RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / sound / pci / cmipci.c
blob1e1570ef2cf1691bac7bf46f1510ac77d3886457
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 "{C-Media,CMI8738B},"
48 "{C-Media,CMI8338A},"
49 "{C-Media,CMI8338B}}");
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
83 * CM8x38 registers definition
86 #define CM_REG_FUNCTRL0 0x00
87 #define CM_RST_CH1 0x00080000
88 #define CM_RST_CH0 0x00040000
89 #define CM_CHEN1 0x00020000 /* ch1: enable */
90 #define CM_CHEN0 0x00010000 /* ch0: enable */
91 #define CM_PAUSE1 0x00000008 /* ch1: pause */
92 #define CM_PAUSE0 0x00000004 /* ch0: pause */
93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
96 #define CM_REG_FUNCTRL1 0x04
97 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT 13
99 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT 10
101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ 0x00000010 /* bus master enabled */
107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108 #define CM_UART_EN 0x00000004 /* legacy UART */
109 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110 #define CM_ZVPORT 0x00000001 /* ZVPORT */
112 #define CM_REG_CHFORMAT 0x08
114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D 0x20000000 /* 4 channels */
118 #define CM_CHIP_MASK1 0x1f000000
119 #define CM_CHIP_037 0x01000000
120 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
128 #define CM_ADCBITLEN_MASK 0x0000C000
129 #define CM_ADCBITLEN_16 0x00000000
130 #define CM_ADCBITLEN_15 0x00004000
131 #define CM_ADCBITLEN_14 0x00008000
132 #define CM_ADCBITLEN_13 0x0000C000
134 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135 #define CM_ADCDACLEN_060 0x00000000
136 #define CM_ADCDACLEN_066 0x00001000
137 #define CM_ADCDACLEN_130 0x00002000
138 #define CM_ADCDACLEN_280 0x00003000
140 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141 #define CM_ADCDLEN_ORIGINAL 0x00000000
142 #define CM_ADCDLEN_EXTRA 0x00001000
143 #define CM_ADCDLEN_24K 0x00002000
144 #define CM_ADCDLEN_WEIGHT 0x00003000
146 #define CM_CH1_SRATE_176K 0x00000800
147 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148 #define CM_CH1_SRATE_88K 0x00000400
149 #define CM_CH0_SRATE_176K 0x00000200
150 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151 #define CM_CH0_SRATE_88K 0x00000100
152 #define CM_CH0_SRATE_128K 0x00000300
153 #define CM_CH0_SRATE_MASK 0x00000300
155 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED 0x00000010
160 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT 2
162 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT 0
165 #define CM_REG_INT_HLDCLR 0x0C
166 #define CM_CHIP_MASK2 0xff000000
167 #define CM_CHIP_8768 0x20000000
168 #define CM_CHIP_055 0x08000000
169 #define CM_CHIP_039 0x04000000
170 #define CM_CHIP_039_6CH 0x01000000
171 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172 #define CM_TDMA_INT_EN 0x00040000
173 #define CM_CH1_INT_EN 0x00020000
174 #define CM_CH0_INT_EN 0x00010000
176 #define CM_REG_INT_STATUS 0x10
177 #define CM_INTR 0x80000000
178 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180 #define CM_UARTINT 0x00010000
181 #define CM_LTDMAINT 0x00008000
182 #define CM_HTDMAINT 0x00004000
183 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187 #define CM_CH1BUSY 0x00000008
188 #define CM_CH0BUSY 0x00000004
189 #define CM_CHINT1 0x00000002
190 #define CM_CHINT0 0x00000001
192 #define CM_REG_LEGACY_CTRL 0x14
193 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195 #define CM_VMPU_330 0x00000000
196 #define CM_VMPU_320 0x20000000
197 #define CM_VMPU_310 0x40000000
198 #define CM_VMPU_300 0x60000000
199 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201 #define CM_VSBSEL_220 0x00000000
202 #define CM_VSBSEL_240 0x04000000
203 #define CM_VSBSEL_260 0x08000000
204 #define CM_VSBSEL_280 0x0C000000
205 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206 #define CM_FMSEL_388 0x00000000
207 #define CM_FMSEL_3C8 0x01000000
208 #define CM_FMSEL_3E0 0x02000000
209 #define CM_FMSEL_3E8 0x03000000
210 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216 #define CM_C_EECS 0x00040000
217 #define CM_C_EEDI46 0x00020000
218 #define CM_C_EECK46 0x00010000
219 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222 #define CM_EXBASEN 0x00001000 /* external bass input enable */
224 #define CM_REG_MISC_CTRL 0x18
225 #define CM_PWD 0x80000000 /* power down */
226 #define CM_RESET 0x40000000
227 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229 #define CM_TXVX 0x08000000 /* model 037? */
230 #define CM_N4SPK3D 0x04000000 /* copy front to rear */
231 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K 0x01000000 /* write */
233 #define CM_SPATUS48K 0x01000000 /* read */
234 #define CM_ENDBDAC 0x00800000 /* enable double dac */
235 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN 0x00080000 /* enable legacy FM */
239 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB 0x00010000 /* model 037? */
242 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT 0x00002000 /* model 037? */
246 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249 #define CM_ENCENTER 0x00000080
250 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255 #define CM_UPDDMA_2048 0x00000000
256 #define CM_UPDDMA_1024 0x00000004
257 #define CM_UPDDMA_512 0x00000008
258 #define CM_UPDDMA_256 0x0000000C
259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */
260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
263 #define CM_REG_TDMA_POSITION 0x1C
264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
267 /* byte */
268 #define CM_REG_MIXER0 0x20
269 #define CM_REG_SBVR 0x20 /* write: sb16 version */
270 #define CM_REG_DEV 0x20 /* read: hardware device version */
272 #define CM_REG_MIXER21 0x21
273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */
274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */
276 #define CM_X_SB16 0x01 /* SB16 compatible */
278 #define CM_REG_SB16_DATA 0x22
279 #define CM_REG_SB16_ADDR 0x23
281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
286 #define CM_REG_MIXER1 0x24
287 #define CM_FMMUTE 0x80 /* mute FM */
288 #define CM_FMMUTE_SHIFT 7
289 #define CM_WSMUTE 0x40 /* mute PCM */
290 #define CM_WSMUTE_SHIFT 6
291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT 5
293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT 4
295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT 3
297 #define CM_WAVEINR 0x04 /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT 2
299 #define CM_X3DEN 0x02 /* 3D surround enable */
300 #define CM_X3DEN_SHIFT 1
301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT 0
304 #define CM_REG_MIXER2 0x25
305 #define CM_RAUXREN 0x80 /* AUX right capture */
306 #define CM_RAUXREN_SHIFT 7
307 #define CM_RAUXLEN 0x40 /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT 6
309 #define CM_VAUXRM 0x20 /* AUX right mute */
310 #define CM_VAUXRM_SHIFT 5
311 #define CM_VAUXLM 0x10 /* AUX left mute */
312 #define CM_VAUXLM_SHIFT 4
313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT 1
315 #define CM_MICGAINZ 0x01 /* mic boost */
316 #define CM_MICGAINZ_SHIFT 0
318 #define CM_REG_MIXER3 0x24
319 #define CM_REG_AUX_VOL 0x26
320 #define CM_VAUXL_MASK 0xf0
321 #define CM_VAUXR_MASK 0x0f
323 #define CM_REG_MISC 0x27
324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325 #define CM_XGPO1 0x20
326 // #define CM_XGPBIO 0x04
327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID 0x02 /* spdif input valid check */
330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
337 #define CM_REG_EXTERN_CODEC CM_REG_AC97
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
342 #define CM_REG_MPU_PCI 0x40
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
347 #define CM_REG_FM_PCI 0x50
350 * access from SB-mixer port
352 #define CM_REG_EXTENT_IND 0xf0
353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT 5
355 #define CM_VPHOM 0x10 /* Phone mute control */
356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359 #define CM_VADMIC3 0x01 /* Mic record boost */
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
366 #define CM_REG_PLL 0xf8
369 * extended registers
371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
376 #define CM_REG_EXT_MISC 0x90
377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
387 * size of i/o region
389 #define CM_EXTENT_CODEC 0x100
390 #define CM_EXTENT_MIDI 0x2
391 #define CM_EXTENT_SYNTH 0x4
395 * channels for playback / capture
397 #define CM_CH_PLAY 0
398 #define CM_CH_CAPT 1
401 * flags to check device open/close
403 #define CM_OPEN_NONE 0
404 #define CM_OPEN_CH_MASK 0x01
405 #define CM_OPEN_DAC 0x10
406 #define CM_OPEN_ADC 0x20
407 #define CM_OPEN_SPDIF 0x40
408 #define CM_OPEN_MCHAN 0x80
409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF CM_SPDF_1
420 #define CM_CAPTURE_SPDF CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF CM_SPDF_0
424 #define CM_CAPTURE_SPDF CM_SPDF_1
425 #endif
429 * driver data
432 struct cmipci_pcm {
433 struct snd_pcm_substream *substream;
434 u8 running; /* dac/adc running? */
435 u8 fmt; /* format bits */
436 u8 is_dac;
437 u8 needs_silencing;
438 unsigned int dma_size; /* in frames */
439 unsigned int shift;
440 unsigned int ch; /* channel (0/1) */
441 unsigned int offset; /* physical address of the buffer */
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 const char *name; /* switch to toggle */
447 int toggle_on; /* value to change when ac3 mode */
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 {"PCM Playback Switch", 0},
451 {"IEC958 Output Switch", 1},
452 {"IEC958 Mix Analog", 0},
453 // {"IEC958 Out To DAC", 1}, // no longer used
454 {"IEC958 Loop", 0},
456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
458 struct cmipci {
459 struct snd_card *card;
461 struct pci_dev *pci;
462 unsigned int device; /* device ID */
463 int irq;
465 unsigned long iobase;
466 unsigned int ctrl; /* FUNCTRL0 current value */
468 struct snd_pcm *pcm; /* DAC/ADC PCM */
469 struct snd_pcm *pcm2; /* 2nd DAC */
470 struct snd_pcm *pcm_spdif; /* SPDIF */
472 int chip_version;
473 int max_channels;
474 unsigned int can_ac3_sw: 1;
475 unsigned int can_ac3_hw: 1;
476 unsigned int can_multi_ch: 1;
477 unsigned int can_96k: 1; /* samplerate above 48k */
478 unsigned int do_soft_ac3: 1;
480 unsigned int spdif_playback_avail: 1; /* spdif ready? */
481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482 int spdif_counter; /* for software AC3 */
484 unsigned int dig_status;
485 unsigned int dig_pcm_status;
487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
489 int opened[2]; /* open mode */
490 struct mutex open_mutex;
492 unsigned int mixer_insensitive: 1;
493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 int mixer_res_status[CM_SAVED_MIXERS];
