RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / toolchains / hndtools-arm-linux-2.6.36-uclibc-4.5.3 / lib / gcc / arm-brcm-linux-uclibcgnueabi / 4.5.3 / plugin / include / vec.h
blob8cb9c5871b645f92d32c06dbd6f1790e88081226
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Nathan Sidwell <nathan@codesourcery.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* The macros here implement a set of templated vector types and
26 associated interfaces. These templates are implemented with
27 macros, as we're not in C++ land. The interface functions are
28 typesafe and use static inline functions, sometimes backed by
29 out-of-line generic functions. The vectors are designed to
30 interoperate with the GTY machinery.
32 Because of the different behavior of structure objects, scalar
33 objects and of pointers, there are three flavors, one for each of
34 these variants. Both the structure object and pointer variants
35 pass pointers to objects around -- in the former case the pointers
36 are stored into the vector and in the latter case the pointers are
37 dereferenced and the objects copied into the vector. The scalar
38 object variant is suitable for int-like objects, and the vector
39 elements are returned by value.
41 There are both 'index' and 'iterate' accessors. The iterator
42 returns a boolean iteration condition and updates the iteration
43 variable passed by reference. Because the iterator will be
44 inlined, the address-of can be optimized away.
46 The vectors are implemented using the trailing array idiom, thus
47 they are not resizeable without changing the address of the vector
48 object itself. This means you cannot have variables or fields of
49 vector type -- always use a pointer to a vector. The one exception
50 is the final field of a structure, which could be a vector type.
51 You will have to use the embedded_size & embedded_init calls to
52 create such objects, and they will probably not be resizeable (so
53 don't use the 'safe' allocation variants). The trailing array
54 idiom is used (rather than a pointer to an array of data), because,
55 if we allow NULL to also represent an empty vector, empty vectors
56 occupy minimal space in the structure containing them.
58 Each operation that increases the number of active elements is
59 available in 'quick' and 'safe' variants. The former presumes that
60 there is sufficient allocated space for the operation to succeed
61 (it dies if there is not). The latter will reallocate the
62 vector, if needed. Reallocation causes an exponential increase in
63 vector size. If you know you will be adding N elements, it would
64 be more efficient to use the reserve operation before adding the
65 elements with the 'quick' operation. This will ensure there are at
66 least as many elements as you ask for, it will exponentially
67 increase if there are too few spare slots. If you want reserve a
68 specific number of slots, but do not want the exponential increase
69 (for instance, you know this is the last allocation), use the
70 reserve_exact operation. You can also create a vector of a
71 specific size from the get go.
73 You should prefer the push and pop operations, as they append and
74 remove from the end of the vector. If you need to remove several
75 items in one go, use the truncate operation. The insert and remove
76 operations allow you to change elements in the middle of the
77 vector. There are two remove operations, one which preserves the
78 element ordering 'ordered_remove', and one which does not
79 'unordered_remove'. The latter function copies the end element
80 into the removed slot, rather than invoke a memmove operation. The
81 'lower_bound' function will determine where to place an item in the
82 array using insert that will maintain sorted order.
84 When a vector type is defined, first a non-memory managed version
85 is created. You can then define either or both garbage collected
86 and heap allocated versions. The allocation mechanism is specified
87 when the type is defined, and is therefore part of the type. If
88 you need both gc'd and heap allocated versions, you still must have
89 *exactly* one definition of the common non-memory managed base vector.
91 If you need to directly manipulate a vector, then the 'address'
92 accessor will return the address of the start of the vector. Also
93 the 'space' predicate will tell you whether there is spare capacity
94 in the vector. You will not normally need to use these two functions.
96 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97 get the non-memory allocation version, and then a
98 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99 vectors. Variables of vector type are declared using a
100 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
101 allocation strategy, and can be either 'gc' or 'heap' for garbage
102 collected and heap allocated respectively. It can be 'none' to get
103 a vector that must be explicitly allocated (for instance as a
104 trailing array of another structure). The characters O, P and I
105 indicate whether TYPEDEF is a pointer (P), object (O) or integral
106 (I) type. Be careful to pick the correct one, as you'll get an
107 awkward and inefficient API if you use the wrong one. There is a
108 check, which results in a compile-time warning, for the P and I
109 versions, but there is no check for the O versions, as that is not
110 possible in plain C. Due to the way GTY works, you must annotate
111 any structures you wish to insert or reference from a vector with a
112 GTY(()) tag. You need to do this even if you never declare the GC
113 allocated variants.
