RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / xfs / linux-2.6 / xfs_file.c
blobba8ad422a16506fdea605c7a215e572b3b3a8f6a
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
41 static const struct vm_operations_struct xfs_file_vm_ops;
44 * xfs_iozero
46 * xfs_iozero clears the specified range of buffer supplied,
47 * and marks all the affected blocks as valid and modified. If
48 * an affected block is not allocated, it will be allocated. If
49 * an affected block is not completely overwritten, and is not
50 * valid before the operation, it will be read from disk before
51 * being partially zeroed.
53 STATIC int
54 xfs_iozero(
55 struct xfs_inode *ip, /* inode */
56 loff_t pos, /* offset in file */
57 size_t count) /* size of data to zero */
59 struct page *page;
60 struct address_space *mapping;
61 int status;
63 mapping = VFS_I(ip)->i_mapping;
64 do {
65 unsigned offset, bytes;
66 void *fsdata;
68 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
69 bytes = PAGE_CACHE_SIZE - offset;
70 if (bytes > count)
71 bytes = count;
73 status = pagecache_write_begin(NULL, mapping, pos, bytes,
74 AOP_FLAG_UNINTERRUPTIBLE,
75 &page, &fsdata);
76 if (status)
77 break;
79 zero_user(page, offset, bytes);
81 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
82 page, fsdata);
83 WARN_ON(status <= 0); /* can't return less than zero! */
84 pos += bytes;
85 count -= bytes;
86 status = 0;
87 } while (count);
89 return (-status);
92 STATIC int
93 xfs_file_fsync(
94 struct file *file,
95 int datasync)
97 struct inode *inode = file->f_mapping->host;
98 struct xfs_inode *ip = XFS_I(inode);
99 struct xfs_trans *tp;
100 int error = 0;
101 int log_flushed = 0;
103 trace_xfs_file_fsync(ip);
105 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
106 return -XFS_ERROR(EIO);
108 xfs_iflags_clear(ip, XFS_ITRUNCATED);
110 xfs_ioend_wait(ip);
113 * We always need to make sure that the required inode state is safe on
114 * disk. The inode might be clean but we still might need to force the
115 * log because of committed transactions that haven't hit the disk yet.
116 * Likewise, there could be unflushed non-transactional changes to the
117 * inode core that have to go to disk and this requires us to issue
118 * a synchronous transaction to capture these changes correctly.
120 * This code relies on the assumption that if the i_update_core field
121 * of the inode is clear and the inode is unpinned then it is clean
122 * and no action is required.
124 xfs_ilock(ip, XFS_ILOCK_SHARED);
127 * First check if the VFS inode is marked dirty. All the dirtying
128 * of non-transactional updates no goes through mark_inode_dirty*,
129 * which allows us to distinguish beteeen pure timestamp updates
130 * and i_size updates which need to be caught for fdatasync.
131 * After that also theck for the dirty state in the XFS inode, which
132 * might gets cleared when the inode gets written out via the AIL
133 * or xfs_iflush_cluster.
135 if (((inode->i_state & I_DIRTY_DATASYNC) ||
136 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
137 ip->i_update_core) {
139 * Kick off a transaction to log the inode core to get the
140 * updates. The sync transaction will also force the log.
142 xfs_iunlock(ip, XFS_ILOCK_SHARED);
143 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
144 error = xfs_trans_reserve(tp, 0,
145 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
146 if (error) {
147 xfs_trans_cancel(tp, 0);
148 return -error;
150 xfs_ilock(ip, XFS_ILOCK_EXCL);
153 * Note - it's possible that we might have pushed ourselves out
154 * of the way during trans_reserve which would flush the inode.
155 * But there's no guarantee that the inode buffer has actually
156 * gone out yet (it's delwri). Plus the buffer could be pinned
157 * anyway if it's part of an inode in another recent
158 * transaction. So we play it safe and fire off the
159 * transaction anyway.
161 xfs_trans_ijoin(tp, ip);
162 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
163 xfs_trans_set_sync(tp);
164 error = _xfs_trans_commit(tp, 0, &log_flushed);
166 xfs_iunlock(ip, XFS_ILOCK_EXCL);
167 } else {
169 * Timestamps/size haven't changed since last inode flush or
170 * inode transaction commit. That means either nothing got
171 * written or a transaction committed which caught the updates.
172 * If the latter happened and the transaction hasn't hit the
173 * disk yet, the inode will be still be pinned. If it is,
174 * force the log.
