RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / usb / core / hcd.c
blob406fcd48291de2da01f58d93904d20f8d2a4f205
1 /* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
47 #include "usb.h"
50 /*-------------------------------------------------------------------------*/
53 * USB Host Controller Driver framework
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
83 /*-------------------------------------------------------------------------*/
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
98 static struct usb_busmap busmap;
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
116 static inline int is_root_hub(struct usb_device *udev)
118 return (udev->parent == NULL);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
129 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
130 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
132 /* usb 3.0 root hub device descriptor */
133 static const u8 usb3_rh_dev_descriptor[18] = {
134 0x12, /* __u8 bLength; */
135 0x01, /* __u8 bDescriptorType; Device */
136 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
139 0x00, /* __u8 bDeviceSubClass; */
140 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
141 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
144 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
147 0x03, /* __u8 iManufacturer; */
148 0x02, /* __u8 iProduct; */
149 0x01, /* __u8 iSerialNumber; */
150 0x01 /* __u8 bNumConfigurations; */
153 /* usb 2.0 root hub device descriptor */
154 static const u8 usb2_rh_dev_descriptor [18] = {
155 0x12, /* __u8 bLength; */
156 0x01, /* __u8 bDescriptorType; Device */
157 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
159 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
160 0x00, /* __u8 bDeviceSubClass; */
161 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
162 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
164 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
165 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
166 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
168 0x03, /* __u8 iManufacturer; */
169 0x02, /* __u8 iProduct; */
170 0x01, /* __u8 iSerialNumber; */
171 0x01 /* __u8 bNumConfigurations; */
174 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
176 /* usb 1.1 root hub device descriptor */
177 static const u8 usb11_rh_dev_descriptor [18] = {
178 0x12, /* __u8 bLength; */
179 0x01, /* __u8 bDescriptorType; Device */
180 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
182 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
183 0x00, /* __u8 bDeviceSubClass; */
184 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
185 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
187 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
188 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
189 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
191 0x03, /* __u8 iManufacturer; */
192 0x02, /* __u8 iProduct; */
193 0x01, /* __u8 iSerialNumber; */
194 0x01 /* __u8 bNumConfigurations; */
198 /*-------------------------------------------------------------------------*/
200 /* Configuration descriptors for our root hubs */
202 static const u8 fs_rh_config_descriptor [] = {
204 /* one configuration */
205 0x09, /* __u8 bLength; */
206 0x02, /* __u8 bDescriptorType; Configuration */
207 0x19, 0x00, /* __le16 wTotalLength; */
208 0x01, /* __u8 bNumInterfaces; (1) */
209 0x01, /* __u8 bConfigurationValue; */
210 0x00, /* __u8 iConfiguration; */
211 0xc0, /* __u8 bmAttributes;
212 Bit 7: must be set,
213 6: Self-powered,
214 5: Remote wakeup,
215 4..0: resvd */
216 0x00, /* __u8 MaxPower; */
218 /* USB 1.1:
219 * USB 2.0, single TT organization (mandatory):
220 * one interface, protocol 0
222 * USB 2.0, multiple TT organization (optional):
223 * two interfaces, protocols 1 (like single TT)
224 * and 2 (multiple TT mode) ... config is
225 * sometimes settable
226 * NOT IMPLEMENTED
229 /* one interface */
230 0x09, /* __u8 if_bLength; */
231 0x04, /* __u8 if_bDescriptorType; Interface */
232 0x00, /* __u8 if_bInterfaceNumber; */
233 0x00, /* __u8 if_bAlternateSetting; */
234 0x01, /* __u8 if_bNumEndpoints; */
235 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
236 0x00, /* __u8 if_bInterfaceSubClass; */
237 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
238 0x00, /* __u8 if_iInterface; */
240 /* one endpoint (status change endpoint) */
241 0x07, /* __u8 ep_bLength; */
242 0x05, /* __u8 ep_bDescriptorType; Endpoint */
243 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
244 0x03, /* __u8 ep_bmAttributes; Interrupt */
245 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
246 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
249 static const u8 hs_rh_config_descriptor [] = {
251 /* one configuration */
252 0x09, /* __u8 bLength; */
253 0x02, /* __u8 bDescriptorType; Configuration */
254 0x19, 0x00, /* __le16 wTotalLength; */
255 0x01, /* __u8 bNumInterfaces; (1) */
256 0x01, /* __u8 bConfigurationValue; */
257 0x00, /* __u8 iConfiguration; */
258 0xc0, /* __u8 bmAttributes;
259 Bit 7: must be set,
260 6: Self-powered,
261 5: Remote wakeup,
262 4..0: resvd */
263 0x00, /* __u8 MaxPower; */
265 /* USB 1.1:
266 * USB 2.0, single TT organization (mandatory):
267 * one interface, protocol 0
269 * USB 2.0, multiple TT organization (optional):
270 * two interfaces, protocols 1 (like single TT)
271 * and 2 (multiple TT mode) ... config is
272 * sometimes settable
273 * NOT IMPLEMENTED
276 /* one interface */
277 0x09, /* __u8 if_bLength; */
278 0x04, /* __u8 if_bDescriptorType; Interface */
279 0x00, /* __u8 if_bInterfaceNumber; */
280 0x00, /* __u8 if_bAlternateSetting; */
281 0x01, /* __u8 if_bNumEndpoints; */
282 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
283 0x00, /* __u8 if_bInterfaceSubClass; */
284 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
285 0x00, /* __u8 if_iInterface; */
287 /* one endpoint (status change endpoint) */
288 0x07, /* __u8 ep_bLength; */
289 0x05, /* __u8 ep_bDescriptorType; Endpoint */
290 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
291 0x03, /* __u8 ep_bmAttributes; Interrupt */
292 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
293 * see hub.c:hub_configure() for details. */
294 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
295 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
298 static const u8 ss_rh_config_descriptor[] = {
299 /* one configuration */
300 0x09, /* __u8 bLength; */
301 0x02, /* __u8 bDescriptorType; Configuration */
302 0x19, 0x00,
303 0x01, /* __u8 bNumInterfaces; (1) */
304 0x01, /* __u8 bConfigurationValue; */
305 0x00, /* __u8 iConfiguration; */
306 0xc0, /* __u8 bmAttributes;
307 Bit 7: must be set,
308 6: Self-powered,
309 5: Remote wakeup,
310 4..0: resvd */
311 0x00, /* __u8 MaxPower; */
313 /* one interface */
314 0x09, /* __u8 if_bLength; */
315 0x04, /* __u8 if_bDescriptorType; Interface */
316 0x00, /* __u8 if_bInterfaceNumber; */
317 0x00, /* __u8 if_bAlternateSetting; */
318 0x01, /* __u8 if_bNumEndpoints; */
319 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
320 0x00, /* __u8 if_bInterfaceSubClass; */
321 0x00, /* __u8 if_bInterfaceProtocol; */
322 0x00, /* __u8 if_iInterface; */
324 /* one endpoint (status change endpoint) */
325 0x07, /* __u8 ep_bLength; */
326 0x05, /* __u8 ep_bDescriptorType; Endpoint */
327 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
328 0x03, /* __u8 ep_bmAttributes; Interrupt */
329 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
330 * see hub.c:hub_configure() for details. */
331 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
332 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
335 /*-------------------------------------------------------------------------*/
338 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
339 * @s: Null-terminated ASCII (actually ISO-8859-1) string
340 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
341 * @len: Length (in bytes; may be odd) of descriptor buffer.
343 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
344 * buflen, whichever is less.
346 * USB String descriptors can contain at most 126 characters; input
347 * strings longer than that are truncated.
349 static unsigned
350 ascii2desc(char const *s, u8 *buf, unsigned len)
352 unsigned n, t = 2 + 2*strlen(s);
354 if (t > 254)
355 t = 254; /* Longest possible UTF string descriptor */
356 if (len > t)
357 len = t;
359 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
361 n = len;
362 while (n--) {
363 *buf++ = t;
364 if (!n--)
365 break;
366 *buf++ = t >> 8;
367 t = (unsigned char)*s++;
369 return len;
373 * rh_string() - provides string descriptors for root hub
374 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
375 * @hcd: the host controller for this root hub
376 * @data: buffer for output packet
377 * @len: length of the provided buffer
379 * Produces either a manufacturer, product or serial number string for the
380 * virtual root hub device.
381 * Returns the number of bytes filled in: the length of the descriptor or
382 * of the provided buffer, whichever is less.