115 An example of their use would be,
117 DEF_VEC_P(tree); // non-managed tree vector.
118 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
119 // appear at file scope.
121 struct my_struct {
122 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
125 struct my_struct *s;
127 if (VEC_length(tree,s->v)) { we have some contents }
128 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130 { do something with elt }
134 /* Macros to invoke API calls. A single macro works for both pointer
135 and object vectors, but the argument and return types might well be
136 different. In each macro, T is the typedef of the vector elements,
137 and A is the allocation strategy. The allocation strategy is only
138 present when it is required. Some of these macros pass the vector,
139 V, by reference (by taking its address), this is noted in the
140 descriptions. */
142 /* Length of vector
143 unsigned VEC_T_length(const VEC(T) *v);
145 Return the number of active elements in V. V can be NULL, in which
146 case zero is returned. */
148 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
151 /* Check if vector is empty
152 int VEC_T_empty(const VEC(T) *v);
154 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
156 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
159 /* Get the final element of the vector.
160 T VEC_T_last(VEC(T) *v); // Integer
161 T VEC_T_last(VEC(T) *v); // Pointer
162 T *VEC_T_last(VEC(T) *v); // Object
164 Return the final element. V must not be empty. */
166 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
168 /* Index into vector
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
173 Return the IX'th element. If IX must be in the domain of V. */
175 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
177 /* Iterate over vector
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
182 Return iteration condition and update PTR to point to the IX'th
183 element. At the end of iteration, sets PTR to NULL. Use this to
184 iterate over the elements of a vector as follows,
186 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187 continue; */
189 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
191 /* Allocate new vector.
192 VEC(T,A) *VEC_T_A_alloc(int reserve);
194 Allocate a new vector with space for RESERVE objects. If RESERVE
195 is zero, NO vector is created. */
197 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
199 /* Free a vector.
200 void VEC_T_A_free(VEC(T,A) *&);
202 Free a vector and set it to NULL. */
204 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
206 /* Use these to determine the required size and initialization of a
207 vector embedded within another structure (as the final member).
209 size_t VEC_T_embedded_size(int reserve);
210 void VEC_T_embedded_init(VEC(T) *v, int reserve);
212 These allow the caller to perform the memory allocation. */
214 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
215 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
217 /* Copy a vector.
218 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
220 Copy the live elements of a vector into a new vector. The new and
221 old vectors need not be allocated by the same mechanism. */
223 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
225 /* Determine if a vector has additional capacity.
227 int VEC_T_space (VEC(T) *v,int reserve)
229 If V has space for RESERVE additional entries, return nonzero. You
230 usually only need to use this if you are doing your own vector
231 reallocation, for instance on an embedded vector. This returns
232 nonzero in exactly the same circumstances that VEC_T_reserve
233 will. */
235 #define VEC_space(T,V,R) \
236 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
238 /* Reserve space.
239 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
241 Ensure that V has at least RESERVE slots available. This will
242 create additional headroom. Note this can cause V to be
243 reallocated. Returns nonzero iff reallocation actually
244 occurred. */
246 #define VEC_reserve(T,A,V,R) \
247 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
249 /* Reserve space exactly.