176 if (xfs_ipincount(ip)) {
177 error = _xfs_log_force_lsn(ip->i_mount,
178 ip->i_itemp->ili_last_lsn,
179 XFS_LOG_SYNC, &log_flushed);
181 xfs_iunlock(ip, XFS_ILOCK_SHARED);
184 if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
186 * If the log write didn't issue an ordered tag we need
187 * to flush the disk cache for the data device now.
189 if (!log_flushed)
190 xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
193 * If this inode is on the RT dev we need to flush that
194 * cache as well.
196 if (XFS_IS_REALTIME_INODE(ip))
197 xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
200 return -error;
203 STATIC ssize_t
204 xfs_file_aio_read(
205 struct kiocb *iocb,
206 const struct iovec *iovp,
207 unsigned long nr_segs,
208 loff_t pos)
210 struct file *file = iocb->ki_filp;
211 struct inode *inode = file->f_mapping->host;
212 struct xfs_inode *ip = XFS_I(inode);
213 struct xfs_mount *mp = ip->i_mount;
214 size_t size = 0;
215 ssize_t ret = 0;
216 int ioflags = 0;
217 xfs_fsize_t n;
218 unsigned long seg;
220 XFS_STATS_INC(xs_read_calls);
222 BUG_ON(iocb->ki_pos != pos);
224 if (unlikely(file->f_flags & O_DIRECT))
225 ioflags |= IO_ISDIRECT;
226 if (file->f_mode & FMODE_NOCMTIME)
227 ioflags |= IO_INVIS;
229 /* START copy & waste from filemap.c */
230 for (seg = 0; seg < nr_segs; seg++) {
231 const struct iovec *iv = &iovp[seg];
234 * If any segment has a negative length, or the cumulative
235 * length ever wraps negative then return -EINVAL.
237 size += iv->iov_len;
238 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
239 return XFS_ERROR(-EINVAL);
241 /* END copy & waste from filemap.c */
243 if (unlikely(ioflags & IO_ISDIRECT)) {
244 xfs_buftarg_t *target =
245 XFS_IS_REALTIME_INODE(ip) ?
246 mp->m_rtdev_targp : mp->m_ddev_targp;
247 if ((iocb->ki_pos & target->bt_smask) ||
248 (size & target->bt_smask)) {
249 if (iocb->ki_pos == ip->i_size)
250 return 0;
251 return -XFS_ERROR(EINVAL);
255 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
256 if (n <= 0 || size == 0)
257 return 0;
259 if (n < size)
260 size = n;
262 if (XFS_FORCED_SHUTDOWN(mp))
263 return -EIO;
265 if (unlikely(ioflags & IO_ISDIRECT))
266 mutex_lock(&inode->i_mutex);
267 xfs_ilock(ip, XFS_IOLOCK_SHARED);
269 if (unlikely(ioflags & IO_ISDIRECT)) {
270 if (inode->i_mapping->nrpages) {
271 ret = -xfs_flushinval_pages(ip,
272 (iocb->ki_pos & PAGE_CACHE_MASK),
273 -1, FI_REMAPF_LOCKED);
275 mutex_unlock(&inode->i_mutex);
276 if (ret) {
277 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
278 return ret;
282 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
284 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
285 if (ret > 0)
286 XFS_STATS_ADD(xs_read_bytes, ret);
288 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
289 return ret;
292 STATIC ssize_t
293 xfs_file_splice_read(
294 struct file *infilp,
295 loff_t *ppos,
296 struct pipe_inode_info *pipe,
297 size_t count,
298 unsigned int flags)
300 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
301 int ioflags = 0;
302 ssize_t ret;
304 XFS_STATS_INC(xs_read_calls);
306 if (infilp->f_mode & FMODE_NOCMTIME)
307 ioflags |= IO_INVIS;
309 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
310 return -EIO;
312 xfs_ilock(ip, XFS_IOLOCK_SHARED);
314 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
316 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
317 if (ret > 0)
318 XFS_STATS_ADD(xs_read_bytes, ret);
320 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
321 return ret;
324 STATIC ssize_t
325 xfs_file_splice_write(
326 struct pipe_inode_info *pipe,
327 struct file *outfilp,
328 loff_t *ppos,
329 size_t count,
330 unsigned int flags)
332 struct inode *inode = outfilp->f_mapping->host;
333 struct xfs_inode *ip = XFS_I(inode);
334 xfs_fsize_t isize, new_size;
335 int ioflags = 0;
336 ssize_t ret;
338 XFS_STATS_INC(xs_write_calls);
340 if (outfilp->f_mode & FMODE_NOCMTIME)
341 ioflags |= IO_INVIS;
343 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
344 return -EIO;
346 xfs_ilock(ip, XFS_IOLOCK_EXCL);
348 new_size = *ppos + count;
350 xfs_ilock(ip, XFS_ILOCK_EXCL);
351 if (new_size > ip->i_size)
352 ip->i_new_size = new_size;
353 xfs_iunlock(ip, XFS_ILOCK_EXCL);
355 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
357 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
358 if (ret > 0)
359 XFS_STATS_ADD(xs_write_bytes, ret);
361 isize = i_size_read(inode);
362 if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
363 *ppos = isize;
365 if (*ppos > ip->i_size) {
366 xfs_ilock(ip, XFS_ILOCK_EXCL);
367 if (*ppos > ip->i_size)
368 ip->i_size = *ppos;
369 xfs_iunlock(ip, XFS_ILOCK_EXCL);
372 if (ip->i_new_size) {
373 xfs_ilock(ip, XFS_ILOCK_EXCL);
374 ip->i_new_size = 0;
375 if (ip->i_d.di_size > ip->i_size)
376 ip->i_d.di_size = ip->i_size;
377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
379 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
380 return ret;
384 * This routine is called to handle zeroing any space in the last
385 * block of the file that is beyond the EOF. We do this since the
386 * size is being increased without writing anything to that block
387 * and we don't want anyone to read the garbage on the disk.
389 STATIC int /* error (positive) */
390 xfs_zero_last_block(
391 xfs_inode_t *ip,
392 xfs_fsize_t offset,
393 xfs_fsize_t isize)
395 xfs_fileoff_t last_fsb;
396 xfs_mount_t *mp = ip->i_mount;
397 int nimaps;
398 int zero_offset;
399 int zero_len;
400 int error = 0;
401 xfs_bmbt_irec_t imap;
403 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
405 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406 if (zero_offset == 0) {
408 * There are no extra bytes in the last block on disk to
409 * zero, so return.
411 return 0;
414 last_fsb = XFS_B_TO_FSBT(mp, isize);
415 nimaps = 1;
416 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
417 &nimaps, NULL);
418 if (error) {
419 return error;
421 ASSERT(nimaps > 0);
423 * If the block underlying isize is just a hole, then there
424 * is nothing to zero.
426 if (imap.br_startblock == HOLESTARTBLOCK) {
427 return 0;
430 * Zero the part of the last block beyond the EOF, and write it
431 * out sync. We need to drop the ilock while we do this so we
432 * don't deadlock when the buffer cache calls back to us.
434 xfs_iunlock(ip, XFS_ILOCK_EXCL);
436 zero_len = mp->m_sb.sb_blocksize - zero_offset;
437 if (isize + zero_len > offset)
438 zero_len = offset - isize;
439 error = xfs_iozero(ip, isize, zero_len);
441 xfs_ilock(ip, XFS_ILOCK_EXCL);
442 ASSERT(error >= 0);
443 return error;
447 * Zero any on disk space between the current EOF and the new,
448 * larger EOF. This handles the normal case of zeroing the remainder
449 * of the last block in the file and the unusual case of zeroing blocks
450 * out beyond the size of the file. This second case only happens
451 * with fixed size extents and when the system crashes before the inode
452 * size was updated but after blocks were allocated. If fill is set,
453 * then any holes in the range are filled and zeroed. If not, the holes
454 * are left alone as holes.
457 int /* error (positive) */
458 xfs_zero_eof(
459 xfs_inode_t *ip,
460 xfs_off_t offset, /* starting I/O offset */
461 xfs_fsize_t isize) /* current inode size */
463 xfs_mount_t *mp = ip->i_mount;
464 xfs_fileoff_t start_zero_fsb;
465 xfs_fileoff_t end_zero_fsb;
466 xfs_fileoff_t zero_count_fsb;
467 xfs_fileoff_t last_fsb;
468 xfs_fileoff_t zero_off;
469 xfs_fsize_t zero_len;
470 int nimaps;
471 int error = 0;
472 xfs_bmbt_irec_t imap;
474 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
475 ASSERT(offset > isize);
478 * First handle zeroing the block on which isize resides.
479 * We only zero a part of that block so it is handled specially.
481 error = xfs_zero_last_block(ip, offset, isize);
482 if (error) {
483 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
484 return error;
488 * Calculate the range between the new size and the old
489 * where blocks needing to be zeroed may exist. To get the
490 * block where the last byte in the file currently resides,
491 * we need to subtract one from the size and truncate back
492 * to a block boundary. We subtract 1 in case the size is
493 * exactly on a block boundary.
495 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
496 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
497 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
498 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
499 if (last_fsb == end_zero_fsb) {
501 * The size was only incremented on its last block.
502 * We took care of that above, so just return.
504 return 0;
507 ASSERT(start_zero_fsb <= end_zero_fsb);
508 while (start_zero_fsb <= end_zero_fsb) {
509 nimaps = 1;
510 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
511 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
512 0, NULL, 0, &imap, &nimaps, NULL);
513 if (error) {
514 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
515 return error;
517 ASSERT(nimaps > 0);
519 if (imap.br_state == XFS_EXT_UNWRITTEN ||
520 imap.br_startblock == HOLESTARTBLOCK) {
522 * This loop handles initializing pages that were
523 * partially initialized by the code below this
524 * loop. It basically zeroes the part of the page
525 * that sits on a hole and sets the page as P_HOLE
526 * and calls remapf if it is a mapped file.
528 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
529 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
530 continue;
534 * There are blocks we need to zero.
535 * Drop the inode lock while we're doing the I/O.
536 * We'll still have the iolock to protect us.
538 xfs_iunlock(ip, XFS_ILOCK_EXCL);
540 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
541 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
543 if ((zero_off + zero_len) > offset)
544 zero_len = offset - zero_off;
546 error = xfs_iozero(ip, zero_off, zero_len);
547 if (error) {
548 goto out_lock;
551 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
552 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
554 xfs_ilock(ip, XFS_ILOCK_EXCL);
557 return 0;
559 out_lock:
560 xfs_ilock(ip, XFS_ILOCK_EXCL);
561 ASSERT(error >= 0);
562 return error;
565 STATIC ssize_t
566 xfs_file_aio_write(
567 struct kiocb *iocb,
568 const struct iovec *iovp,
569 unsigned long nr_segs,
570 loff_t pos)
572 struct file *file = iocb->ki_filp;
573 struct address_space *mapping = file->f_mapping;
574 struct inode *inode = mapping->host;
575 struct xfs_inode *ip = XFS_I(inode);
576 struct xfs_mount *mp = ip->i_mount;
577 ssize_t ret = 0, error = 0;
578 int ioflags = 0;
579 xfs_fsize_t isize, new_size;
580 int iolock;
581 size_t ocount = 0, count;
582 int need_i_mutex;
584 XFS_STATS_INC(xs_write_calls);
586 BUG_ON(iocb->ki_pos != pos);
588 if (unlikely(file->f_flags & O_DIRECT))
589 ioflags |= IO_ISDIRECT;
590 if (file->f_mode & FMODE_NOCMTIME)
591 ioflags |= IO_INVIS;
593 error = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
594 if (error)
595 return error;
597 count = ocount;
598 if (count == 0)
599 return 0;
601 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
603 if (XFS_FORCED_SHUTDOWN(mp))
604 return -EIO;
606 relock:
607 if (ioflags & IO_ISDIRECT) {
608 iolock = XFS_IOLOCK_SHARED;
609 need_i_mutex = 0;
610 } else {
611 iolock = XFS_IOLOCK_EXCL;
612 need_i_mutex = 1;
613 mutex_lock(&inode->i_mutex);
616 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
618 start:
619 error = -generic_write_checks(file, &pos, &count,
620 S_ISBLK(inode->i_mode));
621 if (error) {
622 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
623 goto out_unlock_mutex;
626 if (ioflags & IO_ISDIRECT) {
627 xfs_buftarg_t *target =
628 XFS_IS_REALTIME_INODE(ip) ?
629 mp->m_rtdev_targp : mp->m_ddev_targp;
631 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
632 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
633 return XFS_ERROR(-EINVAL);
636 if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) {
637 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
638 iolock = XFS_IOLOCK_EXCL;
639 need_i_mutex = 1;
640 mutex_lock(&inode->i_mutex);
641 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
642 goto start;
646 new_size = pos + count;
647 if (new_size > ip->i_size)
648 ip->i_new_size = new_size;
650 if (likely(!(ioflags & IO_INVIS)))
651 file_update_time(file);
654 * If the offset is beyond the size of the file, we have a couple
655 * of things to do. First, if there is already space allocated
656 * we need to either create holes or zero the disk or ...
658 * If there is a page where the previous size lands, we need
659 * to zero it out up to the new size.
662 if (pos > ip->i_size) {
663 error = xfs_zero_eof(ip, pos, ip->i_size);
664 if (error) {
665 xfs_iunlock(ip, XFS_ILOCK_EXCL);
666 goto out_unlock_internal;
669 xfs_iunlock(ip, XFS_ILOCK_EXCL);
672 * If we're writing the file then make sure to clear the
673 * setuid and setgid bits if the process is not being run
674 * by root. This keeps people from modifying setuid and
675 * setgid binaries.
677 error = -file_remove_suid(file);
678 if (unlikely(error))
679 goto out_unlock_internal;
681 /* We can write back this queue in page reclaim */
682 current->backing_dev_info = mapping->backing_dev_info;
684 if ((ioflags & IO_ISDIRECT)) {
685 if (mapping->nrpages) {
686 WARN_ON(need_i_mutex == 0);
687 error = xfs_flushinval_pages(ip,
688 (pos & PAGE_CACHE_MASK),
689 -1, FI_REMAPF_LOCKED);
690 if (error)
691 goto out_unlock_internal;
694 if (need_i_mutex) {
695 /* demote the lock now the cached pages are gone */
696 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
697 mutex_unlock(&inode->i_mutex);
699 iolock = XFS_IOLOCK_SHARED;
700 need_i_mutex = 0;
703 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
704 ret = generic_file_direct_write(iocb, iovp,
705 &nr_segs, pos, &iocb->ki_pos, count, ocount);
708 * direct-io write to a hole: fall through to buffered I/O
709 * for completing the rest of the request.
711 if (ret >= 0 && ret != count) {
712 XFS_STATS_ADD(xs_write_bytes, ret);
714 pos += ret;
715 count -= ret;
717 ioflags &= ~IO_ISDIRECT;
718 xfs_iunlock(ip, iolock);
719 goto relock;
721 } else {
722 int enospc = 0;
723 ssize_t ret2 = 0;
725 write_retry:
726 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
727 ret2 = generic_file_buffered_write(iocb, iovp, nr_segs,
728 pos, &iocb->ki_pos, count, ret);
730 * if we just got an ENOSPC, flush the inode now we
731 * aren't holding any page locks and retry *once*
733 if (ret2 == -ENOSPC && !enospc) {
734 error = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
735 if (error)
736 goto out_unlock_internal;
737 enospc = 1;
738 goto write_retry;
740 ret = ret2;
743 current->backing_dev_info = NULL;
745 isize = i_size_read(inode);
746 if (unlikely(ret < 0 && ret != -EFAULT && iocb->ki_pos > isize))
747 iocb->ki_pos = isize;
749 if (iocb->ki_pos > ip->i_size) {
750 xfs_ilock(ip, XFS_ILOCK_EXCL);
751 if (iocb->ki_pos > ip->i_size)
752 ip->i_size = iocb->ki_pos;
753 xfs_iunlock(ip, XFS_ILOCK_EXCL);
756 error = -ret;
757 if (ret <= 0)
758 goto out_unlock_internal;
760 XFS_STATS_ADD(xs_write_bytes, ret);
762 /* Handle various SYNC-type writes */
763 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
764 loff_t end = pos + ret - 1;
765 int error2;
767 xfs_iunlock(ip, iolock);
768 if (need_i_mutex)
769 mutex_unlock(&inode->i_mutex);
771 error2 = filemap_write_and_wait_range(mapping, pos, end);
772 if (!error)
773 error = error2;
774 if (need_i_mutex)
775 mutex_lock(&inode->i_mutex);
776 xfs_ilock(ip, iolock);
778 error2 = -xfs_file_fsync(file,
779 (file->f_flags & __O_SYNC) ? 0 : 1);
780 if (!error)
781 error = error2;
784 out_unlock_internal:
785 if (ip->i_new_size) {
786 xfs_ilock(ip, XFS_ILOCK_EXCL);
787 ip->i_new_size = 0;
789 * If this was a direct or synchronous I/O that failed (such
790 * as ENOSPC) then part of the I/O may have been written to
791 * disk before the error occured. In this case the on-disk
792 * file size may have been adjusted beyond the in-memory file
793 * size and now needs to be truncated back.
795 if (ip->i_d.di_size > ip->i_size)
796 ip->i_d.di_size = ip->i_size;
797 xfs_iunlock(ip, XFS_ILOCK_EXCL);
799 xfs_iunlock(ip, iolock);
800 out_unlock_mutex:
801 if (need_i_mutex)
802 mutex_unlock(&inode->i_mutex);
803 return -error;
806 STATIC int
807 xfs_file_open(
808 struct inode *inode,
809 struct file *file)
811 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
812 return -EFBIG;
813 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
814 return -EIO;
815 return 0;
818 STATIC int
819 xfs_dir_open(
820 struct inode *inode,
821 struct file *file)
823 struct xfs_inode *ip = XFS_I(inode);
824 int mode;
825 int error;
827 error = xfs_file_open(inode, file);
828 if (error)
829 return error;
832 * If there are any blocks, read-ahead block 0 as we're almost
833 * certain to have the next operation be a read there.
835 mode = xfs_ilock_map_shared(ip);
836 if (ip->i_d.di_nextents > 0)
837 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
838 xfs_iunlock(ip, mode);
839 return 0;
842 STATIC int
843 xfs_file_release(
844 struct inode *inode,
845 struct file *filp)
847 return -xfs_release(XFS_I(inode));
850 STATIC int
851 xfs_file_readdir(
852 struct file *filp,
853 void *dirent,
854 filldir_t filldir)
856 struct inode *inode = filp->f_path.dentry->d_inode;
857 xfs_inode_t *ip = XFS_I(inode);
858 int error;
859 size_t bufsize;
862 * The Linux API doesn't pass down the total size of the buffer
863 * we read into down to the filesystem. With the filldir concept
864 * it's not needed for correct information, but the XFS dir2 leaf
865 * code wants an estimate of the buffer size to calculate it's
866 * readahead window and size the buffers used for mapping to
867 * physical blocks.
869 * Try to give it an estimate that's good enough, maybe at some
870 * point we can change the ->readdir prototype to include the
871 * buffer size. For now we use the current glibc buffer size.
873 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
875 error = xfs_readdir(ip, dirent, bufsize,
876 (xfs_off_t *)&filp->f_pos, filldir);
877 if (error)
878 return -error;
879 return 0;
882 STATIC int
883 xfs_file_mmap(
884 struct file *filp,
885 struct vm_area_struct *vma)
887 vma->vm_ops = &xfs_file_vm_ops;
888 vma->vm_flags |= VM_CAN_NONLINEAR;
890 file_accessed(filp);
891 return 0;
895 * mmap()d file has taken write protection fault and is being made
896 * writable. We can set the page state up correctly for a writable
897 * page, which means we can do correct delalloc accounting (ENOSPC
898 * checking!) and unwritten extent mapping.
900 STATIC int
901 xfs_vm_page_mkwrite(
902 struct vm_area_struct *vma,
903 struct vm_fault *vmf)
905 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
908 const struct file_operations xfs_file_operations = {
909 .llseek = generic_file_llseek,
910 .read = do_sync_read,
911 .write = do_sync_write,
912 .aio_read = xfs_file_aio_read,
913 .aio_write = xfs_file_aio_write,
914 .splice_read = xfs_file_splice_read,
915 .splice_write = xfs_file_splice_write,
916 .unlocked_ioctl = xfs_file_ioctl,
917 #ifdef CONFIG_COMPAT
918 .compat_ioctl = xfs_file_compat_ioctl,
919 #endif
920 .mmap = xfs_file_mmap,
921 .open = xfs_file_open,
922 .release = xfs_file_release,
923 .fsync = xfs_file_fsync,
926 const struct file_operations xfs_dir_file_operations = {
927 .open = xfs_dir_open,
928 .read = generic_read_dir,
929 .readdir = xfs_file_readdir,
930 .llseek = generic_file_llseek,
931 .unlocked_ioctl = xfs_file_ioctl,
932 #ifdef CONFIG_COMPAT
933 .compat_ioctl = xfs_file_compat_ioctl,
934 #endif
935 .fsync = xfs_file_fsync,
938 static const struct vm_operations_struct xfs_file_vm_ops = {
939 .fault = filemap_fault,
940 .page_mkwrite = xfs_vm_page_mkwrite,