384 static unsigned
385 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
387 char buf[100];
388 char const *s;
389 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
391 // language ids
392 switch (id) {
393 case 0:
394 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
395 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
396 if (len > 4)
397 len = 4;
398 memcpy(data, langids, len);
399 return len;
400 case 1:
401 /* Serial number */
402 s = hcd->self.bus_name;
403 break;
404 case 2:
405 /* Product name */
406 s = hcd->product_desc;
407 break;
408 case 3:
409 /* Manufacturer */
410 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
411 init_utsname()->release, hcd->driver->description);
412 s = buf;
413 break;
414 default:
415 /* Can't happen; caller guarantees it */
416 return 0;
419 return ascii2desc(s, data, len);
423 /* Root hub control transfers execute synchronously */
424 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
426 struct usb_ctrlrequest *cmd;
427 u16 typeReq, wValue, wIndex, wLength;
428 u8 *ubuf = urb->transfer_buffer;
429 u8 tbuf [sizeof (struct usb_hub_descriptor)]
430 __attribute__((aligned(4)));
431 const u8 *bufp = tbuf;
432 unsigned len = 0;
433 int status;
434 u8 patch_wakeup = 0;
435 u8 patch_protocol = 0;
437 might_sleep();
439 spin_lock_irq(&hcd_root_hub_lock);
440 status = usb_hcd_link_urb_to_ep(hcd, urb);
441 spin_unlock_irq(&hcd_root_hub_lock);
442 if (status)
443 return status;
444 urb->hcpriv = hcd; /* Indicate it's queued */
446 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
447 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
448 wValue = le16_to_cpu (cmd->wValue);
449 wIndex = le16_to_cpu (cmd->wIndex);
450 wLength = le16_to_cpu (cmd->wLength);
452 if (wLength > urb->transfer_buffer_length)
453 goto error;
455 urb->actual_length = 0;
456 switch (typeReq) {
458 /* DEVICE REQUESTS */
460 /* The root hub's remote wakeup enable bit is implemented using
461 * driver model wakeup flags. If this system supports wakeup
462 * through USB, userspace may change the default "allow wakeup"
463 * policy through sysfs or these calls.
465 * Most root hubs support wakeup from downstream devices, for
466 * runtime power management (disabling USB clocks and reducing
467 * VBUS power usage). However, not all of them do so; silicon,
468 * board, and BIOS bugs here are not uncommon, so these can't
469 * be treated quite like external hubs.
471 * Likewise, not all root hubs will pass wakeup events upstream,
472 * to wake up the whole system. So don't assume root hub and
473 * controller capabilities are identical.
476 case DeviceRequest | USB_REQ_GET_STATUS:
477 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
478 << USB_DEVICE_REMOTE_WAKEUP)
479 | (1 << USB_DEVICE_SELF_POWERED);
480 tbuf [1] = 0;
481 len = 2;
482 break;
483 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
484 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
485 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
486 else
487 goto error;
488 break;
489 case DeviceOutRequest | USB_REQ_SET_FEATURE:
490 if (device_can_wakeup(&hcd->self.root_hub->dev)
491 && wValue == USB_DEVICE_REMOTE_WAKEUP)
492 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
493 else
494 goto error;
495 break;
496 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
497 tbuf [0] = 1;
498 len = 1;
499 /* FALLTHROUGH */
500 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
501 break;
502 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
503 switch (wValue & 0xff00) {
504 case USB_DT_DEVICE << 8:
505 switch (hcd->driver->flags & HCD_MASK) {
506 case HCD_USB3:
507 bufp = usb3_rh_dev_descriptor;
508 break;
509 case HCD_USB2:
510 bufp = usb2_rh_dev_descriptor;
511 break;
512 case HCD_USB11:
513 bufp = usb11_rh_dev_descriptor;
514 break;
515 default:
516 goto error;
518 len = 18;
519 if (hcd->has_tt)
520 patch_protocol = 1;
521 break;
522 case USB_DT_CONFIG << 8:
523 switch (hcd->driver->flags & HCD_MASK) {
524 case HCD_USB3:
525 bufp = ss_rh_config_descriptor;
526 len = sizeof ss_rh_config_descriptor;
527 break;
528 case HCD_USB2:
529 bufp = hs_rh_config_descriptor;
530 len = sizeof hs_rh_config_descriptor;
531 break;
532 case HCD_USB11:
533 bufp = fs_rh_config_descriptor;
534 len = sizeof fs_rh_config_descriptor;
535 break;
536 default:
537 goto error;
539 if (device_can_wakeup(&hcd->self.root_hub->dev))
540 patch_wakeup = 1;
541 break;
542 case USB_DT_STRING << 8:
543 if ((wValue & 0xff) < 4)
544 urb->actual_length = rh_string(wValue & 0xff,
545 hcd, ubuf, wLength);
546 else /* unsupported IDs --> "protocol stall" */
547 goto error;
548 break;
549 default:
550 goto error;
552 break;
553 case DeviceRequest | USB_REQ_GET_INTERFACE:
554 tbuf [0] = 0;
555 len = 1;
556 /* FALLTHROUGH */
557 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
558 break;
559 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
560 // wValue == urb->dev->devaddr
561 dev_dbg (hcd->self.controller, "root hub device address %d\n",
562 wValue);
563 break;
565 /* INTERFACE REQUESTS (no defined feature/status flags) */
567 /* ENDPOINT REQUESTS */
569 case EndpointRequest | USB_REQ_GET_STATUS:
570 // ENDPOINT_HALT flag
571 tbuf [0] = 0;
572 tbuf [1] = 0;
573 len = 2;
574 /* FALLTHROUGH */
575 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
576 case EndpointOutRequest | USB_REQ_SET_FEATURE:
577 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
578 break;
580 /* CLASS REQUESTS (and errors) */
582 default:
583 /* non-generic request */
584 switch (typeReq) {
585 case GetHubStatus:
586 case GetPortStatus:
587 len = 4;
588 break;
589 case GetHubDescriptor:
590 len = sizeof (struct usb_hub_descriptor);
591 break;
593 status = hcd->driver->hub_control (hcd,
594 typeReq, wValue, wIndex,
595 tbuf, wLength);
596 break;
597 error:
598 /* "protocol stall" on error */
599 status = -EPIPE;
602 if (status) {
603 len = 0;
604 if (status != -EPIPE) {
605 dev_dbg (hcd->self.controller,
606 "CTRL: TypeReq=0x%x val=0x%x "
607 "idx=0x%x len=%d ==> %d\n",
608 typeReq, wValue, wIndex,
609 wLength, status);
612 if (len) {
613 if (urb->transfer_buffer_length < len)
614 len = urb->transfer_buffer_length;
615 urb->actual_length = len;
616 // always USB_DIR_IN, toward host
617 memcpy (ubuf, bufp, len);
619 /* report whether RH hardware supports remote wakeup */
620 if (patch_wakeup &&
621 len > offsetof (struct usb_config_descriptor,
622 bmAttributes))
623 ((struct usb_config_descriptor *)ubuf)->bmAttributes
624 |= USB_CONFIG_ATT_WAKEUP;
626 /* report whether RH hardware has an integrated TT */
627 if (patch_protocol &&
628 len > offsetof(struct usb_device_descriptor,
629 bDeviceProtocol))
630 ((struct usb_device_descriptor *) ubuf)->
631 bDeviceProtocol = 1;
634 /* any errors get returned through the urb completion */
635 spin_lock_irq(&hcd_root_hub_lock);
636 usb_hcd_unlink_urb_from_ep(hcd, urb);
638 /* This peculiar use of spinlocks echoes what real HC drivers do.
639 * Avoiding calls to local_irq_disable/enable makes the code
640 * RT-friendly.
642 spin_unlock(&hcd_root_hub_lock);
643 usb_hcd_giveback_urb(hcd, urb, status);
644 spin_lock(&hcd_root_hub_lock);
646 spin_unlock_irq(&hcd_root_hub_lock);
647 return 0;
650 /*-------------------------------------------------------------------------*/
653 * Root Hub interrupt transfers are polled using a timer if the
654 * driver requests it; otherwise the driver is responsible for
655 * calling usb_hcd_poll_rh_status() when an event occurs.
657 * Completions are called in_interrupt(), but they may or may not
658 * be in_irq().