250 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
252 Ensure that V has at least RESERVE slots available. This will not
253 create additional headroom. Note this can cause V to be
254 reallocated. Returns nonzero iff reallocation actually
255 occurred. */
257 #define VEC_reserve_exact(T,A,V,R) \
258 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
260 /* Push object with no reallocation
261 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
262 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
263 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
265 Push a new element onto the end, returns a pointer to the slot
266 filled in. For object vectors, the new value can be NULL, in which
267 case NO initialization is performed. There must
268 be sufficient space in the vector. */
270 #define VEC_quick_push(T,V,O) \
271 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
273 /* Push object with reallocation
274 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
275 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
276 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
278 Push a new element onto the end, returns a pointer to the slot
279 filled in. For object vectors, the new value can be NULL, in which
280 case NO initialization is performed. Reallocates V, if needed. */
282 #define VEC_safe_push(T,A,V,O) \
283 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
285 /* Pop element off end
286 T VEC_T_pop (VEC(T) *v); // Integer
287 T VEC_T_pop (VEC(T) *v); // Pointer
288 void VEC_T_pop (VEC(T) *v); // Object
290 Pop the last element off the end. Returns the element popped, for
291 pointer vectors. */
293 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
295 /* Truncate to specific length
296 void VEC_T_truncate (VEC(T) *v, unsigned len);
298 Set the length as specified. The new length must be less than or
299 equal to the current length. This is an O(1) operation. */
301 #define VEC_truncate(T,V,I) \
302 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
304 /* Grow to a specific length.
305 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
307 Grow the vector to a specific length. The LEN must be as
308 long or longer than the current length. The new elements are
309 uninitialized. */
311 #define VEC_safe_grow(T,A,V,I) \
312 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
314 /* Grow to a specific length.
315 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
317 Grow the vector to a specific length. The LEN must be as
318 long or longer than the current length. The new elements are
319 initialized to zero. */
321 #define VEC_safe_grow_cleared(T,A,V,I) \
322 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
324 /* Replace element
325 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
326 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
327 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
329 Replace the IXth element of V with a new value, VAL. For pointer
330 vectors returns the original value. For object vectors returns a
331 pointer to the new value. For object vectors the new value can be
332 NULL, in which case no overwriting of the slot is actually
333 performed. */
335 #define VEC_replace(T,V,I,O) \
336 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
338 /* Insert object with no reallocation
339 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
340 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
341 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
343 Insert an element, VAL, at the IXth position of V. Return a pointer
344 to the slot created. For vectors of object, the new value can be
345 NULL, in which case no initialization of the inserted slot takes
346 place. There must be sufficient space. */
348 #define VEC_quick_insert(T,V,I,O) \
349 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
351 /* Insert object with reallocation
352 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
353 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
354 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
356 Insert an element, VAL, at the IXth position of V. Return a pointer
357 to the slot created. For vectors of object, the new value can be
358 NULL, in which case no initialization of the inserted slot takes
359 place. Reallocate V, if necessary. */
361 #define VEC_safe_insert(T,A,V,I,O) \
362 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
364 /* Remove element retaining order
365 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
366 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
367 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
369 Remove an element from the IXth position of V. Ordering of
370 remaining elements is preserved. For pointer vectors returns the
371 removed object. This is an O(N) operation due to a memmove. */
373 #define VEC_ordered_remove(T,V,I) \
374 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
376 /* Remove element destroying order
377 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
378 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
379 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
381 Remove an element from the IXth position of V. Ordering of
382 remaining elements is destroyed. For pointer vectors returns the
383 removed object. This is an O(1) operation. */
385 #define VEC_unordered_remove(T,V,I) \
386 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
388 /* Remove a block of elements
389 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
391 Remove LEN elements starting at the IXth. Ordering is retained.
392 This is an O(1) operation. */
394 #define VEC_block_remove(T,V,I,L) \
395 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
397 /* Get the address of the array of elements
398 T *VEC_T_address (VEC(T) v)
400 If you need to directly manipulate the array (for instance, you
401 want to feed it to qsort), use this accessor. */
403 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
405 /* Find the first index in the vector not less than the object.
