RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / gfs2 / aops.c
bloba6f81d991dea52ffe71a7f77b87c35823e4cca07
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 unsigned int from, unsigned int to)
42 struct buffer_head *head = page_buffers(page);
43 unsigned int bsize = head->b_size;
44 struct buffer_head *bh;
45 unsigned int start, end;
47 for (bh = head, start = 0; bh != head || !start;
48 bh = bh->b_this_page, start = end) {
49 end = start + bsize;
50 if (end <= from || start >= to)
51 continue;
52 if (gfs2_is_jdata(ip))
53 set_buffer_uptodate(bh);
54 gfs2_trans_add_bh(ip->i_gl, bh, 0);
58 /**
59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60 * @inode: The inode
61 * @lblock: The block number to look up
62 * @bh_result: The buffer head to return the result in
63 * @create: Non-zero if we may add block to the file
65 * Returns: errno
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 struct buffer_head *bh_result, int create)
71 int error;
73 error = gfs2_block_map(inode, lblock, bh_result, 0);
74 if (error)
75 return error;
76 if (!buffer_mapped(bh_result))
77 return -EIO;
78 return 0;
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 struct buffer_head *bh_result, int create)
84 return gfs2_block_map(inode, lblock, bh_result, 0);
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 unsigned offset;
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_CACHE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0);
113 goto out;
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
124 * gfs2_writeback_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
130 static int gfs2_writeback_writepage(struct page *page,
131 struct writeback_control *wbc)
133 int ret;
135 ret = gfs2_writepage_common(page, wbc);
136 if (ret <= 0)
137 return ret;
139 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
143 * gfs2_ordered_writepage - Write page for ordered data files
144 * @page: The page to write
145 * @wbc: The writeback control
149 static int gfs2_ordered_writepage(struct page *page,
150 struct writeback_control *wbc)
152 struct inode *inode = page->mapping->host;
153 struct gfs2_inode *ip = GFS2_I(inode);
154 int ret;
156 ret = gfs2_writepage_common(page, wbc);
157 if (ret <= 0)
158 return ret;
160 if (!page_has_buffers(page)) {
161 create_empty_buffers(page, inode->i_sb->s_blocksize,
162 (1 << BH_Dirty)|(1 << BH_Uptodate));
164 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 * __gfs2_jdata_writepage - The core of jdata writepage
170 * @page: The page to write
171 * @wbc: The writeback control
173 * This is shared between writepage and writepages and implements the
174 * core of the writepage operation. If a transaction is required then
175 * PageChecked will have been set and the transaction will have
176 * already been started before this is called.
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 struct inode *inode = page->mapping->host;
182 struct gfs2_inode *ip = GFS2_I(inode);
183 struct gfs2_sbd *sdp = GFS2_SB(inode);
185 if (PageChecked(page)) {
186 ClearPageChecked(page);
187 if (!page_has_buffers(page)) {
188 create_empty_buffers(page, inode->i_sb->s_blocksize,
189 (1 << BH_Dirty)|(1 << BH_Uptodate));
191 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
193 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
197 * gfs2_jdata_writepage - Write complete page
198 * @page: Page to write
200 * Returns: errno
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
206 struct inode *inode = page->mapping->host;
207 struct gfs2_sbd *sdp = GFS2_SB(inode);
208 int ret;
209 int done_trans = 0;
211 if (PageChecked(page)) {
212 if (wbc->sync_mode != WB_SYNC_ALL)
213 goto out_ignore;
214 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215 if (ret)
216 goto out_ignore;
217 done_trans = 1;
219 ret = gfs2_writepage_common(page, wbc);
220 if (ret > 0)
221 ret = __gfs2_jdata_writepage(page, wbc);
222 if (done_trans)
223 gfs2_trans_end(sdp);
224 return ret;
226 out_ignore:
227 redirty_page_for_writepage(wbc, page);
228 unlock_page(page);
229 return 0;
233 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
234 * @mapping: The mapping to write
235 * @wbc: Write-back control
237 * For the data=writeback case we can already ignore buffer heads
238 * and write whole extents at once. This is a big reduction in the
239 * number of I/O requests we send and the bmap calls we make in this case.