660 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
662 struct urb *urb;
663 int length;
664 unsigned long flags;
665 char buffer[6]; /* Any root hubs with > 31 ports? */
667 if (unlikely(!hcd->rh_pollable))
668 return;
669 if (!hcd->uses_new_polling && !hcd->status_urb)
670 return;
672 length = hcd->driver->hub_status_data(hcd, buffer);
673 if (length > 0) {
675 /* try to complete the status urb */
676 spin_lock_irqsave(&hcd_root_hub_lock, flags);
677 urb = hcd->status_urb;
678 if (urb) {
679 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
680 hcd->status_urb = NULL;
681 urb->actual_length = length;
682 memcpy(urb->transfer_buffer, buffer, length);
684 usb_hcd_unlink_urb_from_ep(hcd, urb);
685 spin_unlock(&hcd_root_hub_lock);
686 usb_hcd_giveback_urb(hcd, urb, 0);
687 spin_lock(&hcd_root_hub_lock);
688 } else {
689 length = 0;
690 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
695 /* The USB 2.0 spec says 256 ms. This is close enough and won't
696 * exceed that limit if HZ is 100. The math is more clunky than
697 * maybe expected, this is to make sure that all timers for USB devices
698 * fire at the same time to give the CPU a break inbetween */
699 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
700 (length == 0 && hcd->status_urb != NULL))
701 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
703 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
705 /* timer callback */
706 static void rh_timer_func (unsigned long _hcd)
708 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
711 /*-------------------------------------------------------------------------*/
713 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
715 int retval;
716 unsigned long flags;
717 unsigned len = 1 + (urb->dev->maxchild / 8);
719 spin_lock_irqsave (&hcd_root_hub_lock, flags);
720 if (hcd->status_urb || urb->transfer_buffer_length < len) {
721 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
722 retval = -EINVAL;
723 goto done;
726 retval = usb_hcd_link_urb_to_ep(hcd, urb);
727 if (retval)
728 goto done;
730 hcd->status_urb = urb;
731 urb->hcpriv = hcd; /* indicate it's queued */
732 if (!hcd->uses_new_polling)
733 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
735 /* If a status change has already occurred, report it ASAP */
736 else if (HCD_POLL_PENDING(hcd))
737 mod_timer(&hcd->rh_timer, jiffies);
738 retval = 0;
739 done:
740 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
741 return retval;
744 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
746 if (usb_endpoint_xfer_int(&urb->ep->desc))
747 return rh_queue_status (hcd, urb);
748 if (usb_endpoint_xfer_control(&urb->ep->desc))
749 return rh_call_control (hcd, urb);
750 return -EINVAL;
753 /*-------------------------------------------------------------------------*/
755 /* Unlinks of root-hub control URBs are legal, but they don't do anything
756 * since these URBs always execute synchronously.
758 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
760 unsigned long flags;
761 int rc;
763 spin_lock_irqsave(&hcd_root_hub_lock, flags);
764 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
765 if (rc)
766 goto done;
768 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
769 ; /* Do nothing */
771 } else { /* Status URB */
772 if (!hcd->uses_new_polling)
773 del_timer (&hcd->rh_timer);
774 if (urb == hcd->status_urb) {
775 hcd->status_urb = NULL;
776 usb_hcd_unlink_urb_from_ep(hcd, urb);
778 spin_unlock(&hcd_root_hub_lock);
779 usb_hcd_giveback_urb(hcd, urb, status);
780 spin_lock(&hcd_root_hub_lock);
783 done:
784 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
785 return rc;
791 * Show & store the current value of authorized_default
793 static ssize_t usb_host_authorized_default_show(struct device *dev,
794 struct device_attribute *attr,
795 char *buf)
797 struct usb_device *rh_usb_dev = to_usb_device(dev);
798 struct usb_bus *usb_bus = rh_usb_dev->bus;
799 struct usb_hcd *usb_hcd;
801 if (usb_bus == NULL)
802 return -ENODEV;
803 usb_hcd = bus_to_hcd(usb_bus);
804 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
807 static ssize_t usb_host_authorized_default_store(struct device *dev,
808 struct device_attribute *attr,
809 const char *buf, size_t size)
811 ssize_t result;
812 unsigned val;
813 struct usb_device *rh_usb_dev = to_usb_device(dev);
814 struct usb_bus *usb_bus = rh_usb_dev->bus;
815 struct usb_hcd *usb_hcd;
817 if (usb_bus == NULL)
818 return -ENODEV;
819 usb_hcd = bus_to_hcd(usb_bus);
820 result = sscanf(buf, "%u\n", &val);
821 if (result == 1) {
822 usb_hcd->authorized_default = val? 1 : 0;
823 result = size;
825 else
826 result = -EINVAL;
827 return result;
830 static DEVICE_ATTR(authorized_default, 0644,
831 usb_host_authorized_default_show,
832 usb_host_authorized_default_store);
835 /* Group all the USB bus attributes */
836 static struct attribute *usb_bus_attrs[] = {
837 &dev_attr_authorized_default.attr,
838 NULL,
841 static struct attribute_group usb_bus_attr_group = {
842 .name = NULL, /* we want them in the same directory */
843 .attrs = usb_bus_attrs,
848 /*-------------------------------------------------------------------------*/
851 * usb_bus_init - shared initialization code
852 * @bus: the bus structure being initialized
854 * This code is used to initialize a usb_bus structure, memory for which is
855 * separately managed.
857 static void usb_bus_init (struct usb_bus *bus)
859 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
861 bus->devnum_next = 1;
863 bus->root_hub = NULL;
864 bus->busnum = -1;
865 bus->bandwidth_allocated = 0;
866 bus->bandwidth_int_reqs = 0;
867 bus->bandwidth_isoc_reqs = 0;
869 INIT_LIST_HEAD (&bus->bus_list);
872 /*-------------------------------------------------------------------------*/
875 * usb_register_bus - registers the USB host controller with the usb core
876 * @bus: pointer to the bus to register
877 * Context: !in_interrupt()
879 * Assigns a bus number, and links the controller into usbcore data
880 * structures so that it can be seen by scanning the bus list.
882 static int usb_register_bus(struct usb_bus *bus)
884 int result = -E2BIG;
885 int busnum;
887 mutex_lock(&usb_bus_list_lock);
888 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
889 if (busnum >= USB_MAXBUS) {
890 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
891 goto error_find_busnum;
893 set_bit (busnum, busmap.busmap);
894 bus->busnum = busnum;
896 /* Add it to the local list of buses */
897 list_add (&bus->bus_list, &usb_bus_list);
898 mutex_unlock(&usb_bus_list_lock);
900 usb_notify_add_bus(bus);
902 dev_info (bus->controller, "new USB bus registered, assigned bus "
903 "number %d\n", bus->busnum);
904 return 0;
906 error_find_busnum:
907 mutex_unlock(&usb_bus_list_lock);
908 return result;
912 * usb_deregister_bus - deregisters the USB host controller
913 * @bus: pointer to the bus to deregister
914 * Context: !in_interrupt()
916 * Recycles the bus number, and unlinks the controller from usbcore data
917 * structures so that it won't be seen by scanning the bus list.
919 static void usb_deregister_bus (struct usb_bus *bus)
921 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
924 * NOTE: make sure that all the devices are removed by the
925 * controller code, as well as having it call this when cleaning
926 * itself up
928 mutex_lock(&usb_bus_list_lock);
929 list_del (&bus->bus_list);
930 mutex_unlock(&usb_bus_list_lock);
932 usb_notify_remove_bus(bus);
934 clear_bit (bus->busnum, busmap.busmap);
938 * register_root_hub - called by usb_add_hcd() to register a root hub
939 * @hcd: host controller for this root hub
941 * This function registers the root hub with the USB subsystem. It sets up
942 * the device properly in the device tree and then calls usb_new_device()
943 * to register the usb device. It also assigns the root hub's USB address
944 * (always 1).
946 static int register_root_hub(struct usb_hcd *hcd)
948 struct device *parent_dev = hcd->self.controller;
949 struct usb_device *usb_dev = hcd->self.root_hub;
950 const int devnum = 1;
951 int retval;
953 usb_dev->devnum = devnum;
954 usb_dev->bus->devnum_next = devnum + 1;
955 memset (&usb_dev->bus->devmap.devicemap, 0,
956 sizeof usb_dev->bus->devmap.devicemap);
957 set_bit (devnum, usb_dev->bus->devmap.devicemap);
958 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
960 mutex_lock(&usb_bus_list_lock);
962 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
963 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
964 if (retval != sizeof usb_dev->descriptor) {
965 mutex_unlock(&usb_bus_list_lock);
966 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
967 dev_name(&usb_dev->dev), retval);
968 return (retval < 0) ? retval : -EMSGSIZE;
971 retval = usb_new_device (usb_dev);
972 if (retval) {
973 dev_err (parent_dev, "can't register root hub for %s, %d\n",
974 dev_name(&usb_dev->dev), retval);
976 mutex_unlock(&usb_bus_list_lock);
978 if (retval == 0) {
979 spin_lock_irq (&hcd_root_hub_lock);
980 hcd->rh_registered = 1;
981 spin_unlock_irq (&hcd_root_hub_lock);
983 /* Did the HC die before the root hub was registered? */
984 if (hcd->state == HC_STATE_HALT)
985 usb_hc_died (hcd); /* This time clean up */
988 return retval;
992 /*-------------------------------------------------------------------------*/
995 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
996 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
997 * @is_input: true iff the transaction sends data to the host
998 * @isoc: true for isochronous transactions, false for interrupt ones
999 * @bytecount: how many bytes in the transaction.