406 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
407 bool (*lessthan) (const T, const T)); // Integer
408 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
409 bool (*lessthan) (const T, const T)); // Pointer
410 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
411 bool (*lessthan) (const T*, const T*)); // Object
413 Find the first position in which VAL could be inserted without
414 changing the ordering of V. LESSTHAN is a function that returns
415 true if the first argument is strictly less than the second. */
417 #define VEC_lower_bound(T,V,O,LT) \
418 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
420 /* Reallocate an array of elements with prefix. */
421 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
422 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
423 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
424 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
425 MEM_STAT_DECL);
426 extern void ggc_free (void *);
427 #define vec_gc_free(V) ggc_free (V)
428 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
429 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
430 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
431 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
432 MEM_STAT_DECL);
433 extern void dump_vec_loc_statistics (void);
434 #ifdef GATHER_STATISTICS
435 void vec_heap_free (void *);
436 #else
437 #define vec_heap_free(V) free (V)
438 #endif
440 #if ENABLE_CHECKING
441 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
442 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
443 #define VEC_CHECK_PASS ,file_,line_,function_
445 #define VEC_ASSERT(EXPR,OP,T,A) \
446 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
448 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
449 ATTRIBUTE_NORETURN;
450 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
451 #else
452 #define VEC_CHECK_INFO
453 #define VEC_CHECK_DECL
454 #define VEC_CHECK_PASS
455 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
456 #endif
458 /* Note: gengtype has hardwired knowledge of the expansions of the
459 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the
460 expansions of these macros you may need to change gengtype too. */
462 #define VEC(T,A) VEC_##T##_##A
463 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
465 /* Base of vector type, not user visible. */
466 #define VEC_T(T,B) \
467 typedef struct VEC(T,B) \
469 unsigned num; \
470 unsigned alloc; \
471 T vec[1]; \
472 } VEC(T,B)
474 #define VEC_T_GTY(T,B) \
475 typedef struct GTY(()) VEC(T,B) \
477 unsigned num; \
478 unsigned alloc; \
479 T GTY ((length ("%h.num"))) vec[1]; \
480 } VEC(T,B)
482 /* Derived vector type, user visible. */
483 #define VEC_TA_GTY(T,B,A,GTY) \
484 typedef struct GTY VEC(T,A) \
486 VEC(T,B) base; \
487 } VEC(T,A)
489 #define VEC_TA(T,B,A) \
490 typedef struct VEC(T,A) \
492 VEC(T,B) base; \
493 } VEC(T,A)
495 /* Convert to base type. */
496 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
498 /* Vector of integer-like object. */
499 #define DEF_VEC_I(T) \
500 static inline void VEC_OP (T,must_be,integral_type) (void) \
502 (void)~(T)0; \
505 VEC_T(T,base); \
506 VEC_TA(T,base,none); \
507 DEF_VEC_FUNC_P(T) \
508 struct vec_swallow_trailing_semi
509 #define DEF_VEC_ALLOC_I(T,A) \
510 VEC_TA(T,base,A); \
511 DEF_VEC_ALLOC_FUNC_I(T,A) \
512 DEF_VEC_NONALLOC_FUNCS_I(T,A) \
513 struct vec_swallow_trailing_semi
515 /* Vector of pointer to object. */
516 #define DEF_VEC_P(T) \
517 static inline void VEC_OP (T,must_be,pointer_type) (void) \
519 (void)((T)1 == (void *)1); \
522 VEC_T_GTY(T,base); \
523 VEC_TA(T,base,none); \
524 DEF_VEC_FUNC_P(T) \
525 struct vec_swallow_trailing_semi
526 #define DEF_VEC_ALLOC_P(T,A) \
527 VEC_TA(T,base,A); \
528 DEF_VEC_ALLOC_FUNC_P(T,A) \
529 DEF_VEC_NONALLOC_FUNCS_P(T,A) \
530 struct vec_swallow_trailing_semi
532 #define DEF_VEC_FUNC_P(T) \
533 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
535 return vec_ ? vec_->num : 0; \
538 static inline T VEC_OP (T,base,last) \
539 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
541 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
543 return vec_->vec[vec_->num - 1]; \
546 static inline T VEC_OP (T,base,index) \
547 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
549 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
551 return vec_->vec[ix_]; \
554 static inline int VEC_OP (T,base,iterate) \
555 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
557 if (vec_ && ix_ < vec_->num) \
559 *ptr = vec_->vec[ix_]; \
560 return 1; \
562 else \
564 *ptr = (T) 0; \
565 return 0; \
569 static inline size_t VEC_OP (T,base,embedded_size) \
570 (int alloc_) \