241 static int gfs2_writeback_writepages(struct address_space *mapping,
242 struct writeback_control *wbc)
244 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
248 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249 * @mapping: The mapping
250 * @wbc: The writeback control
251 * @writepage: The writepage function to call for each page
252 * @pvec: The vector of pages
253 * @nr_pages: The number of pages to write
255 * Returns: non-zero if loop should terminate, zero otherwise
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259 struct writeback_control *wbc,
260 struct pagevec *pvec,
261 int nr_pages, pgoff_t end)
263 struct inode *inode = mapping->host;
264 struct gfs2_sbd *sdp = GFS2_SB(inode);
265 loff_t i_size = i_size_read(inode);
266 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
267 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
268 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
269 int i;
270 int ret;
272 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273 if (ret < 0)
274 return ret;
276 for(i = 0; i < nr_pages; i++) {
277 struct page *page = pvec->pages[i];
279 lock_page(page);
281 if (unlikely(page->mapping != mapping)) {
282 unlock_page(page);
283 continue;
286 if (!wbc->range_cyclic && page->index > end) {
287 ret = 1;
288 unlock_page(page);
289 continue;
292 if (wbc->sync_mode != WB_SYNC_NONE)
293 wait_on_page_writeback(page);
295 if (PageWriteback(page) ||
296 !clear_page_dirty_for_io(page)) {
297 unlock_page(page);
298 continue;
301 /* Is the page fully outside i_size? (truncate in progress) */
302 if (page->index > end_index || (page->index == end_index && !offset)) {
303 page->mapping->a_ops->invalidatepage(page, 0);
304 unlock_page(page);
305 continue;
308 ret = __gfs2_jdata_writepage(page, wbc);
310 if (ret || (--(wbc->nr_to_write) <= 0))
311 ret = 1;
313 gfs2_trans_end(sdp);
314 return ret;
318 * gfs2_write_cache_jdata - Like write_cache_pages but different
319 * @mapping: The mapping to write
320 * @wbc: The writeback control
321 * @writepage: The writepage function to call
322 * @data: The data to pass to writepage
324 * The reason that we use our own function here is that we need to
325 * start transactions before we grab page locks. This allows us
326 * to get the ordering right.
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330 struct writeback_control *wbc)
332 int ret = 0;
333 int done = 0;
334 struct pagevec pvec;
335 int nr_pages;
336 pgoff_t index;
337 pgoff_t end;
338 int scanned = 0;
339 int range_whole = 0;
341 pagevec_init(&pvec, 0);
342 if (wbc->range_cyclic) {
343 index = mapping->writeback_index; /* Start from prev offset */
344 end = -1;
345 } else {
346 index = wbc->range_start >> PAGE_CACHE_SHIFT;
347 end = wbc->range_end >> PAGE_CACHE_SHIFT;
348 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349 range_whole = 1;
350 scanned = 1;
353 retry:
354 while (!done && (index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_DIRTY,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358 scanned = 1;
359 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360 if (ret)
361 done = 1;
362 if (ret > 0)
363 ret = 0;
365 pagevec_release(&pvec);
366 cond_resched();
369 if (!scanned && !done) {
371 * We hit the last page and there is more work to be done: wrap
372 * back to the start of the file
374 scanned = 1;
375 index = 0;
376 goto retry;
379 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380 mapping->writeback_index = index;
381 return ret;
386 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387 * @mapping: The mapping to write
388 * @wbc: The writeback control
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393 struct writeback_control *wbc)
395 struct gfs2_inode *ip = GFS2_I(mapping->host);
396 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397 int ret;
399 ret = gfs2_write_cache_jdata(mapping, wbc);
400 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401 gfs2_log_flush(sdp, ip->i_gl);
402 ret = gfs2_write_cache_jdata(mapping, wbc);
404 return ret;
408 * stuffed_readpage - Fill in a Linux page with stuffed file data
409 * @ip: the inode
410 * @page: the page
412 * Returns: errno
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
417 struct buffer_head *dibh;
418 u64 dsize = i_size_read(&ip->i_inode);
419 void *kaddr;
420 int error;
423 * Due to the order of unstuffing files and ->fault(), we can be
424 * asked for a zero page in the case of a stuffed file being extended,
425 * so we need to supply one here. It doesn't happen often.