1001 * Returns approximate bus time in nanoseconds for a periodic transaction.
1002 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1003 * scheduled in software, this function is only used for such scheduling.
1005 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1007 unsigned long tmp;
1009 switch (speed) {
1010 case USB_SPEED_LOW: /* INTR only */
1011 if (is_input) {
1012 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1013 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1014 } else {
1015 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1016 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1018 case USB_SPEED_FULL: /* ISOC or INTR */
1019 if (isoc) {
1020 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1021 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1022 } else {
1023 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1024 return (9107L + BW_HOST_DELAY + tmp);
1026 case USB_SPEED_HIGH: /* ISOC or INTR */
1027 if (isoc)
1028 tmp = HS_NSECS_ISO (bytecount);
1029 else
1030 tmp = HS_NSECS (bytecount);
1031 return tmp;
1032 default:
1033 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1034 return -1;
1037 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1040 /*-------------------------------------------------------------------------*/
1043 * Generic HC operations.
1046 /*-------------------------------------------------------------------------*/
1049 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1050 * @hcd: host controller to which @urb was submitted
1051 * @urb: URB being submitted
1053 * Host controller drivers should call this routine in their enqueue()
1054 * method. The HCD's private spinlock must be held and interrupts must
1055 * be disabled. The actions carried out here are required for URB
1056 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1058 * Returns 0 for no error, otherwise a negative error code (in which case
1059 * the enqueue() method must fail). If no error occurs but enqueue() fails
1060 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1061 * the private spinlock and returning.
1063 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1065 int rc = 0;
1067 spin_lock(&hcd_urb_list_lock);
1069 /* Check that the URB isn't being killed */
1070 if (unlikely(atomic_read(&urb->reject))) {
1071 rc = -EPERM;
1072 goto done;
1075 if (unlikely(!urb->ep->enabled)) {
1076 rc = -ENOENT;
1077 goto done;
1080 if (unlikely(!urb->dev->can_submit)) {
1081 rc = -EHOSTUNREACH;
1082 goto done;
1086 * Check the host controller's state and add the URB to the
1087 * endpoint's queue.
1089 switch (hcd->state) {
1090 case HC_STATE_RUNNING:
1091 case HC_STATE_RESUMING:
1092 urb->unlinked = 0;
1093 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1094 break;
1095 default:
1096 rc = -ESHUTDOWN;
1097 goto done;
1099 done:
1100 spin_unlock(&hcd_urb_list_lock);
1101 return rc;
1103 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1106 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1107 * @hcd: host controller to which @urb was submitted
1108 * @urb: URB being checked for unlinkability
1109 * @status: error code to store in @urb if the unlink succeeds
1111 * Host controller drivers should call this routine in their dequeue()
1112 * method. The HCD's private spinlock must be held and interrupts must
1113 * be disabled. The actions carried out here are required for making
1114 * sure than an unlink is valid.
1116 * Returns 0 for no error, otherwise a negative error code (in which case
1117 * the dequeue() method must fail). The possible error codes are:
1119 * -EIDRM: @urb was not submitted or has already completed.
1120 * The completion function may not have been called yet.
1122 * -EBUSY: @urb has already been unlinked.
1124 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1125 int status)
1127 struct list_head *tmp;
1129 /* insist the urb is still queued */
1130 list_for_each(tmp, &urb->ep->urb_list) {
1131 if (tmp == &urb->urb_list)
1132 break;
1134 if (tmp != &urb->urb_list)
1135 return -EIDRM;
1137 /* Any status except -EINPROGRESS means something already started to
1138 * unlink this URB from the hardware. So there's no more work to do.
1140 if (urb->unlinked)
1141 return -EBUSY;
1142 urb->unlinked = status;
1144 /* IRQ setup can easily be broken so that USB controllers
1145 * never get completion IRQs ... maybe even the ones we need to
1146 * finish unlinking the initial failed usb_set_address()
1147 * or device descriptor fetch.
1149 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1150 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1151 "Controller is probably using the wrong IRQ.\n");
1152 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1155 return 0;
1157 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1160 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1161 * @hcd: host controller to which @urb was submitted
1162 * @urb: URB being unlinked
1164 * Host controller drivers should call this routine before calling
1165 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1166 * interrupts must be disabled. The actions carried out here are required
1167 * for URB completion.
1169 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1171 /* clear all state linking urb to this dev (and hcd) */
1172 spin_lock(&hcd_urb_list_lock);
1173 list_del_init(&urb->urb_list);
1174 spin_unlock(&hcd_urb_list_lock);
1176 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1179 * Some usb host controllers can only perform dma using a small SRAM area.
1180 * The usb core itself is however optimized for host controllers that can dma
1181 * using regular system memory - like pci devices doing bus mastering.
1183 * To support host controllers with limited dma capabilites we provide dma
1184 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1185 * For this to work properly the host controller code must first use the
1186 * function dma_declare_coherent_memory() to point out which memory area
1187 * that should be used for dma allocations.
1189 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1190 * dma using dma_alloc_coherent() which in turn allocates from the memory
1191 * area pointed out with dma_declare_coherent_memory().
1193 * So, to summarize...
1195 * - We need "local" memory, canonical example being
1196 * a small SRAM on a discrete controller being the
1197 * only memory that the controller can read ...
1198 * (a) "normal" kernel memory is no good, and
1199 * (b) there's not enough to share
1201 * - The only *portable* hook for such stuff in the
1202 * DMA framework is dma_declare_coherent_memory()
1204 * - So we use that, even though the primary requirement
1205 * is that the memory be "local" (hence addressible
1206 * by that device), not "coherent".
1210 static int hcd_alloc_coherent(struct usb_bus *bus,
1211 gfp_t mem_flags, dma_addr_t *dma_handle,
1212 void **vaddr_handle, size_t size,
1213 enum dma_data_direction dir)
1215 unsigned char *vaddr;
1217 if (*vaddr_handle == NULL) {
1218 WARN_ON_ONCE(1);
1219 return -EFAULT;
1222 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1223 mem_flags, dma_handle);
1224 if (!vaddr)
1225 return -ENOMEM;
1228 * Store the virtual address of the buffer at the end
1229 * of the allocated dma buffer. The size of the buffer
1230 * may be uneven so use unaligned functions instead
1231 * of just rounding up. It makes sense to optimize for
1232 * memory footprint over access speed since the amount
1233 * of memory available for dma may be limited.
1235 put_unaligned((unsigned long)*vaddr_handle,
1236 (unsigned long *)(vaddr + size));
1238 if (dir == DMA_TO_DEVICE)
1239 memcpy(vaddr, *vaddr_handle, size);
1241 *vaddr_handle = vaddr;
1242 return 0;
1245 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1246 void **vaddr_handle, size_t size,
1247 enum dma_data_direction dir)
1249 unsigned char *vaddr = *vaddr_handle;
1251 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1253 if (dir == DMA_FROM_DEVICE)
1254 memcpy(vaddr, *vaddr_handle, size);
1256 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1258 *vaddr_handle = vaddr;
1259 *dma_handle = 0;
1262 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1264 enum dma_data_direction dir;
1266 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1267 dma_unmap_single(hcd->self.controller,
1268 urb->setup_dma,
1269 sizeof(struct usb_ctrlrequest),
1270 DMA_TO_DEVICE);
1271 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1272 hcd_free_coherent(urb->dev->bus,
1273 &urb->setup_dma,
1274 (void **) &urb->setup_packet,
1275 sizeof(struct usb_ctrlrequest),
1276 DMA_TO_DEVICE);
1278 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1279 if (urb->transfer_flags & URB_DMA_MAP_SG)
1280 dma_unmap_sg(hcd->self.controller,
1281 urb->sg,
1282 urb->num_sgs,
1283 dir);
1284 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1285 dma_unmap_page(hcd->self.controller,
1286 urb->transfer_dma,
1287 urb->transfer_buffer_length,
1288 dir);
1289 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1290 dma_unmap_single(hcd->self.controller,
1291 urb->transfer_dma,
1292 urb->transfer_buffer_length,
1293 dir);
1294 else if (urb->transfer_flags & URB_MAP_LOCAL)
1295 hcd_free_coherent(urb->dev->bus,
1296 &urb->transfer_dma,
1297 &urb->transfer_buffer,
1298 urb->transfer_buffer_length,
1299 dir);
1301 /* Make it safe to call this routine more than once */
1302 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
1303 URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1304 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1307 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1308 gfp_t mem_flags)
1310 enum dma_data_direction dir;
1311 int ret = 0;
1313 /* Map the URB's buffers for DMA access.
1314 * Lower level HCD code should use *_dma exclusively,
1315 * unless it uses pio or talks to another transport,
1316 * or uses the provided scatter gather list for bulk.