496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
498 /* external MIDI */
499 struct snd_rawmidi *rmidi;
501 #ifdef SUPPORT_JOYSTICK
502 struct gameport *gameport;
503 #endif
505 spinlock_t reg_lock;
507 #ifdef CONFIG_PM
508 unsigned int saved_regs[0x20];
509 unsigned char saved_mixers[0x20];
510 #endif
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
517 outl(data, cm->iobase + cmd);
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
522 return inl(cm->iobase + cmd);
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
528 outw(data, cm->iobase + cmd);
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
533 return inw(cm->iobase + cmd);
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
539 outb(data, cm->iobase + cmd);
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
544 return inb(cm->iobase + cmd);
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
550 unsigned int val, oval;
551 val = oval = inl(cm->iobase + cmd);
552 val |= flag;
553 if (val == oval)
554 return 0;
555 outl(val, cm->iobase + cmd);
556 return 1;
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
561 unsigned int val, oval;
562 val = oval = inl(cm->iobase + cmd);
563 val &= ~flag;
564 if (val == oval)
565 return 0;
566 outl(val, cm->iobase + cmd);
567 return 1;
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
573 unsigned char val, oval;
574 val = oval = inb(cm->iobase + cmd);
575 val |= flag;
576 if (val == oval)
577 return 0;
578 outb(val, cm->iobase + cmd);
579 return 1;
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
584 unsigned char val, oval;
585 val = oval = inb(cm->iobase + cmd);
586 val &= ~flag;
587 if (val == oval)
588 return 0;
589 outb(val, cm->iobase + cmd);
590 return 1;
595 * PCM interface
599 * calculate frequency
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
606 unsigned int i;
608 for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 if (rates[i] == rate)
610 return i;
612 snd_BUG();
613 return 0;
616 #ifdef USE_VAR48KRATE
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not. Never get any information from C-Media about
620 * that <werner@suse.de>.
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
624 unsigned int delta, tolerance;
625 int xm, xn, xr;
627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 rate <<= 1;
629 *n = -1;
630 if (*r > 0xff)
631 goto out;
632 tolerance = rate*CM_TOLERANCE_RATE;
634 for (xn = (1+2); xn < (0x1f+2); xn++) {
635 for (xm = (1+2); xm < (0xff+2); xm++) {
636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
638 if (xr < rate)
639 delta = rate - xr;
640 else
641 delta = xr - rate;
644 * If we found one, remember this,
645 * and try to find a closer one
647 if (delta < tolerance) {
648 tolerance = delta;
649 *m = xm - 2;
650 *n = xn - 2;
654 out:
655 return (*n > -1);
659 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
666 unsigned int reg = CM_REG_PLL + slot;
668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 * for DSFC/ASFC (000 upto 111).
673 snd_cmipci_write_b(cm, reg, rate>>8);
674 snd_cmipci_write_b(cm, reg, rate&0xff);
677 #endif /* USE_VAR48KRATE */
679 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
680 struct snd_pcm_hw_params *hw_params)
682 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
685 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
686 struct snd_pcm_hw_params *hw_params)
688 struct cmipci *cm = snd_pcm_substream_chip(substream);
689 if (params_channels(hw_params) > 2) {
690 mutex_lock(&cm->open_mutex);
691 if (cm->opened[CM_CH_PLAY]) {
692 mutex_unlock(&cm->open_mutex);
693 return -EBUSY;
695 /* reserve the channel A */
696 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
697 mutex_unlock(&cm->open_mutex);
699 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
702 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
704 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
705 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
706 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
707 udelay(10);
710 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
712 return snd_pcm_lib_free_pages(substream);
719 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
720 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
721 .count = 3,
722 .list = hw_channels,
723 .mask = 0,
725 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
726 .count = 4,
727 .list = hw_channels,
728 .mask = 0,
730 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
731 .count = 5,
732 .list = hw_channels,
733 .mask = 0,
736 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
738 if (channels > 2) {
739 if (!cm->can_multi_ch || !rec->ch)
740 return -EINVAL;
741 if (rec->fmt != 0x03) /* stereo 16bit only */
742 return -EINVAL;
745 if (cm->can_multi_ch) {
746 spin_lock_irq(&cm->reg_lock);
747 if (channels > 2) {
748 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
749 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
750 } else {
751 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
754 if (channels == 8)
755 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
756 else
757 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
758 if (channels == 6) {
759 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
760 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
761 } else {
762 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
765 if (channels == 4)
766 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
767 else
768 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
769 spin_unlock_irq(&cm->reg_lock);
771 return 0;
776 * prepare playback/capture channel
777 * channel to be used must have been set in rec->ch.
779 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
780 struct snd_pcm_substream *substream)
782 unsigned int reg, freq, freq_ext, val;
783 unsigned int period_size;
784 struct snd_pcm_runtime *runtime = substream->runtime;
786 rec->fmt = 0;
787 rec->shift = 0;
788 if (snd_pcm_format_width(runtime->format) >= 16) {
789 rec->fmt |= 0x02;
790 if (snd_pcm_format_width(runtime->format) > 16)
791 rec->shift++; /* 24/32bit */
793 if (runtime->channels > 1)
794 rec->fmt |= 0x01;
795 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
796 snd_printd("cannot set dac channels\n");
797 return -EINVAL;
800 rec->offset = runtime->dma_addr;
801 /* buffer and period sizes in frame */
802 rec->dma_size = runtime->buffer_size << rec->shift;
803 period_size = runtime->period_size << rec->shift;
804 if (runtime->channels > 2) {
805 /* multi-channels */
806 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
807 period_size = (period_size * runtime->channels) / 2;
810 spin_lock_irq(&cm->reg_lock);
812 /* set buffer address */
813 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
814 snd_cmipci_write(cm, reg, rec->offset);
815 /* program sample counts */
816 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
817 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
818 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
820 /* set adc/dac flag */
821 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
822 if (rec->is_dac)
823 cm->ctrl &= ~val;
824 else
825 cm->ctrl |= val;
826 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
827 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
829 /* set sample rate */
830 freq = 0;
831 freq_ext = 0;
832 if (runtime->rate > 48000)
833 switch (runtime->rate) {
834 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
835 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
836 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
837 default: snd_BUG(); break;
839 else
840 freq = snd_cmipci_rate_freq(runtime->rate);
841 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
842 if (rec->ch) {
843 val &= ~CM_DSFC_MASK;
844 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
845 } else {
846 val &= ~CM_ASFC_MASK;
847 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
849 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
850 //snd_printd("cmipci: functrl1 = %08x\n", val);
852 /* set format */
853 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
854 if (rec->ch) {
855 val &= ~CM_CH1FMT_MASK;
856 val |= rec->fmt << CM_CH1FMT_SHIFT;
857 } else {
858 val &= ~CM_CH0FMT_MASK;
859 val |= rec->fmt << CM_CH0FMT_SHIFT;
861 if (cm->can_96k) {
862 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
863 val |= freq_ext << (rec->ch * 2);
865 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
866 //snd_printd("cmipci: chformat = %08x\n", val);
868 if (!rec->is_dac && cm->chip_version) {
869 if (runtime->rate > 44100)
870 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
871 else
872 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
875 rec->running = 0;
876 spin_unlock_irq(&cm->reg_lock);
878 return 0;
882 * PCM trigger/stop
884 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
885 int cmd)
887 unsigned int inthld, chen, reset, pause;
888 int result = 0;
890 inthld = CM_CH0_INT_EN << rec->ch;
891 chen = CM_CHEN0 << rec->ch;
892 reset = CM_RST_CH0 << rec->ch;
893 pause = CM_PAUSE0 << rec->ch;
895 spin_lock(&cm->reg_lock);
896 switch (cmd) {
897 case SNDRV_PCM_TRIGGER_START:
898 rec->running = 1;
899 /* set interrupt */
900 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
901 cm->ctrl |= chen;
902 /* enable channel */
903 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
904 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
905 break;
906 case SNDRV_PCM_TRIGGER_STOP:
907 rec->running = 0;
908 /* disable interrupt */
909 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
910 /* reset */
911 cm->ctrl &= ~chen;
912 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
913 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
914 rec->needs_silencing = rec->is_dac;
915 break;
916 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
917 case SNDRV_PCM_TRIGGER_SUSPEND:
918 cm->ctrl |= pause;
919 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
920 break;
921 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
922 case SNDRV_PCM_TRIGGER_RESUME:
923 cm->ctrl &= ~pause;
924 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
925 break;
926 default:
927 result = -EINVAL;
928 break;
930 spin_unlock(&cm->reg_lock);
931 return result;
935 * return the current pointer
937 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
938 struct snd_pcm_substream *substream)
940 size_t ptr;
941 unsigned int reg, rem, tries;
943 if (!rec->running)
944 return 0;
945 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
946 for (tries = 0; tries < 3; tries++) {
947 rem = snd_cmipci_read_w(cm, reg);
948 if (rem < rec->dma_size)
949 goto ok;
951 printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