572 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
575 static inline void VEC_OP (T,base,embedded_init) \
576 (VEC(T,base) *vec_, int alloc_) \
578 vec_->num = 0; \
579 vec_->alloc = alloc_; \
582 static inline int VEC_OP (T,base,space) \
583 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
585 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
586 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
589 static inline T *VEC_OP (T,base,quick_push) \
590 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
592 T *slot_; \
594 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
595 slot_ = &vec_->vec[vec_->num++]; \
596 *slot_ = obj_; \
598 return slot_; \
601 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
603 T obj_; \
605 VEC_ASSERT (vec_->num, "pop", T, base); \
606 obj_ = vec_->vec[--vec_->num]; \
608 return obj_; \
611 static inline void VEC_OP (T,base,truncate) \
612 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
614 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
615 if (vec_) \
616 vec_->num = size_; \
619 static inline T VEC_OP (T,base,replace) \
620 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
622 T old_obj_; \
624 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
625 old_obj_ = vec_->vec[ix_]; \
626 vec_->vec[ix_] = obj_; \
628 return old_obj_; \
631 static inline T *VEC_OP (T,base,quick_insert) \
632 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
634 T *slot_; \
636 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
637 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
638 slot_ = &vec_->vec[ix_]; \
639 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
640 *slot_ = obj_; \
642 return slot_; \
645 static inline T VEC_OP (T,base,ordered_remove) \
646 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
648 T *slot_; \
649 T obj_; \
651 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
652 slot_ = &vec_->vec[ix_]; \
653 obj_ = *slot_; \
654 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
656 return obj_; \
659 static inline T VEC_OP (T,base,unordered_remove) \
660 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
662 T *slot_; \
663 T obj_; \
665 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
666 slot_ = &vec_->vec[ix_]; \
667 obj_ = *slot_; \
668 *slot_ = vec_->vec[--vec_->num]; \
670 return obj_; \
673 static inline void VEC_OP (T,base,block_remove) \
674 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
676 T *slot_; \
678 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
679 slot_ = &vec_->vec[ix_]; \
680 vec_->num -= len_; \
681 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
684 static inline T *VEC_OP (T,base,address) \
685 (VEC(T,base) *vec_) \
687 return vec_ ? vec_->vec : 0; \
690 static inline unsigned VEC_OP (T,base,lower_bound) \
691 (VEC(T,base) *vec_, const T obj_, \
692 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
694 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
695 unsigned int half_, middle_; \
696 unsigned int first_ = 0; \
697 while (len_ > 0) \
699 T middle_elem_; \
700 half_ = len_ >> 1; \
701 middle_ = first_; \
702 middle_ += half_; \
703 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
704 if (lessthan_ (middle_elem_, obj_)) \
706 first_ = middle_; \
707 ++first_; \
708 len_ = len_ - half_ - 1; \
710 else \
711 len_ = half_; \
713 return first_; \
716 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
717 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
718 (int alloc_ MEM_STAT_DECL) \
720 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \
721 PASS_MEM_STAT); \
725 #define DEF_VEC_NONALLOC_FUNCS_P(T,A) \
726 static inline void VEC_OP (T,A,free) \
727 (VEC(T,A) **vec_) \
729 if (*vec_) \
730 vec_##A##_free (*vec_); \
731 *vec_ = NULL; \
734 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
736 size_t len_ = vec_ ? vec_->num : 0; \
737 VEC (T,A) *new_vec_ = NULL; \
739 if (len_) \
741 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \
742 (NULL, len_ PASS_MEM_STAT)); \
744 new_vec_->base.num = len_; \
745 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
747 return new_vec_; \
750 static inline int VEC_OP (T,A,reserve) \
751 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
753 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
754 VEC_CHECK_PASS); \
756 if (extend) \
757 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
759 return extend; \
762 static inline int VEC_OP (T,A,reserve_exact) \
763 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
765 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
766 VEC_CHECK_PASS); \
768 if (extend) \
769 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \
770 PASS_MEM_STAT); \
