allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / arm / mach-integrator / core.c
blobe9c82deb791d30beb1a99aa043072329361c793c
1 /*
2 * linux/arch/arm/mach-integrator/core.c
4 * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2, as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/termios.h>
20 #include <linux/amba/bus.h>
21 #include <linux/amba/serial.h>
23 #include <asm/hardware.h>
24 #include <asm/irq.h>
25 #include <asm/io.h>
26 #include <asm/hardware/arm_timer.h>
27 #include <asm/arch/cm.h>
28 #include <asm/system.h>
29 #include <asm/leds.h>
30 #include <asm/mach/time.h>
32 #include "common.h"
34 static struct amba_pl010_data integrator_uart_data;
36 static struct amba_device rtc_device = {
37 .dev = {
38 .bus_id = "mb:15",
40 .res = {
41 .start = INTEGRATOR_RTC_BASE,
42 .end = INTEGRATOR_RTC_BASE + SZ_4K - 1,
43 .flags = IORESOURCE_MEM,
45 .irq = { IRQ_RTCINT, NO_IRQ },
46 .periphid = 0x00041030,
49 static struct amba_device uart0_device = {
50 .dev = {
51 .bus_id = "mb:16",
52 .platform_data = &integrator_uart_data,
54 .res = {
55 .start = INTEGRATOR_UART0_BASE,
56 .end = INTEGRATOR_UART0_BASE + SZ_4K - 1,
57 .flags = IORESOURCE_MEM,
59 .irq = { IRQ_UARTINT0, NO_IRQ },
60 .periphid = 0x0041010,
63 static struct amba_device uart1_device = {
64 .dev = {
65 .bus_id = "mb:17",
66 .platform_data = &integrator_uart_data,
68 .res = {
69 .start = INTEGRATOR_UART1_BASE,
70 .end = INTEGRATOR_UART1_BASE + SZ_4K - 1,
71 .flags = IORESOURCE_MEM,
73 .irq = { IRQ_UARTINT1, NO_IRQ },
74 .periphid = 0x0041010,
77 static struct amba_device kmi0_device = {
78 .dev = {
79 .bus_id = "mb:18",
81 .res = {
82 .start = KMI0_BASE,
83 .end = KMI0_BASE + SZ_4K - 1,
84 .flags = IORESOURCE_MEM,
86 .irq = { IRQ_KMIINT0, NO_IRQ },
87 .periphid = 0x00041050,
90 static struct amba_device kmi1_device = {
91 .dev = {
92 .bus_id = "mb:19",
94 .res = {
95 .start = KMI1_BASE,
96 .end = KMI1_BASE + SZ_4K - 1,
97 .flags = IORESOURCE_MEM,
99 .irq = { IRQ_KMIINT1, NO_IRQ },
100 .periphid = 0x00041050,
103 static struct amba_device *amba_devs[] __initdata = {
104 &rtc_device,
105 &uart0_device,
106 &uart1_device,
107 &kmi0_device,
108 &kmi1_device,
111 static int __init integrator_init(void)
113 int i;
115 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
116 struct amba_device *d = amba_devs[i];
117 amba_device_register(d, &iomem_resource);
120 return 0;
123 arch_initcall(integrator_init);
126 * On the Integrator platform, the port RTS and DTR are provided by
127 * bits in the following SC_CTRLS register bits:
128 * RTS DTR
129 * UART0 7 6
130 * UART1 5 4
132 #define SC_CTRLC (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLC_OFFSET)
133 #define SC_CTRLS (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLS_OFFSET)
135 static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl)
137 unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask;
139 if (dev == &uart0_device) {
140 rts_mask = 1 << 4;
141 dtr_mask = 1 << 5;
142 } else {
143 rts_mask = 1 << 6;
144 dtr_mask = 1 << 7;
147 if (mctrl & TIOCM_RTS)
148 ctrlc |= rts_mask;
149 else
150 ctrls |= rts_mask;
152 if (mctrl & TIOCM_DTR)
153 ctrlc |= dtr_mask;
154 else
155 ctrls |= dtr_mask;
157 __raw_writel(ctrls, SC_CTRLS);
158 __raw_writel(ctrlc, SC_CTRLC);
161 static struct amba_pl010_data integrator_uart_data = {
162 .set_mctrl = integrator_uart_set_mctrl,
165 #define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_BASE) + INTEGRATOR_HDR_CTRL_OFFSET
167 static DEFINE_SPINLOCK(cm_lock);
170 * cm_control - update the CM_CTRL register.
171 * @mask: bits to change
172 * @set: bits to set
174 void cm_control(u32 mask, u32 set)
176 unsigned long flags;
177 u32 val;
179 spin_lock_irqsave(&cm_lock, flags);
180 val = readl(CM_CTRL) & ~mask;
181 writel(val | set, CM_CTRL);
182 spin_unlock_irqrestore(&cm_lock, flags);
185 EXPORT_SYMBOL(cm_control);
188 * Where is the timer (VA)?
190 #define TIMER0_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000000)
191 #define TIMER1_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000100)
192 #define TIMER2_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000200)
193 #define VA_IC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE)
196 * How long is the timer interval?
198 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
199 #if TIMER_INTERVAL >= 0x100000
200 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
201 #elif TIMER_INTERVAL >= 0x10000
202 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
203 #else
204 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
205 #endif
207 static unsigned long timer_reload;
210 * Returns number of ms since last clock interrupt. Note that interrupts
211 * will have been disabled by do_gettimeoffset()
213 unsigned long integrator_gettimeoffset(void)
215 unsigned long ticks1, ticks2, status;
218 * Get the current number of ticks. Note that there is a race
219 * condition between us reading the timer and checking for
220 * an interrupt. We get around this by ensuring that the
221 * counter has not reloaded between our two reads.
223 ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
224 do {
225 ticks1 = ticks2;
226 status = __raw_readl(VA_IC_BASE + IRQ_RAW_STATUS);
227 ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
228 } while (ticks2 > ticks1);
231 * Number of ticks since last interrupt.
233 ticks1 = timer_reload - ticks2;
236 * Interrupt pending? If so, we've reloaded once already.
238 if (status & (1 << IRQ_TIMERINT1))
239 ticks1 += timer_reload;
242 * Convert the ticks to usecs
244 return TICKS2USECS(ticks1);
248 * IRQ handler for the timer
250 static irqreturn_t
251 integrator_timer_interrupt(int irq, void *dev_id)
253 write_seqlock(&xtime_lock);
256 * clear the interrupt
258 writel(1, TIMER1_VA_BASE + TIMER_INTCLR);
260 timer_tick();
262 write_sequnlock(&xtime_lock);
264 return IRQ_HANDLED;
267 static struct irqaction integrator_timer_irq = {
268 .name = "Integrator Timer Tick",
269 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
270 .handler = integrator_timer_interrupt,
274 * Set up timer interrupt, and return the current time in seconds.
276 void __init integrator_time_init(unsigned long reload, unsigned int ctrl)
278 unsigned int timer_ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
280 timer_reload = reload;
281 timer_ctrl |= ctrl;
283 if (timer_reload > 0x100000) {
284 timer_reload >>= 8;
285 timer_ctrl |= TIMER_CTRL_DIV256;
286 } else if (timer_reload > 0x010000) {
287 timer_reload >>= 4;
288 timer_ctrl |= TIMER_CTRL_DIV16;
292 * Initialise to a known state (all timers off)
294 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
295 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
296 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
298 writel(timer_reload, TIMER1_VA_BASE + TIMER_LOAD);
299 writel(timer_reload, TIMER1_VA_BASE + TIMER_VALUE);
300 writel(timer_ctrl, TIMER1_VA_BASE + TIMER_CTRL);
303 * Make irqs happen for the system timer
305 setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);