1319 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1320 if (hcd->self.uses_dma) {
1321 urb->setup_dma = dma_map_single(
1322 hcd->self.controller,
1323 urb->setup_packet,
1324 sizeof(struct usb_ctrlrequest),
1325 DMA_TO_DEVICE);
1326 if (dma_mapping_error(hcd->self.controller,
1327 urb->setup_dma))
1328 return -EAGAIN;
1329 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1330 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1331 ret = hcd_alloc_coherent(
1332 urb->dev->bus, mem_flags,
1333 &urb->setup_dma,
1334 (void **)&urb->setup_packet,
1335 sizeof(struct usb_ctrlrequest),
1336 DMA_TO_DEVICE);
1337 if (ret)
1338 return ret;
1339 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1343 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344 if (urb->transfer_buffer_length != 0
1345 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1346 if (hcd->self.uses_dma) {
1347 if (urb->num_sgs) {
1348 int n = dma_map_sg(
1349 hcd->self.controller,
1350 urb->sg,
1351 urb->num_sgs,
1352 dir);
1353 if (n <= 0)
1354 ret = -EAGAIN;
1355 else
1356 urb->transfer_flags |= URB_DMA_MAP_SG;
1357 if (n != urb->num_sgs) {
1358 urb->num_sgs = n;
1359 urb->transfer_flags |=
1360 URB_DMA_SG_COMBINED;
1362 } else if (urb->sg) {
1363 struct scatterlist *sg = urb->sg;
1364 urb->transfer_dma = dma_map_page(
1365 hcd->self.controller,
1366 sg_page(sg),
1367 sg->offset,
1368 urb->transfer_buffer_length,
1369 dir);
1370 if (dma_mapping_error(hcd->self.controller,
1371 urb->transfer_dma))
1372 ret = -EAGAIN;
1373 else
1374 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1375 } else {
1376 urb->transfer_dma = dma_map_single(
1377 hcd->self.controller,
1378 urb->transfer_buffer,
1379 urb->transfer_buffer_length,
1380 dir);
1381 if (dma_mapping_error(hcd->self.controller,
1382 urb->transfer_dma))
1383 ret = -EAGAIN;
1384 else
1385 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1387 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1388 ret = hcd_alloc_coherent(
1389 urb->dev->bus, mem_flags,
1390 &urb->transfer_dma,
1391 &urb->transfer_buffer,
1392 urb->transfer_buffer_length,
1393 dir);
1394 if (ret == 0)
1395 urb->transfer_flags |= URB_MAP_LOCAL;
1397 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1398 URB_SETUP_MAP_LOCAL)))
1399 unmap_urb_for_dma(hcd, urb);
1401 return ret;
1404 /*-------------------------------------------------------------------------*/
1406 /* may be called in any context with a valid urb->dev usecount
1407 * caller surrenders "ownership" of urb
1408 * expects usb_submit_urb() to have sanity checked and conditioned all
1409 * inputs in the urb
1411 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1413 int status;
1414 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1416 /* increment urb's reference count as part of giving it to the HCD
1417 * (which will control it). HCD guarantees that it either returns
1418 * an error or calls giveback(), but not both.
1420 usb_get_urb(urb);
1421 atomic_inc(&urb->use_count);
1422 atomic_inc(&urb->dev->urbnum);
1423 usbmon_urb_submit(&hcd->self, urb);
1425 /* NOTE requirements on root-hub callers (usbfs and the hub
1426 * driver, for now): URBs' urb->transfer_buffer must be
1427 * valid and usb_buffer_{sync,unmap}() not be needed, since
1428 * they could clobber root hub response data. Also, control
1429 * URBs must be submitted in process context with interrupts
1430 * enabled.
1433 if (is_root_hub(urb->dev)) {
1434 status = rh_urb_enqueue(hcd, urb);
1435 } else {
1436 status = map_urb_for_dma(hcd, urb, mem_flags);
1437 if (likely(status == 0)) {
1438 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1439 if (unlikely(status))
1440 unmap_urb_for_dma(hcd, urb);
1444 if (unlikely(status)) {
1445 usbmon_urb_submit_error(&hcd->self, urb, status);
1446 urb->hcpriv = NULL;
1447 INIT_LIST_HEAD(&urb->urb_list);
1448 atomic_dec(&urb->use_count);
1449 atomic_dec(&urb->dev->urbnum);
1450 if (atomic_read(&urb->reject))
1451 wake_up(&usb_kill_urb_queue);
1452 usb_put_urb(urb);
1454 return status;
1457 /*-------------------------------------------------------------------------*/
1459 /* this makes the hcd giveback() the urb more quickly, by kicking it
1460 * off hardware queues (which may take a while) and returning it as
1461 * soon as practical. we've already set up the urb's return status,
1462 * but we can't know if the callback completed already.
1464 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1466 int value;
1468 if (is_root_hub(urb->dev))
1469 value = usb_rh_urb_dequeue(hcd, urb, status);
1470 else {
1472 /* The only reason an HCD might fail this call is if
1473 * it has not yet fully queued the urb to begin with.
1474 * Such failures should be harmless. */
1475 value = hcd->driver->urb_dequeue(hcd, urb, status);
1477 return value;
1481 * called in any context
1483 * caller guarantees urb won't be recycled till both unlink()
1484 * and the urb's completion function return
1486 int usb_hcd_unlink_urb (struct urb *urb, int status)
1488 struct usb_hcd *hcd;
1489 int retval = -EIDRM;
1490 unsigned long flags;
1492 /* Prevent the device and bus from going away while
1493 * the unlink is carried out. If they are already gone
1494 * then urb->use_count must be 0, since disconnected
1495 * devices can't have any active URBs.
1497 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1498 if (atomic_read(&urb->use_count) > 0) {
1499 retval = 0;
1500 usb_get_dev(urb->dev);
1502 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1503 if (retval == 0) {
1504 hcd = bus_to_hcd(urb->dev->bus);
1505 retval = unlink1(hcd, urb, status);
1506 usb_put_dev(urb->dev);
1509 if (retval == 0)
1510 retval = -EINPROGRESS;
1511 else if (retval != -EIDRM && retval != -EBUSY)
1512 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1513 urb, retval);
1514 return retval;
1517 /*-------------------------------------------------------------------------*/
1520 * usb_hcd_giveback_urb - return URB from HCD to device driver
1521 * @hcd: host controller returning the URB
1522 * @urb: urb being returned to the USB device driver.
1523 * @status: completion status code for the URB.
1524 * Context: in_interrupt()
1526 * This hands the URB from HCD to its USB device driver, using its
1527 * completion function. The HCD has freed all per-urb resources
1528 * (and is done using urb->hcpriv). It also released all HCD locks;
1529 * the device driver won't cause problems if it frees, modifies,
1530 * or resubmits this URB.
1532 * If @urb was unlinked, the value of @status will be overridden by
1533 * @urb->unlinked. Erroneous short transfers are detected in case
1534 * the HCD hasn't checked for them.
1536 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1538 urb->hcpriv = NULL;
1539 if (unlikely(urb->unlinked))
1540 status = urb->unlinked;
1541 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1542 urb->actual_length < urb->transfer_buffer_length &&
1543 !status))
1544 status = -EREMOTEIO;
1546 unmap_urb_for_dma(hcd, urb);
1547 usbmon_urb_complete(&hcd->self, urb, status);
1548 usb_unanchor_urb(urb);
1550 /* pass ownership to the completion handler */
1551 urb->status = status;
1552 urb->complete (urb);
1553 atomic_dec (&urb->use_count);
1554 if (unlikely(atomic_read(&urb->reject)))
1555 wake_up (&usb_kill_urb_queue);
1556 usb_put_urb (urb);
1558 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1560 /*-------------------------------------------------------------------------*/
1562 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1563 * queue to drain completely. The caller must first insure that no more
1564 * URBs can be submitted for this endpoint.