772 return extend; \
775 static inline void VEC_OP (T,A,safe_grow) \
776 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
778 VEC_ASSERT (size_ >= 0 \
779 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
780 "grow", T, A); \
781 VEC_OP (T,A,reserve_exact) (vec_, \
782 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
783 VEC_CHECK_PASS PASS_MEM_STAT); \
784 VEC_BASE (*vec_)->num = size_; \
787 static inline void VEC_OP (T,A,safe_grow_cleared) \
788 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
790 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
791 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
792 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
793 sizeof (T) * (size_ - oldsize)); \
796 static inline T *VEC_OP (T,A,safe_push) \
797 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
799 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
801 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
804 static inline T *VEC_OP (T,A,safe_insert) \
805 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
807 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
809 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
810 VEC_CHECK_PASS); \
813 /* Vector of object. */
814 #define DEF_VEC_O(T) \
815 VEC_T_GTY(T,base); \
816 VEC_TA(T,base,none); \
817 DEF_VEC_FUNC_O(T) \
818 struct vec_swallow_trailing_semi
819 #define DEF_VEC_ALLOC_O(T,A) \
820 VEC_TA(T,base,A); \
821 DEF_VEC_ALLOC_FUNC_O(T,A) \
822 DEF_VEC_NONALLOC_FUNCS_O(T,A) \
823 struct vec_swallow_trailing_semi
825 #define DEF_VEC_FUNC_O(T) \
826 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
828 return vec_ ? vec_->num : 0; \
831 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
833 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
835 return &vec_->vec[vec_->num - 1]; \
838 static inline T *VEC_OP (T,base,index) \
839 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
841 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
843 return &vec_->vec[ix_]; \
846 static inline int VEC_OP (T,base,iterate) \
847 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
849 if (vec_ && ix_ < vec_->num) \
851 *ptr = &vec_->vec[ix_]; \
852 return 1; \
854 else \
856 *ptr = 0; \
857 return 0; \
861 static inline size_t VEC_OP (T,base,embedded_size) \
862 (int alloc_) \
864 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
867 static inline void VEC_OP (T,base,embedded_init) \
868 (VEC(T,base) *vec_, int alloc_) \
870 vec_->num = 0; \
871 vec_->alloc = alloc_; \
874 static inline int VEC_OP (T,base,space) \
875 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
877 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
878 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
881 static inline T *VEC_OP (T,base,quick_push) \
882 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
884 T *slot_; \
886 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
887 slot_ = &vec_->vec[vec_->num++]; \
888 if (obj_) \
889 *slot_ = *obj_; \
891 return slot_; \
894 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
896 VEC_ASSERT (vec_->num, "pop", T, base); \
897 --vec_->num; \
900 static inline void VEC_OP (T,base,truncate) \
901 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
903 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
904 if (vec_) \
905 vec_->num = size_; \
908 static inline T *VEC_OP (T,base,replace) \
909 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
911 T *slot_; \
913 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
914 slot_ = &vec_->vec[ix_]; \
915 if (obj_) \
916 *slot_ = *obj_; \
918 return slot_; \
921 static inline T *VEC_OP (T,base,quick_insert) \
922 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
924 T *slot_; \
926 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
927 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
928 slot_ = &vec_->vec[ix_]; \
929 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
930 if (obj_) \
931 *slot_ = *obj_; \
933 return slot_; \
936 static inline void VEC_OP (T,base,ordered_remove) \
937 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
939 T *slot_; \
941 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
942 slot_ = &vec_->vec[ix_]; \
943 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
946 static inline void VEC_OP (T,base,unordered_remove) \
947 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
949 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
950 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
953 static inline void VEC_OP (T,base,block_remove) \
954 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
956 T *slot_; \
958 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