952 return SNDRV_PCM_POS_XRUN;
954 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
955 if (substream->runtime->channels > 2)
956 ptr = (ptr * 2) / substream->runtime->channels;
957 return ptr;
961 * playback
964 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
965 int cmd)
967 struct cmipci *cm = snd_pcm_substream_chip(substream);
968 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
971 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
973 struct cmipci *cm = snd_pcm_substream_chip(substream);
974 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
980 * capture
983 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
984 int cmd)
986 struct cmipci *cm = snd_pcm_substream_chip(substream);
987 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
990 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
992 struct cmipci *cm = snd_pcm_substream_chip(substream);
993 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
998 * hw preparation for spdif
1001 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1002 struct snd_ctl_elem_info *uinfo)
1004 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1005 uinfo->count = 1;
1006 return 0;
1009 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1010 struct snd_ctl_elem_value *ucontrol)
1012 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1013 int i;
1015 spin_lock_irq(&chip->reg_lock);
1016 for (i = 0; i < 4; i++)
1017 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1018 spin_unlock_irq(&chip->reg_lock);
1019 return 0;
1022 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1023 struct snd_ctl_elem_value *ucontrol)
1025 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1026 int i, change;
1027 unsigned int val;
1029 val = 0;
1030 spin_lock_irq(&chip->reg_lock);
1031 for (i = 0; i < 4; i++)
1032 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1033 change = val != chip->dig_status;
1034 chip->dig_status = val;
1035 spin_unlock_irq(&chip->reg_lock);
1036 return change;
1039 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1041 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1042 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1043 .info = snd_cmipci_spdif_default_info,
1044 .get = snd_cmipci_spdif_default_get,
1045 .put = snd_cmipci_spdif_default_put
1048 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1049 struct snd_ctl_elem_info *uinfo)
1051 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1052 uinfo->count = 1;
1053 return 0;
1056 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1057 struct snd_ctl_elem_value *ucontrol)
1059 ucontrol->value.iec958.status[0] = 0xff;
1060 ucontrol->value.iec958.status[1] = 0xff;
1061 ucontrol->value.iec958.status[2] = 0xff;
1062 ucontrol->value.iec958.status[3] = 0xff;
1063 return 0;
1066 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1068 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1069 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1070 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1071 .info = snd_cmipci_spdif_mask_info,
1072 .get = snd_cmipci_spdif_mask_get,
1075 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1076 struct snd_ctl_elem_info *uinfo)
1078 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1079 uinfo->count = 1;
1080 return 0;
1083 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1084 struct snd_ctl_elem_value *ucontrol)
1086 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1087 int i;
1089 spin_lock_irq(&chip->reg_lock);
1090 for (i = 0; i < 4; i++)
1091 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1092 spin_unlock_irq(&chip->reg_lock);
1093 return 0;
1096 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1097 struct snd_ctl_elem_value *ucontrol)
1099 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1100 int i, change;
1101 unsigned int val;
1103 val = 0;
1104 spin_lock_irq(&chip->reg_lock);
1105 for (i = 0; i < 4; i++)
1106 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1107 change = val != chip->dig_pcm_status;
1108 chip->dig_pcm_status = val;
1109 spin_unlock_irq(&chip->reg_lock);
1110 return change;
1113 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1115 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1116 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1117 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1118 .info = snd_cmipci_spdif_stream_info,
1119 .get = snd_cmipci_spdif_stream_get,
1120 .put = snd_cmipci_spdif_stream_put
1126 /* save mixer setting and mute for AC3 playback */
1127 static int save_mixer_state(struct cmipci *cm)
1129 if (! cm->mixer_insensitive) {
1130 struct snd_ctl_elem_value *val;
1131 unsigned int i;
1133 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1134 if (!val)
1135 return -ENOMEM;
1136 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1137 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1138 if (ctl) {
1139 int event;
1140 memset(val, 0, sizeof(*val));
1141 ctl->get(ctl, val);
1142 cm->mixer_res_status[i] = val->value.integer.value[0];
1143 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1144 event = SNDRV_CTL_EVENT_MASK_INFO;
1145 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1146 ctl->put(ctl, val); /* toggle */
1147 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1149 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1150 snd_ctl_notify(cm->card, event, &ctl->id);
1153 kfree(val);
1154 cm->mixer_insensitive = 1;
1156 return 0;
1160 /* restore the previously saved mixer status */
1161 static void restore_mixer_state(struct cmipci *cm)
1163 if (cm->mixer_insensitive) {
1164 struct snd_ctl_elem_value *val;
1165 unsigned int i;
1167 val = kmalloc(sizeof(*val), GFP_KERNEL);
1168 if (!val)
1169 return;
1170 cm->mixer_insensitive = 0; /* at first clear this;
1171 otherwise the changes will be ignored */
1172 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1173 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1174 if (ctl) {
1175 int event;
1177 memset(val, 0, sizeof(*val));
1178 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1179 ctl->get(ctl, val);
1180 event = SNDRV_CTL_EVENT_MASK_INFO;
1181 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1182 val->value.integer.value[0] = cm->mixer_res_status[i];
1183 ctl->put(ctl, val);
1184 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1186 snd_ctl_notify(cm->card, event, &ctl->id);
1189 kfree(val);
1193 /* spinlock held! */
1194 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1196 if (do_ac3) {
1197 /* AC3EN for 037 */
1198 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1199 /* AC3EN for 039 */
1200 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1202 if (cm->can_ac3_hw) {
1203 /* SPD24SEL for 037, 0x02 */
1204 /* SPD24SEL for 039, 0x20, but cannot be set */
1205 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1206 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1207 } else { /* can_ac3_sw */
1208 /* SPD32SEL for 037 & 039, 0x20 */
1209 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1210 /* set 176K sample rate to fix 033 HW bug */
1211 if (cm->chip_version == 33) {
1212 if (rate >= 48000) {
1213 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1214 } else {
1215 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1220 } else {
1221 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1222 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1224 if (cm->can_ac3_hw) {
1225 /* chip model >= 37 */
1226 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1227 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1228 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1229 } else {
1230 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1233 } else {
1234 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1235 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1236 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1241 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1243 int rate, err;
1245 rate = subs->runtime->rate;
1247 if (up && do_ac3)
1248 if ((err = save_mixer_state(cm)) < 0)
1249 return err;
1251 spin_lock_irq(&cm->reg_lock);
1252 cm->spdif_playback_avail = up;
1253 if (up) {
1254 /* they are controlled via "IEC958 Output Switch" */
1255 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1256 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1257 if (cm->spdif_playback_enabled)
1258 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1259 setup_ac3(cm, subs, do_ac3, rate);
1261 if (rate == 48000 || rate == 96000)
1262 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1263 else
1264 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1265 if (rate > 48000)
1266 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1267 else
1268 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1269 } else {
1270 /* they are controlled via "IEC958 Output Switch" */
1271 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1272 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1273 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1274 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1275 setup_ac3(cm, subs, 0, 0);
1277 spin_unlock_irq(&cm->reg_lock);
1278 return 0;
1283 * preparation
1286 /* playback - enable spdif only on the certain condition */
1287 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1289 struct cmipci *cm = snd_pcm_substream_chip(substream);
1290 int rate = substream->runtime->rate;
1291 int err, do_spdif, do_ac3 = 0;
1293 do_spdif = (rate >= 44100 && rate <= 96000 &&
1294 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1295 substream->runtime->channels == 2);
1296 if (do_spdif && cm->can_ac3_hw)
1297 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1298 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1299 return err;
1300 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1303 /* playback (via device #2) - enable spdif always */
1304 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1306 struct cmipci *cm = snd_pcm_substream_chip(substream);
1307 int err, do_ac3;
1309 if (cm->can_ac3_hw)
1310 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1311 else
1312 do_ac3 = 1; /* doesn't matter */
1313 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1314 return err;
1315 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1319 * Apparently, the samples last played on channel A stay in some buffer, even
1320 * after the channel is reset, and get added to the data for the rear DACs when
1321 * playing a multichannel stream on channel B. This is likely to generate
1322 * wraparounds and thus distortions.
1323 * To avoid this, we play at least one zero sample after the actual stream has
1324 * stopped.