1566 void usb_hcd_flush_endpoint(struct usb_device *udev,
1567 struct usb_host_endpoint *ep)
1569 struct usb_hcd *hcd;
1570 struct urb *urb;
1572 if (!ep)
1573 return;
1574 might_sleep();
1575 hcd = bus_to_hcd(udev->bus);
1577 /* No more submits can occur */
1578 spin_lock_irq(&hcd_urb_list_lock);
1579 rescan:
1580 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1581 int is_in;
1583 if (urb->unlinked)
1584 continue;
1585 usb_get_urb (urb);
1586 is_in = usb_urb_dir_in(urb);
1587 spin_unlock(&hcd_urb_list_lock);
1589 /* kick hcd */
1590 unlink1(hcd, urb, -ESHUTDOWN);
1591 dev_dbg (hcd->self.controller,
1592 "shutdown urb %p ep%d%s%s\n",
1593 urb, usb_endpoint_num(&ep->desc),
1594 is_in ? "in" : "out",
1595 ({ char *s;
1597 switch (usb_endpoint_type(&ep->desc)) {
1598 case USB_ENDPOINT_XFER_CONTROL:
1599 s = ""; break;
1600 case USB_ENDPOINT_XFER_BULK:
1601 s = "-bulk"; break;
1602 case USB_ENDPOINT_XFER_INT:
1603 s = "-intr"; break;
1604 default:
1605 s = "-iso"; break;
1608 }));
1609 usb_put_urb (urb);
1611 /* list contents may have changed */
1612 spin_lock(&hcd_urb_list_lock);
1613 goto rescan;
1615 spin_unlock_irq(&hcd_urb_list_lock);
1617 /* Wait until the endpoint queue is completely empty */
1618 while (!list_empty (&ep->urb_list)) {
1619 spin_lock_irq(&hcd_urb_list_lock);
1621 /* The list may have changed while we acquired the spinlock */
1622 urb = NULL;
1623 if (!list_empty (&ep->urb_list)) {
1624 urb = list_entry (ep->urb_list.prev, struct urb,
1625 urb_list);
1626 usb_get_urb (urb);
1628 spin_unlock_irq(&hcd_urb_list_lock);
1630 if (urb) {
1631 usb_kill_urb (urb);
1632 usb_put_urb (urb);
1638 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1639 * the bus bandwidth
1640 * @udev: target &usb_device
1641 * @new_config: new configuration to install
1642 * @cur_alt: the current alternate interface setting
1643 * @new_alt: alternate interface setting that is being installed
1645 * To change configurations, pass in the new configuration in new_config,
1646 * and pass NULL for cur_alt and new_alt.
1648 * To reset a device's configuration (put the device in the ADDRESSED state),
1649 * pass in NULL for new_config, cur_alt, and new_alt.
1651 * To change alternate interface settings, pass in NULL for new_config,
1652 * pass in the current alternate interface setting in cur_alt,
1653 * and pass in the new alternate interface setting in new_alt.
1655 * Returns an error if the requested bandwidth change exceeds the
1656 * bus bandwidth or host controller internal resources.
1658 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1659 struct usb_host_config *new_config,
1660 struct usb_host_interface *cur_alt,
1661 struct usb_host_interface *new_alt)
1663 int num_intfs, i, j;
1664 struct usb_host_interface *alt = NULL;
1665 int ret = 0;
1666 struct usb_hcd *hcd;
1667 struct usb_host_endpoint *ep;
1669 hcd = bus_to_hcd(udev->bus);
1670 if (!hcd->driver->check_bandwidth)
1671 return 0;
1673 /* Configuration is being removed - set configuration 0 */
1674 if (!new_config && !cur_alt) {
1675 for (i = 1; i < 16; ++i) {
1676 ep = udev->ep_out[i];
1677 if (ep)
1678 hcd->driver->drop_endpoint(hcd, udev, ep);
1679 ep = udev->ep_in[i];
1680 if (ep)
1681 hcd->driver->drop_endpoint(hcd, udev, ep);
1683 hcd->driver->check_bandwidth(hcd, udev);
1684 return 0;
1686 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1687 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1688 * of the bus. There will always be bandwidth for endpoint 0, so it's
1689 * ok to exclude it.
1691 if (new_config) {
1692 num_intfs = new_config->desc.bNumInterfaces;
1693 /* Remove endpoints (except endpoint 0, which is always on the
1694 * schedule) from the old config from the schedule
1696 for (i = 1; i < 16; ++i) {
1697 ep = udev->ep_out[i];
1698 if (ep) {
1699 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1700 if (ret < 0)
1701 goto reset;
1703 ep = udev->ep_in[i];
1704 if (ep) {
1705 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1706 if (ret < 0)
1707 goto reset;
1710 for (i = 0; i < num_intfs; ++i) {
1711 struct usb_host_interface *first_alt;
1712 int iface_num;
1714 first_alt = &new_config->intf_cache[i]->altsetting[0];
1715 iface_num = first_alt->desc.bInterfaceNumber;
1716 /* Set up endpoints for alternate interface setting 0 */
1717 alt = usb_find_alt_setting(new_config, iface_num, 0);
1718 if (!alt)
1719 /* No alt setting 0? Pick the first setting. */
1720 alt = first_alt;
1722 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1723 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1724 if (ret < 0)
1725 goto reset;
1729 if (cur_alt && new_alt) {
1730 struct usb_interface *iface = usb_ifnum_to_if(udev,
1731 cur_alt->desc.bInterfaceNumber);
1733 if (iface->resetting_device) {
1735 * The USB core just reset the device, so the xHCI host
1736 * and the device will think alt setting 0 is installed.
1737 * However, the USB core will pass in the alternate
1738 * setting installed before the reset as cur_alt. Dig
1739 * out the alternate setting 0 structure, or the first
1740 * alternate setting if a broken device doesn't have alt
1741 * setting 0.
1743 cur_alt = usb_altnum_to_altsetting(iface, 0);
1744 if (!cur_alt)
1745 cur_alt = &iface->altsetting[0];
1748 /* Drop all the endpoints in the current alt setting */
1749 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1750 ret = hcd->driver->drop_endpoint(hcd, udev,
1751 &cur_alt->endpoint[i]);
1752 if (ret < 0)
1753 goto reset;
1755 /* Add all the endpoints in the new alt setting */
1756 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1757 ret = hcd->driver->add_endpoint(hcd, udev,
1758 &new_alt->endpoint[i]);
1759 if (ret < 0)
1760 goto reset;
1763 ret = hcd->driver->check_bandwidth(hcd, udev);
1764 reset:
1765 if (ret < 0)
1766 hcd->driver->reset_bandwidth(hcd, udev);
1767 return ret;
1770 /* Disables the endpoint: synchronizes with the hcd to make sure all
1771 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1772 * have been called previously. Use for set_configuration, set_interface,
1773 * driver removal, physical disconnect.
1775 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1776 * type, maxpacket size, toggle, halt status, and scheduling.
1778 void usb_hcd_disable_endpoint(struct usb_device *udev,
1779 struct usb_host_endpoint *ep)
1781 struct usb_hcd *hcd;
1783 might_sleep();
1784 hcd = bus_to_hcd(udev->bus);
1785 if (hcd->driver->endpoint_disable)
1786 hcd->driver->endpoint_disable(hcd, ep);
1790 * usb_hcd_reset_endpoint - reset host endpoint state
1791 * @udev: USB device.
1792 * @ep: the endpoint to reset.
1794 * Resets any host endpoint state such as the toggle bit, sequence
1795 * number and current window.
1797 void usb_hcd_reset_endpoint(struct usb_device *udev,
1798 struct usb_host_endpoint *ep)
1800 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1802 if (hcd->driver->endpoint_reset)
1803 hcd->driver->endpoint_reset(hcd, ep);
1804 else {
1805 int epnum = usb_endpoint_num(&ep->desc);
1806 int is_out = usb_endpoint_dir_out(&ep->desc);
1807 int is_control = usb_endpoint_xfer_control(&ep->desc);
1809 usb_settoggle(udev, epnum, is_out, 0);
1810 if (is_control)
1811 usb_settoggle(udev, epnum, !is_out, 0);
1816 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1817 * @interface: alternate setting that includes all endpoints.
1818 * @eps: array of endpoints that need streams.
1819 * @num_eps: number of endpoints in the array.
1820 * @num_streams: number of streams to allocate.
1821 * @mem_flags: flags hcd should use to allocate memory.
1823 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1824 * Drivers may queue multiple transfers to different stream IDs, which may
1825 * complete in a different order than they were queued.
1827 int usb_alloc_streams(struct usb_interface *interface,
1828 struct usb_host_endpoint **eps, unsigned int num_eps,
1829 unsigned int num_streams, gfp_t mem_flags)
1831 struct usb_hcd *hcd;
1832 struct usb_device *dev;
1833 int i;
1835 dev = interface_to_usbdev(interface);
1836 hcd = bus_to_hcd(dev->bus);
1837 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1838 return -EINVAL;
1839 if (dev->speed != USB_SPEED_SUPER)
1840 return -EINVAL;
1842 /* Streams only apply to bulk endpoints. */
1843 for (i = 0; i < num_eps; i++)
1844 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1845 return -EINVAL;
1847 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1848 num_streams, mem_flags);
1850 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1853 * usb_free_streams - free bulk endpoint stream IDs.
1854 * @interface: alternate setting that includes all endpoints.
1855 * @eps: array of endpoints to remove streams from.
1856 * @num_eps: number of endpoints in the array.
1857 * @mem_flags: flags hcd should use to allocate memory.