959 slot_ = &vec_->vec[ix_]; \
960 vec_->num -= len_; \
961 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
964 static inline T *VEC_OP (T,base,address) \
965 (VEC(T,base) *vec_) \
967 return vec_ ? vec_->vec : 0; \
970 static inline unsigned VEC_OP (T,base,lower_bound) \
971 (VEC(T,base) *vec_, const T *obj_, \
972 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
974 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
975 unsigned int half_, middle_; \
976 unsigned int first_ = 0; \
977 while (len_ > 0) \
979 T *middle_elem_; \
980 half_ = len_ >> 1; \
981 middle_ = first_; \
982 middle_ += half_; \
983 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
984 if (lessthan_ (middle_elem_, obj_)) \
986 first_ = middle_; \
987 ++first_; \
988 len_ = len_ - half_ - 1; \
990 else \
991 len_ = half_; \
993 return first_; \
996 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
997 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
998 (int alloc_ MEM_STAT_DECL) \
1000 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \
1001 offsetof (VEC(T,A),base.vec), \
1002 sizeof (T) \
1003 PASS_MEM_STAT); \
1006 #define DEF_VEC_NONALLOC_FUNCS_O(T,A) \
1007 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1009 size_t len_ = vec_ ? vec_->num : 0; \
1010 VEC (T,A) *new_vec_ = NULL; \
1012 if (len_) \
1014 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1015 (NULL, len_, \
1016 offsetof (VEC(T,A),base.vec), sizeof (T) \
1017 PASS_MEM_STAT)); \
1019 new_vec_->base.num = len_; \
1020 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1022 return new_vec_; \
1025 static inline void VEC_OP (T,A,free) \
1026 (VEC(T,A) **vec_) \
1028 if (*vec_) \
1029 vec_##A##_free (*vec_); \
1030 *vec_ = NULL; \
1033 static inline int VEC_OP (T,A,reserve) \
1034 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1036 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1037 VEC_CHECK_PASS); \
1039 if (extend) \
1040 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1041 offsetof (VEC(T,A),base.vec),\
1042 sizeof (T) \
1043 PASS_MEM_STAT); \
1045 return extend; \
1048 static inline int VEC_OP (T,A,reserve_exact) \
1049 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1051 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1052 VEC_CHECK_PASS); \
1054 if (extend) \
1055 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1056 (*vec_, alloc_, \
1057 offsetof (VEC(T,A),base.vec), \
1058 sizeof (T) PASS_MEM_STAT); \
1060 return extend; \
1063 static inline void VEC_OP (T,A,safe_grow) \
1064 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1066 VEC_ASSERT (size_ >= 0 \
1067 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1068 "grow", T, A); \
1069 VEC_OP (T,A,reserve_exact) (vec_, \
1070 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1071 VEC_CHECK_PASS PASS_MEM_STAT); \
1072 VEC_BASE (*vec_)->num = size_; \
1075 static inline void VEC_OP (T,A,safe_grow_cleared) \
1076 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1078 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1079 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1080 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1081 sizeof (T) * (size_ - oldsize)); \
1084 static inline T *VEC_OP (T,A,safe_push) \
1085 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1087 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1089 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1092 static inline T *VEC_OP (T,A,safe_insert) \
1093 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1094 VEC_CHECK_DECL MEM_STAT_DECL) \
1096 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1098 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1099 VEC_CHECK_PASS); \
1102 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1103 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1104 (int alloc_ MEM_STAT_DECL) \
1106 return (VEC(T,A) *) vec_##A##_o_reserve_exact \
1107 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \
1108 sizeof (T) PASS_MEM_STAT); \
1111 #define DEF_VEC_NONALLOC_FUNCS_I(T,A) \
1112 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1114 size_t len_ = vec_ ? vec_->num : 0; \
1115 VEC (T,A) *new_vec_ = NULL; \
1117 if (len_) \
1119 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1120 (NULL, len_, \
1121 offsetof (VEC(T,A),base.vec), sizeof (T) \
1122 PASS_MEM_STAT)); \
1124 new_vec_->base.num = len_; \
1125 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1127 return new_vec_; \
1130 static inline void VEC_OP (T,A,free) \
1131 (VEC(T,A) **vec_) \
1133 if (*vec_) \
1134 vec_##A##_free (*vec_); \
1135 *vec_ = NULL; \
1138 static inline int VEC_OP (T,A,reserve) \