1326 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1328 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1329 unsigned int reg, val;
1331 if (rec->needs_silencing && runtime && runtime->dma_area) {
1332 /* set up a small silence buffer */
1333 memset(runtime->dma_area, 0, PAGE_SIZE);
1334 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1335 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1336 snd_cmipci_write(cm, reg, val);
1338 /* configure for 16 bits, 2 channels, 8 kHz */
1339 if (runtime->channels > 2)
1340 set_dac_channels(cm, rec, 2);
1341 spin_lock_irq(&cm->reg_lock);
1342 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1343 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1344 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1345 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1346 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1347 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1348 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1349 if (cm->can_96k)
1350 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1351 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1353 /* start stream (we don't need interrupts) */
1354 cm->ctrl |= CM_CHEN0 << rec->ch;
1355 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1356 spin_unlock_irq(&cm->reg_lock);
1358 msleep(1);
1360 /* stop and reset stream */
1361 spin_lock_irq(&cm->reg_lock);
1362 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1363 val = CM_RST_CH0 << rec->ch;
1364 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1365 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1366 spin_unlock_irq(&cm->reg_lock);
1368 rec->needs_silencing = 0;
1372 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1374 struct cmipci *cm = snd_pcm_substream_chip(substream);
1375 setup_spdif_playback(cm, substream, 0, 0);
1376 restore_mixer_state(cm);
1377 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1378 return snd_cmipci_hw_free(substream);
1381 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1383 struct cmipci *cm = snd_pcm_substream_chip(substream);
1384 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1385 return snd_cmipci_hw_free(substream);
1388 /* capture */
1389 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1391 struct cmipci *cm = snd_pcm_substream_chip(substream);
1392 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1395 /* capture with spdif (via device #2) */
1396 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1398 struct cmipci *cm = snd_pcm_substream_chip(substream);
1400 spin_lock_irq(&cm->reg_lock);
1401 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1402 if (cm->can_96k) {
1403 if (substream->runtime->rate > 48000)
1404 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1405 else
1406 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1408 if (snd_pcm_format_width(substream->runtime->format) > 16)
1409 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410 else
1411 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1413 spin_unlock_irq(&cm->reg_lock);
1415 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1418 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1420 struct cmipci *cm = snd_pcm_substream_chip(subs);
1422 spin_lock_irq(&cm->reg_lock);
1423 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1424 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1425 spin_unlock_irq(&cm->reg_lock);
1427 return snd_cmipci_hw_free(subs);
1432 * interrupt handler
1434 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1436 struct cmipci *cm = dev_id;
1437 unsigned int status, mask = 0;
1439 /* fastpath out, to ease interrupt sharing */
1440 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1441 if (!(status & CM_INTR))
1442 return IRQ_NONE;
1444 /* acknowledge interrupt */
1445 spin_lock(&cm->reg_lock);
1446 if (status & CM_CHINT0)
1447 mask |= CM_CH0_INT_EN;
1448 if (status & CM_CHINT1)
1449 mask |= CM_CH1_INT_EN;
1450 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1451 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1452 spin_unlock(&cm->reg_lock);
1454 if (cm->rmidi && (status & CM_UARTINT))
1455 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1457 if (cm->pcm) {
1458 if ((status & CM_CHINT0) && cm->channel[0].running)
1459 snd_pcm_period_elapsed(cm->channel[0].substream);
1460 if ((status & CM_CHINT1) && cm->channel[1].running)
1461 snd_pcm_period_elapsed(cm->channel[1].substream);
1463 return IRQ_HANDLED;
1467 * h/w infos
1470 /* playback on channel A */
1471 static struct snd_pcm_hardware snd_cmipci_playback =
1473 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1474 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1475 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1476 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1477 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1478 .rate_min = 5512,
1479 .rate_max = 48000,
1480 .channels_min = 1,
1481 .channels_max = 2,
1482 .buffer_bytes_max = (128*1024),
1483 .period_bytes_min = 64,
1484 .period_bytes_max = (128*1024),
1485 .periods_min = 2,
1486 .periods_max = 1024,
1487 .fifo_size = 0,
1490 /* capture on channel B */
1491 static struct snd_pcm_hardware snd_cmipci_capture =
1493 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1494 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1495 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1496 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1497 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1498 .rate_min = 5512,
1499 .rate_max = 48000,
1500 .channels_min = 1,
1501 .channels_max = 2,
1502 .buffer_bytes_max = (128*1024),
1503 .period_bytes_min = 64,
1504 .period_bytes_max = (128*1024),
1505 .periods_min = 2,
1506 .periods_max = 1024,
1507 .fifo_size = 0,
1510 /* playback on channel B - stereo 16bit only? */
1511 static struct snd_pcm_hardware snd_cmipci_playback2 =
1513 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1514 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1515 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1516 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1517 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1518 .rate_min = 5512,
1519 .rate_max = 48000,
1520 .channels_min = 2,
1521 .channels_max = 2,
1522 .buffer_bytes_max = (128*1024),
1523 .period_bytes_min = 64,
1524 .period_bytes_max = (128*1024),
1525 .periods_min = 2,
1526 .periods_max = 1024,
1527 .fifo_size = 0,
1530 /* spdif playback on channel A */
1531 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1533 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1534 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1535 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1536 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1537 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1538 .rate_min = 44100,
1539 .rate_max = 48000,
1540 .channels_min = 2,
1541 .channels_max = 2,
1542 .buffer_bytes_max = (128*1024),
1543 .period_bytes_min = 64,
1544 .period_bytes_max = (128*1024),
1545 .periods_min = 2,
1546 .periods_max = 1024,
1547 .fifo_size = 0,
1550 /* spdif playback on channel A (32bit, IEC958 subframes) */
1551 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1553 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1554 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1555 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1556 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1557 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1558 .rate_min = 44100,
1559 .rate_max = 48000,
1560 .channels_min = 2,
1561 .channels_max = 2,
1562 .buffer_bytes_max = (128*1024),
1563 .period_bytes_min = 64,
1564 .period_bytes_max = (128*1024),
1565 .periods_min = 2,
1566 .periods_max = 1024,
1567 .fifo_size = 0,
1570 /* spdif capture on channel B */
1571 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1573 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1574 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1575 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1576 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1577 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1578 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1579 .rate_min = 44100,
1580 .rate_max = 48000,
1581 .channels_min = 2,
1582 .channels_max = 2,
1583 .buffer_bytes_max = (128*1024),
1584 .period_bytes_min = 64,
1585 .period_bytes_max = (128*1024),
1586 .periods_min = 2,
1587 .periods_max = 1024,
1588 .fifo_size = 0,
1591 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1592 32000, 44100, 48000, 88200, 96000, 128000 };
1593 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1594 .count = ARRAY_SIZE(rate_constraints),
1595 .list = rate_constraints,
1596 .mask = 0,
1600 * check device open/close
1602 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1604 int ch = mode & CM_OPEN_CH_MASK;
1606 mutex_lock(&cm->open_mutex);
1607 if (cm->opened[ch]) {
1608 mutex_unlock(&cm->open_mutex);
1609 return -EBUSY;
1611 cm->opened[ch] = mode;
1612 cm->channel[ch].substream = subs;
1613 if (! (mode & CM_OPEN_DAC)) {
1614 /* disable dual DAC mode */
1615 cm->channel[ch].is_dac = 0;
1616 spin_lock_irq(&cm->reg_lock);
1617 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1618 spin_unlock_irq(&cm->reg_lock);
1620 mutex_unlock(&cm->open_mutex);
1621 return 0;
1624 static void close_device_check(struct cmipci *cm, int mode)
1626 int ch = mode & CM_OPEN_CH_MASK;
1628 mutex_lock(&cm->open_mutex);
1629 if (cm->opened[ch] == mode) {
1630 if (cm->channel[ch].substream) {
1631 snd_cmipci_ch_reset(cm, ch);
1632 cm->channel[ch].running = 0;
1633 cm->channel[ch].substream = NULL;
1635 cm->opened[ch] = 0;
1636 if (! cm->channel[ch].is_dac) {
1637 /* enable dual DAC mode again */
1638 cm->channel[ch].is_dac = 1;
1639 spin_lock_irq(&cm->reg_lock);
1640 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1641 spin_unlock_irq(&cm->reg_lock);
1644 mutex_unlock(&cm->open_mutex);
1650 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1652 struct cmipci *cm = snd_pcm_substream_chip(substream);
1653 struct snd_pcm_runtime *runtime = substream->runtime;
1654 int err;
1656 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1657 return err;
1658 runtime->hw = snd_cmipci_playback;
1659 if (cm->chip_version == 68) {
1660 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1661 SNDRV_PCM_RATE_96000;
1662 runtime->hw.rate_max = 96000;
1663 } else if (cm->chip_version == 55) {
1664 err = snd_pcm_hw_constraint_list(runtime, 0,
1665 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1666 if (err < 0)
1667 return err;
1668 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1669 runtime->hw.rate_max = 128000;
1671 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1672 cm->dig_pcm_status = cm->dig_status;
1673 return 0;
1676 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1678 struct cmipci *cm = snd_pcm_substream_chip(substream);
1679 struct snd_pcm_runtime *runtime = substream->runtime;
1680 int err;
1682 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1683 return err;
1684 runtime->hw = snd_cmipci_capture;
1685 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1686 runtime->hw.rate_min = 41000;
1687 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1688 } else if (cm->chip_version == 55) {
1689 err = snd_pcm_hw_constraint_list(runtime, 0,
1690 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1691 if (err < 0)
1692 return err;
1693 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1694 runtime->hw.rate_max = 128000;
1696 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1697 return 0;