427 if (unlikely(page->index)) {
428 zero_user(page, 0, PAGE_CACHE_SIZE);
429 SetPageUptodate(page);
430 return 0;
433 error = gfs2_meta_inode_buffer(ip, &dibh);
434 if (error)
435 return error;
437 kaddr = kmap_atomic(page, KM_USER0);
438 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442 kunmap_atomic(kaddr, KM_USER0);
443 flush_dcache_page(page);
444 brelse(dibh);
445 SetPageUptodate(page);
447 return 0;
452 * __gfs2_readpage - readpage
453 * @file: The file to read a page for
454 * @page: The page to read
456 * This is the core of gfs2's readpage. Its used by the internal file
457 * reading code as in that case we already hold the glock. Also its
458 * called by gfs2_readpage() once the required lock has been granted.
462 static int __gfs2_readpage(void *file, struct page *page)
464 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466 int error;
468 if (gfs2_is_stuffed(ip)) {
469 error = stuffed_readpage(ip, page);
470 unlock_page(page);
471 } else {
472 error = mpage_readpage(page, gfs2_block_map);
475 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476 return -EIO;
478 return error;
482 * gfs2_readpage - read a page of a file
483 * @file: The file to read
484 * @page: The page of the file
486 * This deals with the locking required. We have to unlock and
487 * relock the page in order to get the locking in the right
488 * order.
491 static int gfs2_readpage(struct file *file, struct page *page)
493 struct address_space *mapping = page->mapping;
494 struct gfs2_inode *ip = GFS2_I(mapping->host);
495 struct gfs2_holder gh;
496 int error;
498 unlock_page(page);
499 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500 error = gfs2_glock_nq(&gh);
501 if (unlikely(error))
502 goto out;
503 error = AOP_TRUNCATED_PAGE;
504 lock_page(page);
505 if (page->mapping == mapping && !PageUptodate(page))
506 error = __gfs2_readpage(file, page);
507 else
508 unlock_page(page);
509 gfs2_glock_dq(&gh);
510 out:
511 gfs2_holder_uninit(&gh);
512 if (error && error != AOP_TRUNCATED_PAGE)
513 lock_page(page);
514 return error;
518 * gfs2_internal_read - read an internal file
519 * @ip: The gfs2 inode
520 * @ra_state: The readahead state (or NULL for no readahead)
521 * @buf: The buffer to fill
522 * @pos: The file position
523 * @size: The amount to read
527 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
528 char *buf, loff_t *pos, unsigned size)
530 struct address_space *mapping = ip->i_inode.i_mapping;
531 unsigned long index = *pos / PAGE_CACHE_SIZE;
532 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
533 unsigned copied = 0;
534 unsigned amt;
535 struct page *page;
536 void *p;
538 do {
539 amt = size - copied;
540 if (offset + size > PAGE_CACHE_SIZE)
541 amt = PAGE_CACHE_SIZE - offset;
542 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
545 p = kmap_atomic(page, KM_USER0);
546 memcpy(buf + copied, p + offset, amt);
547 kunmap_atomic(p, KM_USER0);
548 mark_page_accessed(page);
549 page_cache_release(page);
550 copied += amt;
551 index++;
552 offset = 0;
553 } while(copied < size);
554 (*pos) += size;
555 return size;
559 * gfs2_readpages - Read a bunch of pages at once
561 * Some notes:
562 * 1. This is only for readahead, so we can simply ignore any things
563 * which are slightly inconvenient (such as locking conflicts between
564 * the page lock and the glock) and return having done no I/O. Its
565 * obviously not something we'd want to do on too regular a basis.
566 * Any I/O we ignore at this time will be done via readpage later.
567 * 2. We don't handle stuffed files here we let readpage do the honours.
568 * 3. mpage_readpages() does most of the heavy lifting in the common case.
