1150 return -ENODEV;
1152 if (!check_supported_cpu(pol->cpu))
1153 return -ENODEV;
1155 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1156 if (!data) {
1157 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1158 return -ENOMEM;
1161 data->cpu = pol->cpu;
1163 if (powernow_k8_cpu_init_acpi(data)) {
1165 * Use the PSB BIOS structure. This is only availabe on
1166 * an UP version, and is deprecated by AMD.
1168 if (num_online_cpus() != 1) {
1169 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1170 kfree(data);
1171 return -ENODEV;
1173 if (pol->cpu != 0) {
1174 printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n");
1175 kfree(data);
1176 return -ENODEV;
1178 rc = find_psb_table(data);
1179 if (rc) {
1180 kfree(data);
1181 return -ENODEV;
1185 /* only run on specific CPU from here on */
1186 oldmask = current->cpus_allowed;
1187 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1189 if (smp_processor_id() != pol->cpu) {
1190 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1191 goto err_out;
1194 if (pending_bit_stuck()) {
1195 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1196 goto err_out;
1199 if (query_current_values_with_pending_wait(data))
1200 goto err_out;
1202 if (cpu_family == CPU_OPTERON)
1203 fidvid_msr_init();
1205 /* run on any CPU again */
1206 set_cpus_allowed(current, oldmask);
1208 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1209 if (cpu_family == CPU_HW_PSTATE)
1210 pol->cpus = cpumask_of_cpu(pol->cpu);
1211 else
1212 pol->cpus = cpu_core_map[pol->cpu];
1213 data->available_cores = &(pol->cpus);
1215 /* Take a crude guess here.
1216 * That guess was in microseconds, so multiply with 1000 */
1217 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1218 + (3 * (1 << data->irt) * 10)) * 1000;
1220 if (cpu_family == CPU_HW_PSTATE)
1221 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1222 else
1223 pol->cur = find_khz_freq_from_fid(data->currfid);
1224 dprintk("policy current frequency %d kHz\n", pol->cur);
1226 /* min/max the cpu is capable of */
1227 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1228 printk(KERN_ERR PFX "invalid powernow_table\n");
1229 powernow_k8_cpu_exit_acpi(data);
1230 kfree(data->powernow_table);
1231 kfree(data);
1232 return -EINVAL;
1235 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1237 if (cpu_family == CPU_HW_PSTATE)
1238 dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
1239 data->currfid, data->currdid);
1240 else
1241 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1242 data->currfid, data->currvid);
1244 powernow_data[pol->cpu] = data;
1246 return 0;
1248 err_out:
1249 set_cpus_allowed(current, oldmask);
1250 powernow_k8_cpu_exit_acpi(data);
1252 kfree(data);
1253 return -ENODEV;
1256 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1258 struct powernow_k8_data *data = powernow_data[pol->cpu];
1260 if (!data)
1261 return -EINVAL;
1263 powernow_k8_cpu_exit_acpi(data);
1265 cpufreq_frequency_table_put_attr(pol->cpu);
1267 kfree(data->powernow_table);
1268 kfree(data);
1270 return 0;
1273 static unsigned int powernowk8_get (unsigned int cpu)
1275 struct powernow_k8_data *data;
1276 cpumask_t oldmask = current->cpus_allowed;
1277 unsigned int khz = 0;
1279 data = powernow_data[first_cpu(cpu_core_map[cpu])];
1281 if (!data)
1282 return -EINVAL;
1284 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1285 if (smp_processor_id() != cpu) {
1286 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1287 set_cpus_allowed(current, oldmask);
1288 return 0;
1291 if (query_current_values_with_pending_wait(data))
1292 goto out;
1294 if (cpu_family == CPU_HW_PSTATE)
1295 khz = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1296 else
1297 khz = find_khz_freq_from_fid(data->currfid);
1300 out:
1301 set_cpus_allowed(current, oldmask);
1302 return khz;
1305 static struct freq_attr* powernow_k8_attr[] = {
1306 &cpufreq_freq_attr_scaling_available_freqs,
1307 NULL,
1310 static struct cpufreq_driver cpufreq_amd64_driver = {
1311 .verify = powernowk8_verify,
1312 .target = powernowk8_target,
1313 .init = powernowk8_cpu_init,
1314 .exit = __devexit_p(powernowk8_cpu_exit),
1315 .get = powernowk8_get,
1316 .name = "powernow-k8",
1317 .owner = THIS_MODULE,
1318 .attr = powernow_k8_attr,
1321 /* driver entry point for init */
1322 static int __cpuinit powernowk8_init(void)
1324 unsigned int i, supported_cpus = 0;
1326 for_each_online_cpu(i) {
1327 if (check_supported_cpu(i))
1328 supported_cpus++;
1331 if (supported_cpus == num_online_cpus()) {
1332 printk(KERN_INFO PFX "Found %d %s "
1333 "processors (" VERSION ")\n", supported_cpus,
1334 boot_cpu_data.x86_model_id);
1335 return cpufreq_register_driver(&cpufreq_amd64_driver);
1338 return -ENODEV;
1341 /* driver entry point for term */
1342 static void __exit powernowk8_exit(void)
1344 dprintk("exit\n");
1346 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1349 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1350 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1351 MODULE_LICENSE("GPL");
1353 late_initcall(powernowk8_init);
1354 module_exit(powernowk8_exit);