1700 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1702 struct cmipci *cm = snd_pcm_substream_chip(substream);
1703 struct snd_pcm_runtime *runtime = substream->runtime;
1704 int err;
1706 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1707 return err;
1708 runtime->hw = snd_cmipci_playback2;
1709 mutex_lock(&cm->open_mutex);
1710 if (! cm->opened[CM_CH_PLAY]) {
1711 if (cm->can_multi_ch) {
1712 runtime->hw.channels_max = cm->max_channels;
1713 if (cm->max_channels == 4)
1714 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1715 else if (cm->max_channels == 6)
1716 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1717 else if (cm->max_channels == 8)
1718 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1721 mutex_unlock(&cm->open_mutex);
1722 if (cm->chip_version == 68) {
1723 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1724 SNDRV_PCM_RATE_96000;
1725 runtime->hw.rate_max = 96000;
1726 } else if (cm->chip_version == 55) {
1727 err = snd_pcm_hw_constraint_list(runtime, 0,
1728 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1729 if (err < 0)
1730 return err;
1731 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1732 runtime->hw.rate_max = 128000;
1734 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1735 return 0;
1738 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1740 struct cmipci *cm = snd_pcm_substream_chip(substream);
1741 struct snd_pcm_runtime *runtime = substream->runtime;
1742 int err;
1744 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1745 return err;
1746 if (cm->can_ac3_hw) {
1747 runtime->hw = snd_cmipci_playback_spdif;
1748 if (cm->chip_version >= 37) {
1749 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1750 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1752 if (cm->can_96k) {
1753 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1754 SNDRV_PCM_RATE_96000;
1755 runtime->hw.rate_max = 96000;
1757 } else {
1758 runtime->hw = snd_cmipci_playback_iec958_subframe;
1760 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761 cm->dig_pcm_status = cm->dig_status;
1762 return 0;
1765 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1767 struct cmipci *cm = snd_pcm_substream_chip(substream);
1768 struct snd_pcm_runtime *runtime = substream->runtime;
1769 int err;
1771 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1772 return err;
1773 runtime->hw = snd_cmipci_capture_spdif;
1774 if (cm->can_96k && !(cm->chip_version == 68)) {
1775 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1776 SNDRV_PCM_RATE_96000;
1777 runtime->hw.rate_max = 96000;
1779 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1780 return 0;
1787 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1789 struct cmipci *cm = snd_pcm_substream_chip(substream);
1790 close_device_check(cm, CM_OPEN_PLAYBACK);
1791 return 0;
1794 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1796 struct cmipci *cm = snd_pcm_substream_chip(substream);
1797 close_device_check(cm, CM_OPEN_CAPTURE);
1798 return 0;
1801 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1803 struct cmipci *cm = snd_pcm_substream_chip(substream);
1804 close_device_check(cm, CM_OPEN_PLAYBACK2);
1805 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1806 return 0;
1809 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1811 struct cmipci *cm = snd_pcm_substream_chip(substream);
1812 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1813 return 0;
1816 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1818 struct cmipci *cm = snd_pcm_substream_chip(substream);
1819 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1820 return 0;
1827 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1828 .open = snd_cmipci_playback_open,
1829 .close = snd_cmipci_playback_close,
1830 .ioctl = snd_pcm_lib_ioctl,
1831 .hw_params = snd_cmipci_hw_params,
1832 .hw_free = snd_cmipci_playback_hw_free,
1833 .prepare = snd_cmipci_playback_prepare,
1834 .trigger = snd_cmipci_playback_trigger,
1835 .pointer = snd_cmipci_playback_pointer,
1838 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1839 .open = snd_cmipci_capture_open,
1840 .close = snd_cmipci_capture_close,
1841 .ioctl = snd_pcm_lib_ioctl,
1842 .hw_params = snd_cmipci_hw_params,
1843 .hw_free = snd_cmipci_hw_free,
1844 .prepare = snd_cmipci_capture_prepare,
1845 .trigger = snd_cmipci_capture_trigger,
1846 .pointer = snd_cmipci_capture_pointer,
1849 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1850 .open = snd_cmipci_playback2_open,
1851 .close = snd_cmipci_playback2_close,
1852 .ioctl = snd_pcm_lib_ioctl,
1853 .hw_params = snd_cmipci_playback2_hw_params,
1854 .hw_free = snd_cmipci_playback2_hw_free,
1855 .prepare = snd_cmipci_capture_prepare, /* channel B */
1856 .trigger = snd_cmipci_capture_trigger, /* channel B */
1857 .pointer = snd_cmipci_capture_pointer, /* channel B */
1860 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1861 .open = snd_cmipci_playback_spdif_open,
1862 .close = snd_cmipci_playback_spdif_close,
1863 .ioctl = snd_pcm_lib_ioctl,
1864 .hw_params = snd_cmipci_hw_params,
1865 .hw_free = snd_cmipci_playback_hw_free,
1866 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1867 .trigger = snd_cmipci_playback_trigger,
1868 .pointer = snd_cmipci_playback_pointer,
1871 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1872 .open = snd_cmipci_capture_spdif_open,
1873 .close = snd_cmipci_capture_spdif_close,
1874 .ioctl = snd_pcm_lib_ioctl,
1875 .hw_params = snd_cmipci_hw_params,
1876 .hw_free = snd_cmipci_capture_spdif_hw_free,
1877 .prepare = snd_cmipci_capture_spdif_prepare,
1878 .trigger = snd_cmipci_capture_trigger,
1879 .pointer = snd_cmipci_capture_pointer,
1886 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1888 struct snd_pcm *pcm;
1889 int err;
1891 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1892 if (err < 0)
1893 return err;
1895 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1896 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1898 pcm->private_data = cm;
1899 pcm->info_flags = 0;
1900 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1901 cm->pcm = pcm;
1903 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1904 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1906 return 0;
1909 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1911 struct snd_pcm *pcm;
1912 int err;
1914 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1915 if (err < 0)
1916 return err;
1918 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1920 pcm->private_data = cm;
1921 pcm->info_flags = 0;
1922 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1923 cm->pcm2 = pcm;
1925 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1926 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1928 return 0;
1931 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1933 struct snd_pcm *pcm;
1934 int err;
1936 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1937 if (err < 0)
1938 return err;
1940 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1941 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1943 pcm->private_data = cm;
1944 pcm->info_flags = 0;
1945 strcpy(pcm->name, "C-Media PCI IEC958");
1946 cm->pcm_spdif = pcm;
1948 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1949 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1951 return 0;
1955 * mixer interface:
1956 * - CM8338/8738 has a compatible mixer interface with SB16, but
1957 * lack of some elements like tone control, i/o gain and AGC.
1958 * - Access to native registers:
1959 * - A 3D switch
1960 * - Output mute switches
1963 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1965 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1966 outb(data, s->iobase + CM_REG_SB16_DATA);
1969 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1971 unsigned char v;
1973 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1974 v = inb(s->iobase + CM_REG_SB16_DATA);
1975 return v;
1979 * general mixer element
1981 struct cmipci_sb_reg {
1982 unsigned int left_reg, right_reg;
1983 unsigned int left_shift, right_shift;
1984 unsigned int mask;
1985 unsigned int invert: 1;
1986 unsigned int stereo: 1;
1989 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1990 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1992 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1993 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1994 .info = snd_cmipci_info_volume, \
1995 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1996 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1999 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2000 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2001 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2002 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2004 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2006 r->left_reg = val & 0xff;
2007 r->right_reg = (val >> 8) & 0xff;
2008 r->left_shift = (val >> 16) & 0x07;
2009 r->right_shift = (val >> 19) & 0x07;
2010 r->invert = (val >> 22) & 1;
2011 r->stereo = (val >> 23) & 1;
2012 r->mask = (val >> 24) & 0xff;
2015 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2016 struct snd_ctl_elem_info *uinfo)
2018 struct cmipci_sb_reg reg;
2020 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2021 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2022 uinfo->count = reg.stereo + 1;
2023 uinfo->value.integer.min = 0;
2024 uinfo->value.integer.max = reg.mask;
2025 return 0;
2028 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2029 struct snd_ctl_elem_value *ucontrol)
2031 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032 struct cmipci_sb_reg reg;
2033 int val;
2035 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2036 spin_lock_irq(&cm->reg_lock);
2037 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2038 if (reg.invert)
2039 val = reg.mask - val;
2040 ucontrol->value.integer.value[0] = val;
2041 if (reg.stereo) {
2042 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2043 if (reg.invert)
2044 val = reg.mask - val;
2045 ucontrol->value.integer.value[1] = val;
2047 spin_unlock_irq(&cm->reg_lock);
2048 return 0;
2051 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2052 struct snd_ctl_elem_value *ucontrol)
2054 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2055 struct cmipci_sb_reg reg;
2056 int change;
2057 int left, right, oleft, oright;
2059 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2060 left = ucontrol->value.integer.value[0] & reg.mask;
2061 if (reg.invert)
2062 left = reg.mask - left;
2063 left <<= reg.left_shift;
2064 if (reg.stereo) {
2065 right = ucontrol->value.integer.value[1] & reg.mask;
2066 if (reg.invert)
2067 right = reg.mask - right;
2068 right <<= reg.right_shift;
2069 } else
2070 right = 0;
2071 spin_lock_irq(&cm->reg_lock);
2072 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2073 left |= oleft & ~(reg.mask << reg.left_shift);
2074 change = left != oleft;
2075 if (reg.stereo) {
2076 if (reg.left_reg != reg.right_reg) {
2077 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2078 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2079 } else
2080 oright = left;
2081 right |= oright & ~(reg.mask << reg.right_shift);
2082 change |= right != oright;
2083 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2084 } else
2085 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2086 spin_unlock_irq(&cm->reg_lock);
2087 return change;
2091 * input route (left,right) -> (left,right)
2093 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2094 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2095 .info = snd_cmipci_info_input_sw, \
2096 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2097 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2100 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2101 struct snd_ctl_elem_info *uinfo)