569 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
572 static int gfs2_readpages(struct file *file, struct address_space *mapping,
573 struct list_head *pages, unsigned nr_pages)
575 struct inode *inode = mapping->host;
576 struct gfs2_inode *ip = GFS2_I(inode);
577 struct gfs2_sbd *sdp = GFS2_SB(inode);
578 struct gfs2_holder gh;
579 int ret;
581 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
582 ret = gfs2_glock_nq(&gh);
583 if (unlikely(ret))
584 goto out_uninit;
585 if (!gfs2_is_stuffed(ip))
586 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
587 gfs2_glock_dq(&gh);
588 out_uninit:
589 gfs2_holder_uninit(&gh);
590 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
591 ret = -EIO;
592 return ret;
596 * gfs2_write_begin - Begin to write to a file
597 * @file: The file to write to
598 * @mapping: The mapping in which to write
599 * @pos: The file offset at which to start writing
600 * @len: Length of the write
601 * @flags: Various flags
602 * @pagep: Pointer to return the page
603 * @fsdata: Pointer to return fs data (unused by GFS2)
605 * Returns: errno
608 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
609 loff_t pos, unsigned len, unsigned flags,
610 struct page **pagep, void **fsdata)
612 struct gfs2_inode *ip = GFS2_I(mapping->host);
613 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
614 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
615 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
616 int alloc_required;
617 int error = 0;
618 struct gfs2_alloc *al;
619 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
620 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
621 unsigned to = from + len;
622 struct page *page;
624 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
625 error = gfs2_glock_nq(&ip->i_gh);
626 if (unlikely(error))
627 goto out_uninit;
628 if (&ip->i_inode == sdp->sd_rindex) {
629 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
630 GL_NOCACHE, &m_ip->i_gh);
631 if (unlikely(error)) {
632 gfs2_glock_dq(&ip->i_gh);
633 goto out_uninit;
637 alloc_required = gfs2_write_alloc_required(ip, pos, len);
639 if (alloc_required || gfs2_is_jdata(ip))
640 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
642 if (alloc_required) {
643 al = gfs2_alloc_get(ip);
644 if (!al) {
645 error = -ENOMEM;
646 goto out_unlock;
649 error = gfs2_quota_lock_check(ip);
650 if (error)
651 goto out_alloc_put;
653 al->al_requested = data_blocks + ind_blocks;
654 error = gfs2_inplace_reserve(ip);
655 if (error)
656 goto out_qunlock;
659 rblocks = RES_DINODE + ind_blocks;
660 if (gfs2_is_jdata(ip))
661 rblocks += data_blocks ? data_blocks : 1;
662 if (ind_blocks || data_blocks)
663 rblocks += RES_STATFS + RES_QUOTA;
664 if (&ip->i_inode == sdp->sd_rindex)
665 rblocks += 2 * RES_STATFS;
667 error = gfs2_trans_begin(sdp, rblocks,
668 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
669 if (error)
670 goto out_trans_fail;
672 error = -ENOMEM;
673 flags |= AOP_FLAG_NOFS;
674 page = grab_cache_page_write_begin(mapping, index, flags);
675 *pagep = page;
676 if (unlikely(!page))
677 goto out_endtrans;
679 if (gfs2_is_stuffed(ip)) {
680 error = 0;
681 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
682 error = gfs2_unstuff_dinode(ip, page);
683 if (error == 0)
684 goto prepare_write;
685 } else if (!PageUptodate(page)) {
686 error = stuffed_readpage(ip, page);
688 goto out;
691 prepare_write:
692 error = block_prepare_write(page, from, to, gfs2_block_map);
693 out:
694 if (error == 0)
695 return 0;
697 page_cache_release(page);
699 if (pos + len > ip->i_inode.i_size)
700 truncate_setsize(&ip->i_inode, ip->i_inode.i_size);
701 out_endtrans:
702 gfs2_trans_end(sdp);
703 out_trans_fail:
704 if (alloc_required) {
705 gfs2_inplace_release(ip);
706 out_qunlock:
707 gfs2_quota_unlock(ip);
708 out_alloc_put:
709 gfs2_alloc_put(ip);
711 out_unlock:
712 if (&ip->i_inode == sdp->sd_rindex) {
713 gfs2_glock_dq(&m_ip->i_gh);
714 gfs2_holder_uninit(&m_ip->i_gh);
716 gfs2_glock_dq(&ip->i_gh);
717 out_uninit:
718 gfs2_holder_uninit(&ip->i_gh);
719 return error;
723 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
724 * @inode: the rindex inode
726 static void adjust_fs_space(struct inode *inode)
728 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
729 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
730 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
731 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
732 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
733 struct buffer_head *m_bh, *l_bh;
734 u64 fs_total, new_free;
736 /* Total up the file system space, according to the latest rindex. */
737 fs_total = gfs2_ri_total(sdp);
738 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
739 return;
741 spin_lock(&sdp->sd_statfs_spin);
742 gfs2_statfs_change_in(m_sc, m_bh->b_data +
743 sizeof(struct gfs2_dinode));
744 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
745 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
746 else
747 new_free = 0;
748 spin_unlock(&sdp->sd_statfs_spin);
749 fs_warn(sdp, "File system extended by %llu blocks.\n",
750 (unsigned long long)new_free);
751 gfs2_statfs_change(sdp, new_free, new_free, 0);
753 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
754 goto out;
755 update_statfs(sdp, m_bh, l_bh);
756 brelse(l_bh);
757 out:
758 brelse(m_bh);
762 * gfs2_stuffed_write_end - Write end for stuffed files
763 * @inode: The inode
764 * @dibh: The buffer_head containing the on-disk inode
765 * @pos: The file position
766 * @len: The length of the write
767 * @copied: How much was actually copied by the VFS
768 * @page: The page
770 * This copies the data from the page into the inode block after
771 * the inode data structure itself.
773 * Returns: errno
775 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
776 loff_t pos, unsigned len, unsigned copied,
777 struct page *page)
779 struct gfs2_inode *ip = GFS2_I(inode);
780 struct gfs2_sbd *sdp = GFS2_SB(inode);
781 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
782 u64 to = pos + copied;
783 void *kaddr;
784 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
785 struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
787 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
788 kaddr = kmap_atomic(page, KM_USER0);
789 memcpy(buf + pos, kaddr + pos, copied);
790 memset(kaddr + pos + copied, 0, len - copied);
791 flush_dcache_page(page);
792 kunmap_atomic(kaddr, KM_USER0);
794 if (!PageUptodate(page))
795 SetPageUptodate(page);
796 unlock_page(page);
797 page_cache_release(page);
799 if (copied) {
800 if (inode->i_size < to) {
801 i_size_write(inode, to);
802 ip->i_disksize = inode->i_size;
804 gfs2_dinode_out(ip, di);
805 mark_inode_dirty(inode);
808 if (inode == sdp->sd_rindex) {
809 adjust_fs_space(inode);
810 ip->i_gh.gh_flags |= GL_NOCACHE;
813 brelse(dibh);
814 gfs2_trans_end(sdp);
815 if (inode == sdp->sd_rindex) {
816 gfs2_glock_dq(&m_ip->i_gh);
817 gfs2_holder_uninit(&m_ip->i_gh);
819 gfs2_glock_dq(&ip->i_gh);
820 gfs2_holder_uninit(&ip->i_gh);
821 return copied;
825 * gfs2_write_end
826 * @file: The file to write to
827 * @mapping: The address space to write to
828 * @pos: The file position
829 * @len: The length of the data
830 * @copied:
831 * @page: The page that has been written
832 * @fsdata: The fsdata (unused in GFS2)
834 * The main write_end function for GFS2. We have a separate one for
835 * stuffed files as they are slightly different, otherwise we just
836 * put our locking around the VFS provided functions.
838 * Returns: errno
841 static int gfs2_write_end(struct file *file, struct address_space *mapping,
842 loff_t pos, unsigned len, unsigned copied,
843 struct page *page, void *fsdata)
845 struct inode *inode = page->mapping->host;
846 struct gfs2_inode *ip = GFS2_I(inode);
847 struct gfs2_sbd *sdp = GFS2_SB(inode);
848 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
849 struct buffer_head *dibh;
850 struct gfs2_alloc *al = ip->i_alloc;
851 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
852 unsigned int to = from + len;
853 int ret;
855 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
857 ret = gfs2_meta_inode_buffer(ip, &dibh);
858 if (unlikely(ret)) {
859 unlock_page(page);
860 page_cache_release(page);
861 goto failed;
864 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
866 if (gfs2_is_stuffed(ip))
867 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
869 if (!gfs2_is_writeback(ip))
870 gfs2_page_add_databufs(ip, page, from, to);
872 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
873 if (ret > 0) {
874 if (inode->i_size > ip->i_disksize)
875 ip->i_disksize = inode->i_size;
876 gfs2_dinode_out(ip, dibh->b_data);
877 mark_inode_dirty(inode);
880 if (inode == sdp->sd_rindex) {
881 adjust_fs_space(inode);
882 ip->i_gh.gh_flags |= GL_NOCACHE;
885 brelse(dibh);
886 gfs2_trans_end(sdp);
887 failed:
888 if (al) {
889 gfs2_inplace_release(ip);
890 gfs2_quota_unlock(ip);
891 gfs2_alloc_put(ip);
893 if (inode == sdp->sd_rindex) {
894 gfs2_glock_dq(&m_ip->i_gh);
895 gfs2_holder_uninit(&m_ip->i_gh);
897 gfs2_glock_dq(&ip->i_gh);
898 gfs2_holder_uninit(&ip->i_gh);
899 return ret;
903 * gfs2_set_page_dirty - Page dirtying function
904 * @page: The page to dirty
906 * Returns: 1 if it dirtyed the page, or 0 otherwise
909 static int gfs2_set_page_dirty(struct page *page)
911 SetPageChecked(page);
912 return __set_page_dirty_buffers(page);
916 * gfs2_bmap - Block map function
917 * @mapping: Address space info
918 * @lblock: The block to map
920 * Returns: The disk address for the block or 0 on hole or error
923 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
925 struct gfs2_inode *ip = GFS2_I(mapping->host);
926 struct gfs2_holder i_gh;
927 sector_t dblock = 0;
928 int error;
930 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
931 if (error)
932 return 0;
934 if (!gfs2_is_stuffed(ip))
935 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
937 gfs2_glock_dq_uninit(&i_gh);
939 return dblock;
942 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
944 struct gfs2_bufdata *bd;
946 lock_buffer(bh);
947 gfs2_log_lock(sdp);
948 clear_buffer_dirty(bh);
949 bd = bh->b_private;
950 if (bd) {
951 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
952 list_del_init(&bd->bd_le.le_list);
953 else
954 gfs2_remove_from_journal(bh, current->journal_info, 0);
956 bh->b_bdev = NULL;
957 clear_buffer_mapped(bh);
958 clear_buffer_req(bh);
959 clear_buffer_new(bh);
960 gfs2_log_unlock(sdp);
961 unlock_buffer(bh);
964 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
966 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
967 struct buffer_head *bh, *head;
968 unsigned long pos = 0;
970 BUG_ON(!PageLocked(page));
971 if (offset == 0)
972 ClearPageChecked(page);
973 if (!page_has_buffers(page))
974 goto out;
976 bh = head = page_buffers(page);
977 do {
978 if (offset <= pos)
979 gfs2_discard(sdp, bh);
980 pos += bh->b_size;
981 bh = bh->b_this_page;
982 } while (bh != head);
983 out:
984 if (offset == 0)
985 try_to_release_page(page, 0);
989 * gfs2_ok_for_dio - check that dio is valid on this file
990 * @ip: The inode
991 * @rw: READ or WRITE
992 * @offset: The offset at which we are reading or writing
994 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
995 * 1 (to accept the i/o request)
997 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1000 * Should we return an error here? I can't see that O_DIRECT for
1001 * a stuffed file makes any sense. For now we'll silently fall
1002 * back to buffered I/O
1004 if (gfs2_is_stuffed(ip))
1005 return 0;
1007 if (offset >= i_size_read(&ip->i_inode))
1008 return 0;
1009 return 1;
1014 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1015 const struct iovec *iov, loff_t offset,
1016 unsigned long nr_segs)
1018 struct file *file = iocb->ki_filp;
1019 struct inode *inode = file->f_mapping->host;
1020 struct gfs2_inode *ip = GFS2_I(inode);
1021 struct gfs2_holder gh;
1022 int rv;
1025 * Deferred lock, even if its a write, since we do no allocation
1026 * on this path. All we need change is atime, and this lock mode
1027 * ensures that other nodes have flushed their buffered read caches
1028 * (i.e. their page cache entries for this inode). We do not,
1029 * unfortunately have the option of only flushing a range like
1030 * the VFS does.
1032 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1033 rv = gfs2_glock_nq(&gh);
1034 if (rv)
1035 return rv;
1036 rv = gfs2_ok_for_dio(ip, rw, offset);
1037 if (rv != 1)
1038 goto out; /* dio not valid, fall back to buffered i/o */
1040 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1041 offset, nr_segs, gfs2_get_block_direct,
1042 NULL, NULL, 0);
1043 out:
1044 gfs2_glock_dq_m(1, &gh);
1045 gfs2_holder_uninit(&gh);
1046 return rv;
1050 * gfs2_releasepage - free the metadata associated with a page
1051 * @page: the page that's being released
1052 * @gfp_mask: passed from Linux VFS, ignored by us
1054 * Call try_to_free_buffers() if the buffers in this page can be
1055 * released.
1057 * Returns: 0
1060 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1062 struct address_space *mapping = page->mapping;
1063 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1064 struct buffer_head *bh, *head;
1065 struct gfs2_bufdata *bd;
1067 if (!page_has_buffers(page))
1068 return 0;
1070 gfs2_log_lock(sdp);
1071 head = bh = page_buffers(page);
1072 do {
1073 if (atomic_read(&bh->b_count))
1074 goto cannot_release;
1075 bd = bh->b_private;
1076 if (bd && bd->bd_ail)
1077 goto cannot_release;
1078 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1079 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1080 bh = bh->b_this_page;
1081 } while(bh != head);
1082 gfs2_log_unlock(sdp);
1084 head = bh = page_buffers(page);
1085 do {
1086 gfs2_log_lock(sdp);
1087 bd = bh->b_private;
1088 if (bd) {
1089 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1090 gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1091 if (!list_empty(&bd->bd_le.le_list)) {
1092 if (!buffer_pinned(bh))
1093 list_del_init(&bd->bd_le.le_list);
1094 else
1095 bd = NULL;
1097 if (bd)
1098 bd->bd_bh = NULL;
1099 bh->b_private = NULL;
1101 gfs2_log_unlock(sdp);
1102 if (bd)
1103 kmem_cache_free(gfs2_bufdata_cachep, bd);
1105 bh = bh->b_this_page;
1106 } while (bh != head);
1108 return try_to_free_buffers(page);
1109 cannot_release:
1110 gfs2_log_unlock(sdp);
1111 return 0;
1114 static const struct address_space_operations gfs2_writeback_aops = {
1115 .writepage = gfs2_writeback_writepage,
1116 .writepages = gfs2_writeback_writepages,
1117 .readpage = gfs2_readpage,
1118 .readpages = gfs2_readpages,
1119 .sync_page = block_sync_page,
1120 .write_begin = gfs2_write_begin,
1121 .write_end = gfs2_write_end,
1122 .bmap = gfs2_bmap,
1123 .invalidatepage = gfs2_invalidatepage,
1124 .releasepage = gfs2_releasepage,
1125 .direct_IO = gfs2_direct_IO,
1126 .migratepage = buffer_migrate_page,
1127 .is_partially_uptodate = block_is_partially_uptodate,
1128 .error_remove_page = generic_error_remove_page,
1131 static const struct address_space_operations gfs2_ordered_aops = {
1132 .writepage = gfs2_ordered_writepage,
1133 .readpage = gfs2_readpage,
1134 .readpages = gfs2_readpages,
1135 .sync_page = block_sync_page,
1136 .write_begin = gfs2_write_begin,
1137 .write_end = gfs2_write_end,
1138 .set_page_dirty = gfs2_set_page_dirty,
1139 .bmap = gfs2_bmap,
1140 .invalidatepage = gfs2_invalidatepage,
1141 .releasepage = gfs2_releasepage,
1142 .direct_IO = gfs2_direct_IO,
1143 .migratepage = buffer_migrate_page,
1144 .is_partially_uptodate = block_is_partially_uptodate,
1145 .error_remove_page = generic_error_remove_page,
1148 static const struct address_space_operations gfs2_jdata_aops = {
1149 .writepage = gfs2_jdata_writepage,
1150 .writepages = gfs2_jdata_writepages,
1151 .readpage = gfs2_readpage,
1152 .readpages = gfs2_readpages,
1153 .sync_page = block_sync_page,
1154 .write_begin = gfs2_write_begin,
1155 .write_end = gfs2_write_end,
1156 .set_page_dirty = gfs2_set_page_dirty,
1157 .bmap = gfs2_bmap,
1158 .invalidatepage = gfs2_invalidatepage,
1159 .releasepage = gfs2_releasepage,
1160 .is_partially_uptodate = block_is_partially_uptodate,
1161 .error_remove_page = generic_error_remove_page,
1164 void gfs2_set_aops(struct inode *inode)
1166 struct gfs2_inode *ip = GFS2_I(inode);
1168 if (gfs2_is_writeback(ip))
1169 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1170 else if (gfs2_is_ordered(ip))
1171 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1172 else if (gfs2_is_jdata(ip))
1173 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1174 else
1175 BUG();