1859 * Reverts a group of bulk endpoints back to not using stream IDs.
1860 * Can fail if we are given bad arguments, or HCD is broken.
1862 void usb_free_streams(struct usb_interface *interface,
1863 struct usb_host_endpoint **eps, unsigned int num_eps,
1864 gfp_t mem_flags)
1866 struct usb_hcd *hcd;
1867 struct usb_device *dev;
1868 int i;
1870 dev = interface_to_usbdev(interface);
1871 hcd = bus_to_hcd(dev->bus);
1872 if (dev->speed != USB_SPEED_SUPER)
1873 return;
1875 /* Streams only apply to bulk endpoints. */
1876 for (i = 0; i < num_eps; i++)
1877 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1878 return;
1880 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1882 EXPORT_SYMBOL_GPL(usb_free_streams);
1884 /* Protect against drivers that try to unlink URBs after the device
1885 * is gone, by waiting until all unlinks for @udev are finished.
1886 * Since we don't currently track URBs by device, simply wait until
1887 * nothing is running in the locked region of usb_hcd_unlink_urb().
1889 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1891 spin_lock_irq(&hcd_urb_unlink_lock);
1892 spin_unlock_irq(&hcd_urb_unlink_lock);
1895 /*-------------------------------------------------------------------------*/
1897 /* called in any context */
1898 int usb_hcd_get_frame_number (struct usb_device *udev)
1900 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1902 if (!HC_IS_RUNNING (hcd->state))
1903 return -ESHUTDOWN;
1904 return hcd->driver->get_frame_number (hcd);
1907 /*-------------------------------------------------------------------------*/
1909 #ifdef CONFIG_PM
1911 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1913 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1914 int status;
1915 int old_state = hcd->state;
1917 dev_dbg(&rhdev->dev, "bus %s%s\n",
1918 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1919 if (!hcd->driver->bus_suspend) {
1920 status = -ENOENT;
1921 } else {
1922 hcd->state = HC_STATE_QUIESCING;
1923 status = hcd->driver->bus_suspend(hcd);
1925 if (status == 0) {
1926 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1927 hcd->state = HC_STATE_SUSPENDED;
1928 } else {
1929 hcd->state = old_state;
1930 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1931 "suspend", status);
1933 return status;
1936 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1938 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1939 int status;
1940 int old_state = hcd->state;
1942 dev_dbg(&rhdev->dev, "usb %s%s\n",
1943 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1944 if (!hcd->driver->bus_resume)
1945 return -ENOENT;
1946 if (hcd->state == HC_STATE_RUNNING)
1947 return 0;
1949 hcd->state = HC_STATE_RESUMING;
1950 status = hcd->driver->bus_resume(hcd);
1951 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
1952 if (status == 0) {
1953 /* TRSMRCY = 10 msec */
1954 msleep(10);
1955 usb_set_device_state(rhdev, rhdev->actconfig
1956 ? USB_STATE_CONFIGURED
1957 : USB_STATE_ADDRESS);
1958 hcd->state = HC_STATE_RUNNING;
1959 } else {
1960 hcd->state = old_state;
1961 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1962 "resume", status);
1963 if (status != -ESHUTDOWN)
1964 usb_hc_died(hcd);
1966 return status;
1969 #endif /* CONFIG_PM */
1971 #ifdef CONFIG_USB_SUSPEND
1973 /* Workqueue routine for root-hub remote wakeup */
1974 static void hcd_resume_work(struct work_struct *work)
1976 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1977 struct usb_device *udev = hcd->self.root_hub;
1979 usb_lock_device(udev);
1980 usb_remote_wakeup(udev);
1981 usb_unlock_device(udev);
1985 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1986 * @hcd: host controller for this root hub
1988 * The USB host controller calls this function when its root hub is
1989 * suspended (with the remote wakeup feature enabled) and a remote
1990 * wakeup request is received. The routine submits a workqueue request
1991 * to resume the root hub (that is, manage its downstream ports again).
1993 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1995 unsigned long flags;
1997 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1998 if (hcd->rh_registered) {
1999 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2000 queue_work(pm_wq, &hcd->wakeup_work);
2002 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2004 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2006 #endif /* CONFIG_USB_SUSPEND */
2008 /*-------------------------------------------------------------------------*/
2010 #ifdef CONFIG_USB_OTG
2013 * usb_bus_start_enum - start immediate enumeration (for OTG)
2014 * @bus: the bus (must use hcd framework)
2015 * @port_num: 1-based number of port; usually bus->otg_port
2016 * Context: in_interrupt()
2018 * Starts enumeration, with an immediate reset followed later by
2019 * khubd identifying and possibly configuring the device.
2020 * This is needed by OTG controller drivers, where it helps meet
2021 * HNP protocol timing requirements for starting a port reset.
2023 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2025 struct usb_hcd *hcd;
2026 int status = -EOPNOTSUPP;
2028 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2029 * boards with root hubs hooked up to internal devices (instead of
2030 * just the OTG port) may need more attention to resetting...
2032 hcd = container_of (bus, struct usb_hcd, self);
2033 if (port_num && hcd->driver->start_port_reset)
2034 status = hcd->driver->start_port_reset(hcd, port_num);
2036 /* run khubd shortly after (first) root port reset finishes;
2037 * it may issue others, until at least 50 msecs have passed.
2039 if (status == 0)
2040 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2041 return status;
2043 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2045 #endif
2047 /*-------------------------------------------------------------------------*/
2050 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2051 * @irq: the IRQ being raised
2052 * @__hcd: pointer to the HCD whose IRQ is being signaled
2054 * If the controller isn't HALTed, calls the driver's irq handler.
2055 * Checks whether the controller is now dead.
2057 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2059 struct usb_hcd *hcd = __hcd;
2060 unsigned long flags;
2061 irqreturn_t rc;
2063 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2064 * when the first handler doesn't use it. So let's just
2065 * assume it's never used.
2067 local_irq_save(flags);
2069 if (unlikely(hcd->state == HC_STATE_HALT || !HCD_HW_ACCESSIBLE(hcd))) {
2070 rc = IRQ_NONE;
2071 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2072 rc = IRQ_NONE;
2073 } else {
2074 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2076 if (unlikely(hcd->state == HC_STATE_HALT))
2077 usb_hc_died(hcd);
2078 rc = IRQ_HANDLED;
2081 local_irq_restore(flags);
2082 return rc;
2084 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2086 /*-------------------------------------------------------------------------*/
2089 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2090 * @hcd: pointer to the HCD representing the controller
2092 * This is called by bus glue to report a USB host controller that died
2093 * while operations may still have been pending. It's called automatically
2094 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2096 void usb_hc_died (struct usb_hcd *hcd)
2098 unsigned long flags;
2100 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2102 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2103 if (hcd->rh_registered) {
2104 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2106 /* make khubd clean up old urbs and devices */
2107 usb_set_device_state (hcd->self.root_hub,
2108 USB_STATE_NOTATTACHED);
2109 usb_kick_khubd (hcd->self.root_hub);
2111 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2113 EXPORT_SYMBOL_GPL (usb_hc_died);
2115 /*-------------------------------------------------------------------------*/
2118 * usb_create_hcd - create and initialize an HCD structure
2119 * @driver: HC driver that will use this hcd
2120 * @dev: device for this HC, stored in hcd->self.controller
2121 * @bus_name: value to store in hcd->self.bus_name
2122 * Context: !in_interrupt()
2124 * Allocate a struct usb_hcd, with extra space at the end for the
2125 * HC driver's private data. Initialize the generic members of the
2126 * hcd structure.
2128 * If memory is unavailable, returns NULL.
2130 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
2131 struct device *dev, const char *bus_name)
2133 struct usb_hcd *hcd;
2135 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2136 if (!hcd) {
2137 dev_dbg (dev, "hcd alloc failed\n");
2138 return NULL;
2140 dev_set_drvdata(dev, hcd);
2141 kref_init(&hcd->kref);
2143 usb_bus_init(&hcd->self);
2144 hcd->self.controller = dev;
2145 hcd->self.bus_name = bus_name;
2146 hcd->self.uses_dma = (dev->dma_mask != NULL);
2148 init_timer(&hcd->rh_timer);
2149 hcd->rh_timer.function = rh_timer_func;
2150 hcd->rh_timer.data = (unsigned long) hcd;
2151 #ifdef CONFIG_USB_SUSPEND
2152 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2153 #endif
2154 mutex_init(&hcd->bandwidth_mutex);
2156 hcd->driver = driver;
2157 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2158 "USB Host Controller";
2159 return hcd;
2161 EXPORT_SYMBOL_GPL(usb_create_hcd);
2163 static void hcd_release (struct kref *kref)
2165 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2167 kfree(hcd);
2170 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2172 if (hcd)
2173 kref_get (&hcd->kref);
2174 return hcd;
2176 EXPORT_SYMBOL_GPL(usb_get_hcd);
2178 void usb_put_hcd (struct usb_hcd *hcd)
2180 if (hcd)
2181 kref_put (&hcd->kref, hcd_release);
2183 EXPORT_SYMBOL_GPL(usb_put_hcd);
2186 * usb_add_hcd - finish generic HCD structure initialization and register
2187 * @hcd: the usb_hcd structure to initialize
2188 * @irqnum: Interrupt line to allocate
2189 * @irqflags: Interrupt type flags
2191 * Finish the remaining parts of generic HCD initialization: allocate the
2192 * buffers of consistent memory, register the bus, request the IRQ line,
2193 * and call the driver's reset() and start() routines.