2103 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2104 uinfo->count = 4;
2105 uinfo->value.integer.min = 0;
2106 uinfo->value.integer.max = 1;
2107 return 0;
2110 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2111 struct snd_ctl_elem_value *ucontrol)
2113 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2114 struct cmipci_sb_reg reg;
2115 int val1, val2;
2117 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2118 spin_lock_irq(&cm->reg_lock);
2119 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2120 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2121 spin_unlock_irq(&cm->reg_lock);
2122 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2123 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2124 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2125 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2126 return 0;
2129 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2130 struct snd_ctl_elem_value *ucontrol)
2132 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2133 struct cmipci_sb_reg reg;
2134 int change;
2135 int val1, val2, oval1, oval2;
2137 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138 spin_lock_irq(&cm->reg_lock);
2139 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2142 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2143 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2144 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2145 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2146 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2147 change = val1 != oval1 || val2 != oval2;
2148 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2149 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2150 spin_unlock_irq(&cm->reg_lock);
2151 return change;
2155 * native mixer switches/volumes
2158 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160 .info = snd_cmipci_info_native_mixer, \
2161 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2165 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167 .info = snd_cmipci_info_native_mixer, \
2168 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2172 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174 .info = snd_cmipci_info_native_mixer, \
2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2179 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181 .info = snd_cmipci_info_native_mixer, \
2182 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2186 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2187 struct snd_ctl_elem_info *uinfo)
2189 struct cmipci_sb_reg reg;
2191 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2192 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2193 uinfo->count = reg.stereo + 1;
2194 uinfo->value.integer.min = 0;
2195 uinfo->value.integer.max = reg.mask;
2196 return 0;
2200 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2201 struct snd_ctl_elem_value *ucontrol)
2203 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2204 struct cmipci_sb_reg reg;
2205 unsigned char oreg, val;
2207 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2208 spin_lock_irq(&cm->reg_lock);
2209 oreg = inb(cm->iobase + reg.left_reg);
2210 val = (oreg >> reg.left_shift) & reg.mask;
2211 if (reg.invert)
2212 val = reg.mask - val;
2213 ucontrol->value.integer.value[0] = val;
2214 if (reg.stereo) {
2215 val = (oreg >> reg.right_shift) & reg.mask;
2216 if (reg.invert)
2217 val = reg.mask - val;
2218 ucontrol->value.integer.value[1] = val;
2220 spin_unlock_irq(&cm->reg_lock);
2221 return 0;
2224 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2225 struct snd_ctl_elem_value *ucontrol)
2227 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2228 struct cmipci_sb_reg reg;
2229 unsigned char oreg, nreg, val;
2231 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2232 spin_lock_irq(&cm->reg_lock);
2233 oreg = inb(cm->iobase + reg.left_reg);
2234 val = ucontrol->value.integer.value[0] & reg.mask;
2235 if (reg.invert)
2236 val = reg.mask - val;
2237 nreg = oreg & ~(reg.mask << reg.left_shift);
2238 nreg |= (val << reg.left_shift);
2239 if (reg.stereo) {
2240 val = ucontrol->value.integer.value[1] & reg.mask;
2241 if (reg.invert)
2242 val = reg.mask - val;
2243 nreg &= ~(reg.mask << reg.right_shift);
2244 nreg |= (val << reg.right_shift);
2246 outb(nreg, cm->iobase + reg.left_reg);
2247 spin_unlock_irq(&cm->reg_lock);
2248 return (nreg != oreg);
2252 * special case - check mixer sensitivity
2254 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2255 struct snd_ctl_elem_value *ucontrol)
2257 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2258 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2261 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_value *ucontrol)
2264 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2265 if (cm->mixer_insensitive) {
2266 /* ignored */
2267 return 0;
2269 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2273 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2274 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2275 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2276 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2277 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2278 { /* switch with sensitivity */
2279 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2280 .name = "PCM Playback Switch",
2281 .info = snd_cmipci_info_native_mixer,
2282 .get = snd_cmipci_get_native_mixer_sensitive,
2283 .put = snd_cmipci_put_native_mixer_sensitive,
2284 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2286 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2287 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2288 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2289 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2290 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2291 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2292 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2293 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2294 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2295 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2296 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2297 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2298 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2299 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2300 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2301 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2302 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2303 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2304 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2305 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2306 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2307 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2308 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2312 * other switches
2315 struct cmipci_switch_args {
2316 int reg; /* register index */
2317 unsigned int mask; /* mask bits */
2318 unsigned int mask_on; /* mask bits to turn on */
2319 unsigned int is_byte: 1; /* byte access? */
2320 unsigned int ac3_sensitive: 1; /* access forbidden during
2321 * non-audio operation?
2325 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2327 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2328 struct snd_ctl_elem_value *ucontrol,
2329 struct cmipci_switch_args *args)
2331 unsigned int val;
2332 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2334 spin_lock_irq(&cm->reg_lock);
2335 if (args->ac3_sensitive && cm->mixer_insensitive) {
2336 ucontrol->value.integer.value[0] = 0;
2337 spin_unlock_irq(&cm->reg_lock);
2338 return 0;
2340 if (args->is_byte)
2341 val = inb(cm->iobase + args->reg);
2342 else
2343 val = snd_cmipci_read(cm, args->reg);
2344 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2345 spin_unlock_irq(&cm->reg_lock);
2346 return 0;
2349 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2350 struct snd_ctl_elem_value *ucontrol)
2352 struct cmipci_switch_args *args;
2353 args = (struct cmipci_switch_args *)kcontrol->private_value;
2354 if (snd_BUG_ON(!args))
2355 return -EINVAL;
2356 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2359 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2360 struct snd_ctl_elem_value *ucontrol,
2361 struct cmipci_switch_args *args)
2363 unsigned int val;
2364 int change;
2365 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2367 spin_lock_irq(&cm->reg_lock);
2368 if (args->ac3_sensitive && cm->mixer_insensitive) {
2369 /* ignored */
2370 spin_unlock_irq(&cm->reg_lock);
2371 return 0;
2373 if (args->is_byte)
2374 val = inb(cm->iobase + args->reg);
2375 else
2376 val = snd_cmipci_read(cm, args->reg);
2377 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2378 args->mask_on : (args->mask & ~args->mask_on));
2379 if (change) {
2380 val &= ~args->mask;
2381 if (ucontrol->value.integer.value[0])
2382 val |= args->mask_on;
2383 else
2384 val |= (args->mask & ~args->mask_on);
2385 if (args->is_byte)
2386 outb((unsigned char)val, cm->iobase + args->reg);
2387 else
2388 snd_cmipci_write(cm, args->reg, val);
2390 spin_unlock_irq(&cm->reg_lock);
2391 return change;
2394 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2395 struct snd_ctl_elem_value *ucontrol)
2397 struct cmipci_switch_args *args;
2398 args = (struct cmipci_switch_args *)kcontrol->private_value;
2399 if (snd_BUG_ON(!args))
2400 return -EINVAL;
2401 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2404 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2405 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2406 .reg = xreg, \
2407 .mask = xmask, \
2408 .mask_on = xmask_on, \
2409 .is_byte = xis_byte, \
2410 .ac3_sensitive = xac3, \
2413 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2414 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2416 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2417 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2418 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2419 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2420 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2421 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2422 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2423 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2424 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2425 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2426 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2427 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2428 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2429 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2430 #if CM_CH_PLAY == 1
2431 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2432 #else
2433 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2434 #endif
2435 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2436 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2437 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2438 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2439 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2441 #define DEFINE_SWITCH(sname, stype, sarg) \
2442 { .name = sname, \
2443 .iface = stype, \
2444 .info = snd_cmipci_uswitch_info, \
2445 .get = snd_cmipci_uswitch_get, \
2446 .put = snd_cmipci_uswitch_put, \
2447 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2450 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2451 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2455 * callbacks for spdif output switch
2456 * needs toggle two registers..
2458 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2459 struct snd_ctl_elem_value *ucontrol)
2461 int changed;
2462 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464 return changed;
2467 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2468 struct snd_ctl_elem_value *ucontrol)
2470 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2471 int changed;
2472 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2473 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2474 if (changed) {
2475 if (ucontrol->value.integer.value[0]) {
2476 if (chip->spdif_playback_avail)
2477 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2478 } else {
2479 if (chip->spdif_playback_avail)
2480 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2483 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2484 return changed;
2488 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2489 struct snd_ctl_elem_info *uinfo)
2491 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2492 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2493 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2494 uinfo->count = 1;
2495 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2496 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2497 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2498 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2499 return 0;
2502 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2504 unsigned int val;
2505 if (cm->chip_version >= 39) {
2506 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2507 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2508 return 2;
2510 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2511 if (val & CM_REAR2LIN)
2512 return 1;
2513 return 0;
2516 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2517 struct snd_ctl_elem_value *ucontrol)
2519 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2521 spin_lock_irq(&cm->reg_lock);
2522 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2523 spin_unlock_irq(&cm->reg_lock);
2524 return 0;
2527 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2528 struct snd_ctl_elem_value *ucontrol)
2530 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2531 int change;
2533 spin_lock_irq(&cm->reg_lock);
2534 if (ucontrol->value.enumerated.item[0] == 2)
2535 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2536 else
2537 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2538 if (ucontrol->value.enumerated.item[0] == 1)
2539 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2540 else
2541 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2542 spin_unlock_irq(&cm->reg_lock);
2543 return change;
2546 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2547 struct snd_ctl_elem_info *uinfo)
2549 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2550 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2551 uinfo->count = 1;
2552 uinfo->value.enumerated.items = 2;
2553 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2554 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2555 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2556 return 0;
2559 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2560 struct snd_ctl_elem_value *ucontrol)
2562 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2563 /* same bit as spdi_phase */
2564 spin_lock_irq(&cm->reg_lock);
2565 ucontrol->value.enumerated.item[0] =
2566 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2567 spin_unlock_irq(&cm->reg_lock);
2568 return 0;
2571 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2572 struct snd_ctl_elem_value *ucontrol)
2574 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2575 int change;
2577 spin_lock_irq(&cm->reg_lock);
2578 if (ucontrol->value.enumerated.item[0])
2579 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2580 else
2581 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2582 spin_unlock_irq(&cm->reg_lock);
2583 return change;
2586 /* both for CM8338/8738 */
2587 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2588 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2590 .name = "Line-In Mode",
2591 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2592 .info = snd_cmipci_line_in_mode_info,
2593 .get = snd_cmipci_line_in_mode_get,
2594 .put = snd_cmipci_line_in_mode_put,
2598 /* for non-multichannel chips */
2599 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2600 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2602 /* only for CM8738 */
2603 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2604 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2605 { .name = "IEC958 Output Switch",
2606 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2607 .info = snd_cmipci_uswitch_info,
2608 .get = snd_cmipci_spdout_enable_get,
2609 .put = snd_cmipci_spdout_enable_put,
2611 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2612 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2613 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2614 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2615 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2616 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2619 /* only for model 033/037 */
2620 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2621 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2622 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2623 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2626 /* only for model 039 or later */
2627 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2628 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2629 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2631 .name = "Mic-In Mode",
2632 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2633 .info = snd_cmipci_mic_in_mode_info,
2634 .get = snd_cmipci_mic_in_mode_get,
2635 .put = snd_cmipci_mic_in_mode_put,
2639 /* card control switches */
2640 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2641 DEFINE_CARD_SWITCH("Modem", modem);
2644 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2646 struct snd_card *card;
2647 struct snd_kcontrol_new *sw;
2648 struct snd_kcontrol *kctl;
2649 unsigned int idx;
2650 int err;
2652 if (snd_BUG_ON(!cm || !cm->card))
2653 return -EINVAL;
2655 card = cm->card;
2657 strcpy(card->mixername, "CMedia PCI");
2659 spin_lock_irq(&cm->reg_lock);
2660 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2661 spin_unlock_irq(&cm->reg_lock);
2663 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2664 if (cm->chip_version == 68) { // 8768 has no PCM volume
2665 if (!strcmp(snd_cmipci_mixers[idx].name,
2666 "PCM Playback Volume"))
2667 continue;
2669 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2670 return err;
2673 /* mixer switches */
2674 sw = snd_cmipci_mixer_switches;
2675 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2676 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2677 if (err < 0)
2678 return err;
2680 if (! cm->can_multi_ch) {
2681 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2682 if (err < 0)
2683 return err;
2685 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2686 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2687 sw = snd_cmipci_8738_mixer_switches;
2688 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2689 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2690 if (err < 0)
2691 return err;
2693 if (cm->can_ac3_hw) {
2694 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2695 return err;
2696 kctl->id.device = pcm_spdif_device;
2697 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2698 return err;
2699 kctl->id.device = pcm_spdif_device;
2700 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2701 return err;
2702 kctl->id.device = pcm_spdif_device;
2704 if (cm->chip_version <= 37) {
2705 sw = snd_cmipci_old_mixer_switches;
2706 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2707 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2708 if (err < 0)
2709 return err;
2713 if (cm->chip_version >= 39) {
2714 sw = snd_cmipci_extra_mixer_switches;
2715 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2716 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717 if (err < 0)
2718 return err;
2722 /* card switches */
2724 * newer chips don't have the register bits to force modem link
2725 * detection; the bit that was FLINKON now mutes CH1
2727 if (cm->chip_version < 39) {
2728 err = snd_ctl_add(cm->card,
2729 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2730 if (err < 0)
2731 return err;
2734 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2735 struct snd_ctl_elem_id elem_id;
2736 struct snd_kcontrol *ctl;
2737 memset(&elem_id, 0, sizeof(elem_id));
2738 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2739 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2740 ctl = snd_ctl_find_id(cm->card, &elem_id);
2741 if (ctl)
2742 cm->mixer_res_ctl[idx] = ctl;
2745 return 0;
2750 * proc interface
2753 #ifdef CONFIG_PROC_FS
2754 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2755 struct snd_info_buffer *buffer)
2757 struct cmipci *cm = entry->private_data;
2758 int i, v;
2760 snd_iprintf(buffer, "%s\n", cm->card->longname);
2761 for (i = 0; i < 0x94; i++) {
2762 if (i == 0x28)
2763 i = 0x90;
2764 v = inb(cm->iobase + i);
2765 if (i % 4 == 0)
2766 snd_iprintf(buffer, "\n%02x:", i);
2767 snd_iprintf(buffer, " %02x", v);
2769 snd_iprintf(buffer, "\n");
2772 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2774 struct snd_info_entry *entry;
2776 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2777 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2779 #else /* !CONFIG_PROC_FS */
2780 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2781 #endif
2784 static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2785 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2786 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2787 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2788 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2789 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2790 {0,},
2795 * check chip version and capabilities
2796 * driver name is modified according to the chip model
2798 static void __devinit query_chip(struct cmipci *cm)
2800 unsigned int detect;
2802 /* check reg 0Ch, bit 24-31 */
2803 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2804 if (! detect) {
2805 /* check reg 08h, bit 24-28 */
2806 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2807 switch (detect) {
2808 case 0:
2809 cm->chip_version = 33;
2810 if (cm->do_soft_ac3)
2811 cm->can_ac3_sw = 1;
2812 else
2813 cm->can_ac3_hw = 1;
2814 break;
2815 case CM_CHIP_037:
2816 cm->chip_version = 37;
2817 cm->can_ac3_hw = 1;
2818 break;
2819 default:
2820 cm->chip_version = 39;
2821 cm->can_ac3_hw = 1;
2822 break;
2824 cm->max_channels = 2;
2825 } else {
2826 if (detect & CM_CHIP_039) {
2827 cm->chip_version = 39;
2828 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2829 cm->max_channels = 6;
2830 else
2831 cm->max_channels = 4;
2832 } else if (detect & CM_CHIP_8768) {
2833 cm->chip_version = 68;
2834 cm->max_channels = 8;
2835 cm->can_96k = 1;
2836 } else {
2837 cm->chip_version = 55;
2838 cm->max_channels = 6;
2839 cm->can_96k = 1;
2841 cm->can_ac3_hw = 1;
2842 cm->can_multi_ch = 1;
2846 #ifdef SUPPORT_JOYSTICK
2847 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2849 static int ports[] = { 0x201, 0x200, 0 };
2850 struct gameport *gp;
2851 struct resource *r = NULL;
2852 int i, io_port = 0;
2854 if (joystick_port[dev] == 0)
2855 return -ENODEV;
2857 if (joystick_port[dev] == 1) { /* auto-detect */
2858 for (i = 0; ports[i]; i++) {
2859 io_port = ports[i];
2860 r = request_region(io_port, 1, "CMIPCI gameport");
2861 if (r)
2862 break;
2864 } else {
2865 io_port = joystick_port[dev];
2866 r = request_region(io_port, 1, "CMIPCI gameport");
2869 if (!r) {
2870 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2871 return -EBUSY;
2874 cm->gameport = gp = gameport_allocate_port();
2875 if (!gp) {
2876 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2877 release_and_free_resource(r);
2878 return -ENOMEM;
2880 gameport_set_name(gp, "C-Media Gameport");
2881 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2882 gameport_set_dev_parent(gp, &cm->pci->dev);
2883 gp->io = io_port;
2884 gameport_set_port_data(gp, r);
2886 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888 gameport_register_port(cm->gameport);
2890 return 0;
2893 static void snd_cmipci_free_gameport(struct cmipci *cm)
2895 if (cm->gameport) {
2896 struct resource *r = gameport_get_port_data(cm->gameport);
2898 gameport_unregister_port(cm->gameport);
2899 cm->gameport = NULL;
2901 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2902 release_and_free_resource(r);
2905 #else
2906 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2907 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2908 #endif
2910 static int snd_cmipci_free(struct cmipci *cm)
2912 if (cm->irq >= 0) {
2913 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2914 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2915 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2916 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2917 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2918 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2919 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2921 /* reset mixer */
2922 snd_cmipci_mixer_write(cm, 0, 0);
2924 free_irq(cm->irq, cm);
2927 snd_cmipci_free_gameport(cm);
2928 pci_release_regions(cm->pci);
2929 pci_disable_device(cm->pci);
2930 kfree(cm);
2931 return 0;
2934 static int snd_cmipci_dev_free(struct snd_device *device)
2936 struct cmipci *cm = device->device_data;
2937 return snd_cmipci_free(cm);
2940 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2942 long iosynth;
2943 unsigned int val;
2944 struct snd_opl3 *opl3;
2945 int err;
2947 if (!fm_port)
2948 goto disable_fm;
2950 if (cm->chip_version >= 39) {
2951 /* first try FM regs in PCI port range */
2952 iosynth = cm->iobase + CM_REG_FM_PCI;
2953 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954 OPL3_HW_OPL3, 1, &opl3);
2955 } else {
2956 err = -EIO;
2958 if (err < 0) {
2959 /* then try legacy ports */
2960 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2961 iosynth = fm_port;
2962 switch (iosynth) {
2963 case 0x3E8: val |= CM_FMSEL_3E8; break;
2964 case 0x3E0: val |= CM_FMSEL_3E0; break;
2965 case 0x3C8: val |= CM_FMSEL_3C8; break;
2966 case 0x388: val |= CM_FMSEL_388; break;
2967 default:
2968 goto disable_fm;
2970 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2971 /* enable FM */
2972 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2974 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2975 OPL3_HW_OPL3, 0, &opl3) < 0) {
2976 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2977 "skipping...\n", iosynth);
2978 goto disable_fm;
2981 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2982 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2983 return err;
2985 return 0;
2987 disable_fm:
2988 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2989 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2990 return 0;
2993 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2994 int dev, struct cmipci **rcmipci)
2996 struct cmipci *cm;
2997 int err;
2998 static struct snd_device_ops ops = {
2999 .dev_free = snd_cmipci_dev_free,
3001 unsigned int val;
3002 long iomidi = 0;
3003 int integrated_midi = 0;
3004 char modelstr[16];
3005 int pcm_index, pcm_spdif_index;
3006 static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3007 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3008 { },
3011 *rcmipci = NULL;
3013 if ((err = pci_enable_device(pci)) < 0)
3014 return err;
3016 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3017 if (cm == NULL) {
3018 pci_disable_device(pci);
3019 return -ENOMEM;
3022 spin_lock_init(&cm->reg_lock);
3023 mutex_init(&cm->open_mutex);
3024 cm->device = pci->device;
3025 cm->card = card;
3026 cm->pci = pci;
3027 cm->irq = -1;
3028 cm->channel[0].ch = 0;
3029 cm->channel[1].ch = 1;
3030 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3032 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3033 kfree(cm);
3034 pci_disable_device(pci);
3035 return err;
3037 cm->iobase = pci_resource_start(pci, 0);
3039 if (request_irq(pci->irq, snd_cmipci_interrupt,
3040 IRQF_SHARED, card->driver, cm)) {
3041 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3042 snd_cmipci_free(cm);
3043 return -EBUSY;
3045 cm->irq = pci->irq;
3047 pci_set_master(cm->pci);
3050 * check chip version, max channels and capabilities
3053 cm->chip_version = 0;
3054 cm->max_channels = 2;
3055 cm->do_soft_ac3 = soft_ac3[dev];
3057 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3058 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3059 query_chip(cm);
3060 /* added -MCx suffix for chip supporting multi-channels */
3061 if (cm->can_multi_ch)
3062 sprintf(cm->card->driver + strlen(cm->card->driver),
3063 "-MC%d", cm->max_channels);
3064 else if (cm->can_ac3_sw)
3065 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3067 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3068 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3070 #if CM_CH_PLAY == 1
3071 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3072 #else
3073 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3074 #endif
3076 /* initialize codec registers */
3077 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3078 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3079 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3080 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3081 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3082 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3083 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3085 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3086 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3087 #if CM_CH_PLAY == 1
3088 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3089 #else
3090 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091 #endif
3092 if (cm->chip_version) {
3093 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3094 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3096 /* Set Bus Master Request */
3097 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3099 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3100 switch (pci->device) {
3101 case PCI_DEVICE_ID_CMEDIA_CM8738:
3102 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103 if (!pci_dev_present(intel_82437vx))
3104 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3105 break;
3106 default:
3107 break;
3110 if (cm->chip_version < 68) {
3111 val = pci->device < 0x110 ? 8338 : 8738;
3112 } else {
3113 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3114 case 0:
3115 val = 8769;
3116 break;
3117 case 2:
3118 val = 8762;
3119 break;
3120 default:
3121 switch ((pci->subsystem_vendor << 16) |
3122 pci->subsystem_device) {
3123 case 0x13f69761:
3124 case 0x584d3741:
3125 case 0x584d3751:
3126 case 0x584d3761:
3127 case 0x584d3771:
3128 case 0x72848384:
3129 val = 8770;
3130 break;
3131 default:
3132 val = 8768;
3133 break;
3137 sprintf(card->shortname, "C-Media CMI%d", val);
3138 if (cm->chip_version < 68)
3139 sprintf(modelstr, " (model %d)", cm->chip_version);
3140 else
3141 modelstr[0] = '\0';
3142 sprintf(card->longname, "%s%s at %#lx, irq %i",
3143 card->shortname, modelstr, cm->iobase, cm->irq);
3145 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3146 snd_cmipci_free(cm);
3147 return err;
3150 if (cm->chip_version >= 39) {
3151 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3152 if (val != 0x00 && val != 0xff) {
3153 iomidi = cm->iobase + CM_REG_MPU_PCI;
3154 integrated_midi = 1;
3157 if (!integrated_midi) {
3158 val = 0;
3159 iomidi = mpu_port[dev];
3160 switch (iomidi) {
3161 case 0x320: val = CM_VMPU_320; break;
3162 case 0x310: val = CM_VMPU_310; break;
3163 case 0x300: val = CM_VMPU_300; break;
3164 case 0x330: val = CM_VMPU_330; break;
3165 default:
3166 iomidi = 0; break;
3168 if (iomidi > 0) {
3169 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3170 /* enable UART */
3171 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3172 if (inb(iomidi + 1) == 0xff) {
3173 snd_printk(KERN_ERR "cannot enable MPU-401 port"
3174 " at %#lx\n", iomidi);
3175 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3176 CM_UART_EN);
3177 iomidi = 0;
3182 if (cm->chip_version < 68) {
3183 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3184 if (err < 0)
3185 return err;
3188 /* reset mixer */
3189 snd_cmipci_mixer_write(cm, 0, 0);
3191 snd_cmipci_proc_init(cm);
3193 /* create pcm devices */
3194 pcm_index = pcm_spdif_index = 0;
3195 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3196 return err;
3197 pcm_index++;
3198 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3199 return err;
3200 pcm_index++;
3201 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3202 pcm_spdif_index = pcm_index;
3203 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3204 return err;
3207 /* create mixer interface & switches */
3208 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3209 return err;
3211 if (iomidi > 0) {
3212 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3213 iomidi,
3214 (integrated_midi ?
3215 MPU401_INFO_INTEGRATED : 0),
3216 cm->irq, 0, &cm->rmidi)) < 0) {
3217 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3221 #ifdef USE_VAR48KRATE
3222 for (val = 0; val < ARRAY_SIZE(rates); val++)
3223 snd_cmipci_set_pll(cm, rates[val], val);
3226 * (Re-)Enable external switch spdo_48k
3228 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3229 #endif /* USE_VAR48KRATE */
3231 if (snd_cmipci_create_gameport(cm, dev) < 0)
3232 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3234 snd_card_set_dev(card, &pci->dev);
3236 *rcmipci = cm;
3237 return 0;
3243 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3245 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3246 const struct pci_device_id *pci_id)
3248 static int dev;
3249 struct snd_card *card;
3250 struct cmipci *cm;
3251 int err;
3253 if (dev >= SNDRV_CARDS)
3254 return -ENODEV;
3255 if (! enable[dev]) {
3256 dev++;
3257 return -ENOENT;
3260 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3261 if (err < 0)
3262 return err;
3264 switch (pci->device) {
3265 case PCI_DEVICE_ID_CMEDIA_CM8738:
3266 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3267 strcpy(card->driver, "CMI8738");
3268 break;
3269 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3270 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3271 strcpy(card->driver, "CMI8338");
3272 break;
3273 default:
3274 strcpy(card->driver, "CMIPCI");
3275 break;
3278 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3279 snd_card_free(card);
3280 return err;
3282 card->private_data = cm;
3284 if ((err = snd_card_register(card)) < 0) {
3285 snd_card_free(card);
3286 return err;
3288 pci_set_drvdata(pci, card);
3289 dev++;
3290 return 0;
3294 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3296 snd_card_free(pci_get_drvdata(pci));
3297 pci_set_drvdata(pci, NULL);
3301 #ifdef CONFIG_PM
3303 * power management
3305 static unsigned char saved_regs[] = {
3306 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3307 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3308 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3309 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3310 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3313 static unsigned char saved_mixers[] = {
3314 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3315 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3316 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3317 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3318 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3319 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3320 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3321 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3324 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3326 struct snd_card *card = pci_get_drvdata(pci);
3327 struct cmipci *cm = card->private_data;
3328 int i;
3330 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3332 snd_pcm_suspend_all(cm->pcm);
3333 snd_pcm_suspend_all(cm->pcm2);
3334 snd_pcm_suspend_all(cm->pcm_spdif);
3336 /* save registers */
3337 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3338 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3339 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3340 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3342 /* disable ints */
3343 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3345 pci_disable_device(pci);
3346 pci_save_state(pci);
3347 pci_set_power_state(pci, pci_choose_state(pci, state));
3348 return 0;
3351 static int snd_cmipci_resume(struct pci_dev *pci)
3353 struct snd_card *card = pci_get_drvdata(pci);
3354 struct cmipci *cm = card->private_data;
3355 int i;
3357 pci_set_power_state(pci, PCI_D0);
3358 pci_restore_state(pci);
3359 if (pci_enable_device(pci) < 0) {
3360 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3361 "disabling device\n");
3362 snd_card_disconnect(card);
3363 return -EIO;
3365 pci_set_master(pci);
3367 /* reset / initialize to a sane state */
3368 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3369 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3370 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3371 snd_cmipci_mixer_write(cm, 0, 0);
3373 /* restore registers */
3374 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3375 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3376 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3377 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3379 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3380 return 0;
3382 #endif /* CONFIG_PM */
3384 static struct pci_driver driver = {
3385 .name = "C-Media PCI",
3386 .id_table = snd_cmipci_ids,
3387 .probe = snd_cmipci_probe,
3388 .remove = __devexit_p(snd_cmipci_remove),
3389 #ifdef CONFIG_PM
3390 .suspend = snd_cmipci_suspend,
3391 .resume = snd_cmipci_resume,
3392 #endif
3395 static int __init alsa_card_cmipci_init(void)
3397 return pci_register_driver(&driver);
3400 static void __exit alsa_card_cmipci_exit(void)
3402 pci_unregister_driver(&driver);
3405 module_init(alsa_card_cmipci_init)
3406 module_exit(alsa_card_cmipci_exit)