1139 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1141 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1142 VEC_CHECK_PASS); \
1144 if (extend) \
1145 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1146 offsetof (VEC(T,A),base.vec),\
1147 sizeof (T) \
1148 PASS_MEM_STAT); \
1150 return extend; \
1153 static inline int VEC_OP (T,A,reserve_exact) \
1154 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1156 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1157 VEC_CHECK_PASS); \
1159 if (extend) \
1160 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1161 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \
1162 sizeof (T) PASS_MEM_STAT); \
1164 return extend; \
1167 static inline void VEC_OP (T,A,safe_grow) \
1168 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1170 VEC_ASSERT (size_ >= 0 \
1171 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1172 "grow", T, A); \
1173 VEC_OP (T,A,reserve_exact) (vec_, \
1174 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1175 VEC_CHECK_PASS PASS_MEM_STAT); \
1176 VEC_BASE (*vec_)->num = size_; \
1179 static inline void VEC_OP (T,A,safe_grow_cleared) \
1180 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1182 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1183 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1184 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1185 sizeof (T) * (size_ - oldsize)); \
1188 static inline T *VEC_OP (T,A,safe_push) \
1189 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1191 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1193 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1196 static inline T *VEC_OP (T,A,safe_insert) \
1197 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1198 VEC_CHECK_DECL MEM_STAT_DECL) \
1200 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1202 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1203 VEC_CHECK_PASS); \
1206 /* We support a vector which starts out with space on the stack and
1207 switches to heap space when forced to reallocate. This works a
1208 little differently. Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
1209 DEF_VEC_ALLOC_P_STACK(TYPE). This uses alloca to get the initial
1210 space; because alloca can not be usefully called in an inline
1211 function, and because a macro can not define a macro, you must then
1212 write a #define for each type:
1214 #define VEC_{TYPE}_stack_alloc(alloc) \
1215 VEC_stack_alloc({TYPE}, alloc)
1217 This is really a hack and perhaps can be made better. Note that
1218 this macro will wind up evaluating the ALLOC parameter twice.
1220 Only the initial allocation will be made using alloca, so pass a
1221 reasonable estimate that doesn't use too much stack space; don't
1222 pass zero. Don't return a VEC(TYPE,stack) vector from the function
1223 which allocated it. */
1225 extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
1226 extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
1227 extern void *vec_stack_p_reserve_exact_1 (int, void *);
1228 extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
1229 extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
1230 MEM_STAT_DECL);
1231 extern void vec_stack_free (void *);
1233 #ifdef GATHER_STATISTICS
1234 #define VEC_stack_alloc(T,alloc,name,line,function) \
1235 (VEC_OP (T,stack,alloc1) \
1236 (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1237 #else
1238 #define VEC_stack_alloc(T,alloc) \
1239 (VEC_OP (T,stack,alloc1) \
1240 (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1241 #endif
1243 #define DEF_VEC_ALLOC_P_STACK(T) \
1244 VEC_TA(T,base,stack); \
1245 DEF_VEC_ALLOC_FUNC_P_STACK(T) \
1246 DEF_VEC_NONALLOC_FUNCS_P(T,stack) \
1247 struct vec_swallow_trailing_semi
1249 #define DEF_VEC_ALLOC_FUNC_P_STACK(T) \
1250 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1251 (int alloc_, VEC(T,stack)* space) \
1253 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1256 #define DEF_VEC_ALLOC_O_STACK(T) \
1257 VEC_TA(T,base,stack); \
1258 DEF_VEC_ALLOC_FUNC_O_STACK(T) \
1259 DEF_VEC_NONALLOC_FUNCS_O(T,stack) \
1260 struct vec_swallow_trailing_semi
1262 #define DEF_VEC_ALLOC_FUNC_O_STACK(T) \
1263 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1264 (int alloc_, VEC(T,stack)* space) \
1266 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1269 #define DEF_VEC_ALLOC_I_STACK(T) \
1270 VEC_TA(T,base,stack); \
1271 DEF_VEC_ALLOC_FUNC_I_STACK(T) \
1272 DEF_VEC_NONALLOC_FUNCS_I(T,stack) \
1273 struct vec_swallow_trailing_semi
1275 #define DEF_VEC_ALLOC_FUNC_I_STACK(T) \
1276 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1277 (int alloc_, VEC(T,stack)* space) \
1279 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1282 #endif /* GCC_VEC_H */