2195 int usb_add_hcd(struct usb_hcd *hcd,
2196 unsigned int irqnum, unsigned long irqflags)
2198 int retval;
2199 struct usb_device *rhdev;
2201 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2203 hcd->authorized_default = hcd->wireless? 0 : 1;
2204 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2206 /* HC is in reset state, but accessible. Now do the one-time init,
2207 * bottom up so that hcds can customize the root hubs before khubd
2208 * starts talking to them. (Note, bus id is assigned early too.)
2210 if ((retval = hcd_buffer_create(hcd)) != 0) {
2211 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2212 return retval;
2215 if ((retval = usb_register_bus(&hcd->self)) < 0)
2216 goto err_register_bus;
2218 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2219 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2220 retval = -ENOMEM;
2221 goto err_allocate_root_hub;
2223 hcd->self.root_hub = rhdev;
2225 switch (hcd->driver->flags & HCD_MASK) {
2226 case HCD_USB11:
2227 rhdev->speed = USB_SPEED_FULL;
2228 break;
2229 case HCD_USB2:
2230 rhdev->speed = USB_SPEED_HIGH;
2231 break;
2232 case HCD_USB3:
2233 rhdev->speed = USB_SPEED_SUPER;
2234 break;
2235 default:
2236 goto err_set_rh_speed;
2239 /* wakeup flag init defaults to "everything works" for root hubs,
2240 * but drivers can override it in reset() if needed, along with
2241 * recording the overall controller's system wakeup capability.
2243 device_init_wakeup(&rhdev->dev, 1);
2245 /* "reset" is misnamed; its role is now one-time init. the controller
2246 * should already have been reset (and boot firmware kicked off etc).
2248 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2249 dev_err(hcd->self.controller, "can't setup\n");
2250 goto err_hcd_driver_setup;
2252 hcd->rh_pollable = 1;
2254 /* NOTE: root hub and controller capabilities may not be the same */
2255 if (device_can_wakeup(hcd->self.controller)
2256 && device_can_wakeup(&hcd->self.root_hub->dev))
2257 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2259 /* enable irqs just before we start the controller */
2260 if (hcd->driver->irq) {
2262 /* IRQF_DISABLED doesn't work as advertised when used together
2263 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2264 * interrupts we can remove it here.
2266 if (irqflags & IRQF_SHARED)
2267 irqflags &= ~IRQF_DISABLED;
2269 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2270 hcd->driver->description, hcd->self.busnum);
2271 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2272 hcd->irq_descr, hcd)) != 0) {
2273 dev_err(hcd->self.controller,
2274 "request interrupt %d failed\n", irqnum);
2275 goto err_request_irq;
2277 hcd->irq = irqnum;
2278 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2279 (hcd->driver->flags & HCD_MEMORY) ?
2280 "io mem" : "io base",
2281 (unsigned long long)hcd->rsrc_start);
2282 } else {
2283 hcd->irq = -1;
2284 if (hcd->rsrc_start)
2285 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2286 (hcd->driver->flags & HCD_MEMORY) ?
2287 "io mem" : "io base",
2288 (unsigned long long)hcd->rsrc_start);
2291 if ((retval = hcd->driver->start(hcd)) < 0) {
2292 dev_err(hcd->self.controller, "startup error %d\n", retval);
2293 goto err_hcd_driver_start;
2296 /* starting here, usbcore will pay attention to this root hub */
2297 rhdev->bus_mA = min(500u, hcd->power_budget);
2298 if ((retval = register_root_hub(hcd)) != 0)
2299 goto err_register_root_hub;
2301 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2302 if (retval < 0) {
2303 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2304 retval);
2305 goto error_create_attr_group;
2307 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2308 usb_hcd_poll_rh_status(hcd);
2309 return retval;
2311 error_create_attr_group:
2312 if (HC_IS_RUNNING(hcd->state))
2313 hcd->state = HC_STATE_QUIESCING;
2314 spin_lock_irq(&hcd_root_hub_lock);
2315 hcd->rh_registered = 0;
2316 spin_unlock_irq(&hcd_root_hub_lock);
2318 #ifdef CONFIG_USB_SUSPEND
2319 cancel_work_sync(&hcd->wakeup_work);
2320 #endif
2321 mutex_lock(&usb_bus_list_lock);
2322 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2323 mutex_unlock(&usb_bus_list_lock);
2324 err_register_root_hub:
2325 hcd->rh_pollable = 0;
2326 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2327 del_timer_sync(&hcd->rh_timer);
2328 hcd->driver->stop(hcd);
2329 hcd->state = HC_STATE_HALT;
2330 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2331 del_timer_sync(&hcd->rh_timer);
2332 err_hcd_driver_start:
2333 if (hcd->irq >= 0)
2334 free_irq(irqnum, hcd);
2335 err_request_irq:
2336 err_hcd_driver_setup:
2337 err_set_rh_speed:
2338 usb_put_dev(hcd->self.root_hub);
2339 err_allocate_root_hub:
2340 usb_deregister_bus(&hcd->self);
2341 err_register_bus:
2342 hcd_buffer_destroy(hcd);
2343 return retval;
2345 EXPORT_SYMBOL_GPL(usb_add_hcd);
2348 * usb_remove_hcd - shutdown processing for generic HCDs
2349 * @hcd: the usb_hcd structure to remove
2350 * Context: !in_interrupt()
2352 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2353 * invoking the HCD's stop() method.
2355 void usb_remove_hcd(struct usb_hcd *hcd)
2357 struct usb_device *rhdev = hcd->self.root_hub;
2359 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2361 usb_get_dev(rhdev);
2362 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2364 if (HC_IS_RUNNING (hcd->state))
2365 hcd->state = HC_STATE_QUIESCING;
2367 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2368 spin_lock_irq (&hcd_root_hub_lock);
2369 hcd->rh_registered = 0;
2370 spin_unlock_irq (&hcd_root_hub_lock);
2372 #ifdef CONFIG_USB_SUSPEND
2373 cancel_work_sync(&hcd->wakeup_work);
2374 #endif
2376 mutex_lock(&usb_bus_list_lock);
2377 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2378 mutex_unlock(&usb_bus_list_lock);
2380 /* Prevent any more root-hub status calls from the timer.
2381 * The HCD might still restart the timer (if a port status change
2382 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2383 * the hub_status_data() callback.
2385 hcd->rh_pollable = 0;
2386 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387 del_timer_sync(&hcd->rh_timer);
2389 hcd->driver->stop(hcd);
2390 hcd->state = HC_STATE_HALT;
2392 /* In case the HCD restarted the timer, stop it again. */
2393 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2394 del_timer_sync(&hcd->rh_timer);
2396 if (hcd->irq >= 0)
2397 free_irq(hcd->irq, hcd);
2399 usb_put_dev(hcd->self.root_hub);
2400 usb_deregister_bus(&hcd->self);
2401 hcd_buffer_destroy(hcd);
2403 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2405 void
2406 usb_hcd_platform_shutdown(struct platform_device* dev)
2408 struct usb_hcd *hcd = platform_get_drvdata(dev);
2410 if (hcd->driver->shutdown)
2411 hcd->driver->shutdown(hcd);
2413 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2415 /*-------------------------------------------------------------------------*/
2417 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2419 struct usb_mon_operations *mon_ops;
2422 * The registration is unlocked.
2423 * We do it this way because we do not want to lock in hot paths.
2425 * Notice that the code is minimally error-proof. Because usbmon needs
2426 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2429 int usb_mon_register (struct usb_mon_operations *ops)
2432 if (mon_ops)
2433 return -EBUSY;
2435 mon_ops = ops;
2436 mb();
2437 return 0;
2439 EXPORT_SYMBOL_GPL (usb_mon_register);
2441 void usb_mon_deregister (void)
2444 if (mon_ops == NULL) {
2445 printk(KERN_ERR "USB: monitor was not registered\n");
2446 return;
2448 mon_ops = NULL;
2449 mb();
2451 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2453 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */