RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / spi / omap2_mcspi.c
blob9ef3e0e4b6ce249a3dd66cfb7233410a618aba0d
1 /*
2 * OMAP2 McSPI controller driver
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrjölä <juha.yrjola@nokia.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/delay.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/err.h>
33 #include <linux/clk.h>
34 #include <linux/io.h>
35 #include <linux/slab.h>
37 #include <linux/spi/spi.h>
39 #include <plat/dma.h>
40 #include <plat/clock.h>
41 #include <plat/mcspi.h>
43 #define OMAP2_MCSPI_MAX_FREQ 48000000
45 /* OMAP2 has 3 SPI controllers, while OMAP3 has 4 */
46 #define OMAP2_MCSPI_MAX_CTRL 4
48 #define OMAP2_MCSPI_REVISION 0x00
49 #define OMAP2_MCSPI_SYSCONFIG 0x10
50 #define OMAP2_MCSPI_SYSSTATUS 0x14
51 #define OMAP2_MCSPI_IRQSTATUS 0x18
52 #define OMAP2_MCSPI_IRQENABLE 0x1c
53 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
54 #define OMAP2_MCSPI_SYST 0x24
55 #define OMAP2_MCSPI_MODULCTRL 0x28
57 /* per-channel banks, 0x14 bytes each, first is: */
58 #define OMAP2_MCSPI_CHCONF0 0x2c
59 #define OMAP2_MCSPI_CHSTAT0 0x30
60 #define OMAP2_MCSPI_CHCTRL0 0x34
61 #define OMAP2_MCSPI_TX0 0x38
62 #define OMAP2_MCSPI_RX0 0x3c
64 /* per-register bitmasks: */
66 #define OMAP2_MCSPI_SYSCONFIG_SMARTIDLE BIT(4)
67 #define OMAP2_MCSPI_SYSCONFIG_ENAWAKEUP BIT(2)
68 #define OMAP2_MCSPI_SYSCONFIG_AUTOIDLE BIT(0)
69 #define OMAP2_MCSPI_SYSCONFIG_SOFTRESET BIT(1)
71 #define OMAP2_MCSPI_SYSSTATUS_RESETDONE BIT(0)
73 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
74 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
75 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
77 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
78 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
79 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
80 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
81 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
82 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
83 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
84 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
85 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
86 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
87 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
88 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
89 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
90 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
91 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
93 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
94 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
95 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
97 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
99 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
101 /* We have 2 DMA channels per CS, one for RX and one for TX */
102 struct omap2_mcspi_dma {
103 int dma_tx_channel;
104 int dma_rx_channel;
106 int dma_tx_sync_dev;
107 int dma_rx_sync_dev;
109 struct completion dma_tx_completion;
110 struct completion dma_rx_completion;
113 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
114 * cache operations; better heuristics consider wordsize and bitrate.
116 #define DMA_MIN_BYTES 160
119 struct omap2_mcspi {
120 struct work_struct work;
121 /* lock protects queue and registers */
122 spinlock_t lock;
123 struct list_head msg_queue;
124 struct spi_master *master;
125 struct clk *ick;
126 struct clk *fck;
127 /* Virtual base address of the controller */
128 void __iomem *base;
129 unsigned long phys;
130 /* SPI1 has 4 channels, while SPI2 has 2 */
131 struct omap2_mcspi_dma *dma_channels;
134 struct omap2_mcspi_cs {
135 void __iomem *base;
136 unsigned long phys;
137 int word_len;
138 struct list_head node;
139 /* Context save and restore shadow register */
140 u32 chconf0;
143 /* used for context save and restore, structure members to be updated whenever
144 * corresponding registers are modified.
146 struct omap2_mcspi_regs {
147 u32 sysconfig;
148 u32 modulctrl;
149 u32 wakeupenable;
150 struct list_head cs;
153 static struct omap2_mcspi_regs omap2_mcspi_ctx[OMAP2_MCSPI_MAX_CTRL];
155 static struct workqueue_struct *omap2_mcspi_wq;
157 #define MOD_REG_BIT(val, mask, set) do { \
158 if (set) \
159 val |= mask; \
160 else \
161 val &= ~mask; \
162 } while (0)
164 static inline void mcspi_write_reg(struct spi_master *master,
165 int idx, u32 val)
167 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
169 __raw_writel(val, mcspi->base + idx);
172 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
174 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
176 return __raw_readl(mcspi->base + idx);
179 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
180 int idx, u32 val)
182 struct omap2_mcspi_cs *cs = spi->controller_state;
184 __raw_writel(val, cs->base + idx);
187 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
189 struct omap2_mcspi_cs *cs = spi->controller_state;
191 return __raw_readl(cs->base + idx);
194 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
196 struct omap2_mcspi_cs *cs = spi->controller_state;
198 return cs->chconf0;
201 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
203 struct omap2_mcspi_cs *cs = spi->controller_state;
205 cs->chconf0 = val;
206 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
207 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
210 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
211 int is_read, int enable)
213 u32 l, rw;
215 l = mcspi_cached_chconf0(spi);
217 if (is_read) /* 1 is read, 0 write */
218 rw = OMAP2_MCSPI_CHCONF_DMAR;
219 else
220 rw = OMAP2_MCSPI_CHCONF_DMAW;
222 MOD_REG_BIT(l, rw, enable);
223 mcspi_write_chconf0(spi, l);
226 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
228 u32 l;
230 l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0;
231 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l);
232 /* Flash post-writes */
233 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
236 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
238 u32 l;
240 l = mcspi_cached_chconf0(spi);
241 MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active);
242 mcspi_write_chconf0(spi, l);
245 static void omap2_mcspi_set_master_mode(struct spi_master *master)
247 u32 l;
249 /* setup when switching from (reset default) slave mode
250 * to single-channel master mode
252 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
253 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0);
254 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0);
255 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, 1);
256 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
258 omap2_mcspi_ctx[master->bus_num - 1].modulctrl = l;
261 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
263 struct spi_master *spi_cntrl;
264 struct omap2_mcspi_cs *cs;
265 spi_cntrl = mcspi->master;
267 /* McSPI: context restore */
268 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL,
269 omap2_mcspi_ctx[spi_cntrl->bus_num - 1].modulctrl);
271 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_SYSCONFIG,
272 omap2_mcspi_ctx[spi_cntrl->bus_num - 1].sysconfig);
274 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE,
275 omap2_mcspi_ctx[spi_cntrl->bus_num - 1].wakeupenable);
277 list_for_each_entry(cs, &omap2_mcspi_ctx[spi_cntrl->bus_num - 1].cs,
278 node)
279 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
281 static void omap2_mcspi_disable_clocks(struct omap2_mcspi *mcspi)
283 clk_disable(mcspi->ick);
284 clk_disable(mcspi->fck);
287 static int omap2_mcspi_enable_clocks(struct omap2_mcspi *mcspi)
289 if (clk_enable(mcspi->ick))
290 return -ENODEV;
291 if (clk_enable(mcspi->fck))
292 return -ENODEV;
294 omap2_mcspi_restore_ctx(mcspi);
296 return 0;
299 static unsigned
300 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
302 struct omap2_mcspi *mcspi;
303 struct omap2_mcspi_cs *cs = spi->controller_state;
304 struct omap2_mcspi_dma *mcspi_dma;
305 unsigned int count, c;
306 unsigned long base, tx_reg, rx_reg;
307 int word_len, data_type, element_count;
308 int elements;
309 u32 l;
310 u8 * rx;
311 const u8 * tx;
313 mcspi = spi_master_get_devdata(spi->master);
314 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
315 l = mcspi_cached_chconf0(spi);
317 count = xfer->len;
318 c = count;
319 word_len = cs->word_len;
321 base = cs->phys;
322 tx_reg = base + OMAP2_MCSPI_TX0;
323 rx_reg = base + OMAP2_MCSPI_RX0;
324 rx = xfer->rx_buf;
325 tx = xfer->tx_buf;
327 if (word_len <= 8) {
328 data_type = OMAP_DMA_DATA_TYPE_S8;
329 element_count = count;
330 } else if (word_len <= 16) {
331 data_type = OMAP_DMA_DATA_TYPE_S16;
332 element_count = count >> 1;
333 } else /* word_len <= 32 */ {
334 data_type = OMAP_DMA_DATA_TYPE_S32;
335 element_count = count >> 2;
338 if (tx != NULL) {
339 omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel,
340 data_type, element_count, 1,
341 OMAP_DMA_SYNC_ELEMENT,
342 mcspi_dma->dma_tx_sync_dev, 0);
344 omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0,
345 OMAP_DMA_AMODE_CONSTANT,
346 tx_reg, 0, 0);
348 omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0,
349 OMAP_DMA_AMODE_POST_INC,
350 xfer->tx_dma, 0, 0);
353 if (rx != NULL) {
354 elements = element_count - 1;
355 if (l & OMAP2_MCSPI_CHCONF_TURBO)
356 elements--;
358 omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel,
359 data_type, elements, 1,
360 OMAP_DMA_SYNC_ELEMENT,
361 mcspi_dma->dma_rx_sync_dev, 1);
363 omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0,
364 OMAP_DMA_AMODE_CONSTANT,
365 rx_reg, 0, 0);
367 omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0,
368 OMAP_DMA_AMODE_POST_INC,
369 xfer->rx_dma, 0, 0);
372 if (tx != NULL) {
373 omap_start_dma(mcspi_dma->dma_tx_channel);
374 omap2_mcspi_set_dma_req(spi, 0, 1);
377 if (rx != NULL) {
378 omap_start_dma(mcspi_dma->dma_rx_channel);
379 omap2_mcspi_set_dma_req(spi, 1, 1);
382 if (tx != NULL) {
383 wait_for_completion(&mcspi_dma->dma_tx_completion);
384 dma_unmap_single(NULL, xfer->tx_dma, count, DMA_TO_DEVICE);
387 if (rx != NULL) {
388 wait_for_completion(&mcspi_dma->dma_rx_completion);
389 dma_unmap_single(NULL, xfer->rx_dma, count, DMA_FROM_DEVICE);
390 omap2_mcspi_set_enable(spi, 0);
392 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
394 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
395 & OMAP2_MCSPI_CHSTAT_RXS)) {
396 u32 w;
398 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
399 if (word_len <= 8)
400 ((u8 *)xfer->rx_buf)[elements++] = w;
401 else if (word_len <= 16)
402 ((u16 *)xfer->rx_buf)[elements++] = w;
403 else /* word_len <= 32 */
404 ((u32 *)xfer->rx_buf)[elements++] = w;
405 } else {
406 dev_err(&spi->dev,
407 "DMA RX penultimate word empty");
408 count -= (word_len <= 8) ? 2 :
409 (word_len <= 16) ? 4 :
410 /* word_len <= 32 */ 8;
411 omap2_mcspi_set_enable(spi, 1);
412 return count;
416 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
417 & OMAP2_MCSPI_CHSTAT_RXS)) {
418 u32 w;
420 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
421 if (word_len <= 8)
422 ((u8 *)xfer->rx_buf)[elements] = w;
423 else if (word_len <= 16)
424 ((u16 *)xfer->rx_buf)[elements] = w;
425 else /* word_len <= 32 */
426 ((u32 *)xfer->rx_buf)[elements] = w;
427 } else {
428 dev_err(&spi->dev, "DMA RX last word empty");
429 count -= (word_len <= 8) ? 1 :
430 (word_len <= 16) ? 2 :
431 /* word_len <= 32 */ 4;
433 omap2_mcspi_set_enable(spi, 1);
435 return count;
438 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
440 unsigned long timeout;
442 timeout = jiffies + msecs_to_jiffies(1000);
443 while (!(__raw_readl(reg) & bit)) {
444 if (time_after(jiffies, timeout))
445 return -1;
446 cpu_relax();
448 return 0;
451 static unsigned
452 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
454 struct omap2_mcspi *mcspi;
455 struct omap2_mcspi_cs *cs = spi->controller_state;
456 unsigned int count, c;
457 u32 l;
458 void __iomem *base = cs->base;
459 void __iomem *tx_reg;
460 void __iomem *rx_reg;
461 void __iomem *chstat_reg;
462 int word_len;
464 mcspi = spi_master_get_devdata(spi->master);
465 count = xfer->len;
466 c = count;
467 word_len = cs->word_len;
469 l = mcspi_cached_chconf0(spi);
471 /* We store the pre-calculated register addresses on stack to speed
472 * up the transfer loop. */
473 tx_reg = base + OMAP2_MCSPI_TX0;
474 rx_reg = base + OMAP2_MCSPI_RX0;
475 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
477 if (word_len <= 8) {
478 u8 *rx;
479 const u8 *tx;
481 rx = xfer->rx_buf;
482 tx = xfer->tx_buf;
484 do {
485 c -= 1;
486 if (tx != NULL) {
487 if (mcspi_wait_for_reg_bit(chstat_reg,
488 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
489 dev_err(&spi->dev, "TXS timed out\n");
490 goto out;
492 #ifdef VERBOSE
493 dev_dbg(&spi->dev, "write-%d %02x\n",
494 word_len, *tx);
495 #endif
496 __raw_writel(*tx++, tx_reg);
498 if (rx != NULL) {
499 if (mcspi_wait_for_reg_bit(chstat_reg,
500 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
501 dev_err(&spi->dev, "RXS timed out\n");
502 goto out;
505 if (c == 1 && tx == NULL &&
506 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
507 omap2_mcspi_set_enable(spi, 0);
508 *rx++ = __raw_readl(rx_reg);
509 #ifdef VERBOSE
510 dev_dbg(&spi->dev, "read-%d %02x\n",
511 word_len, *(rx - 1));
512 #endif
513 if (mcspi_wait_for_reg_bit(chstat_reg,
514 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
515 dev_err(&spi->dev,
516 "RXS timed out\n");
517 goto out;
519 c = 0;
520 } else if (c == 0 && tx == NULL) {
521 omap2_mcspi_set_enable(spi, 0);
524 *rx++ = __raw_readl(rx_reg);
525 #ifdef VERBOSE
526 dev_dbg(&spi->dev, "read-%d %02x\n",
527 word_len, *(rx - 1));
528 #endif
530 } while (c);
531 } else if (word_len <= 16) {
532 u16 *rx;
533 const u16 *tx;
535 rx = xfer->rx_buf;
536 tx = xfer->tx_buf;
537 do {
538 c -= 2;
539 if (tx != NULL) {
540 if (mcspi_wait_for_reg_bit(chstat_reg,
541 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
542 dev_err(&spi->dev, "TXS timed out\n");
543 goto out;
545 #ifdef VERBOSE
546 dev_dbg(&spi->dev, "write-%d %04x\n",
547 word_len, *tx);
548 #endif
549 __raw_writel(*tx++, tx_reg);
551 if (rx != NULL) {
552 if (mcspi_wait_for_reg_bit(chstat_reg,
553 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
554 dev_err(&spi->dev, "RXS timed out\n");
555 goto out;
558 if (c == 2 && tx == NULL &&
559 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
560 omap2_mcspi_set_enable(spi, 0);
561 *rx++ = __raw_readl(rx_reg);
562 #ifdef VERBOSE
563 dev_dbg(&spi->dev, "read-%d %04x\n",
564 word_len, *(rx - 1));
565 #endif
566 if (mcspi_wait_for_reg_bit(chstat_reg,
567 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
568 dev_err(&spi->dev,
569 "RXS timed out\n");
570 goto out;
572 c = 0;
573 } else if (c == 0 && tx == NULL) {
574 omap2_mcspi_set_enable(spi, 0);
577 *rx++ = __raw_readl(rx_reg);
578 #ifdef VERBOSE
579 dev_dbg(&spi->dev, "read-%d %04x\n",
580 word_len, *(rx - 1));
581 #endif
583 } while (c);
584 } else if (word_len <= 32) {
585 u32 *rx;
586 const u32 *tx;
588 rx = xfer->rx_buf;
589 tx = xfer->tx_buf;
590 do {
591 c -= 4;
592 if (tx != NULL) {
593 if (mcspi_wait_for_reg_bit(chstat_reg,
594 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
595 dev_err(&spi->dev, "TXS timed out\n");
596 goto out;
598 #ifdef VERBOSE
599 dev_dbg(&spi->dev, "write-%d %08x\n",
600 word_len, *tx);
601 #endif
602 __raw_writel(*tx++, tx_reg);
604 if (rx != NULL) {
605 if (mcspi_wait_for_reg_bit(chstat_reg,
606 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
607 dev_err(&spi->dev, "RXS timed out\n");
608 goto out;
611 if (c == 4 && tx == NULL &&
612 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
613 omap2_mcspi_set_enable(spi, 0);
614 *rx++ = __raw_readl(rx_reg);
615 #ifdef VERBOSE
616 dev_dbg(&spi->dev, "read-%d %08x\n",
617 word_len, *(rx - 1));
618 #endif
619 if (mcspi_wait_for_reg_bit(chstat_reg,
620 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
621 dev_err(&spi->dev,
622 "RXS timed out\n");
623 goto out;
625 c = 0;
626 } else if (c == 0 && tx == NULL) {
627 omap2_mcspi_set_enable(spi, 0);
630 *rx++ = __raw_readl(rx_reg);
631 #ifdef VERBOSE
632 dev_dbg(&spi->dev, "read-%d %08x\n",
633 word_len, *(rx - 1));
634 #endif
636 } while (c);
639 /* for TX_ONLY mode, be sure all words have shifted out */
640 if (xfer->rx_buf == NULL) {
641 if (mcspi_wait_for_reg_bit(chstat_reg,
642 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
643 dev_err(&spi->dev, "TXS timed out\n");
644 } else if (mcspi_wait_for_reg_bit(chstat_reg,
645 OMAP2_MCSPI_CHSTAT_EOT) < 0)
646 dev_err(&spi->dev, "EOT timed out\n");
648 out:
649 omap2_mcspi_set_enable(spi, 1);
650 return count - c;
653 /* called only when no transfer is active to this device */
654 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
655 struct spi_transfer *t)
657 struct omap2_mcspi_cs *cs = spi->controller_state;
658 struct omap2_mcspi *mcspi;
659 struct spi_master *spi_cntrl;
660 u32 l = 0, div = 0;
661 u8 word_len = spi->bits_per_word;
662 u32 speed_hz = spi->max_speed_hz;
664 mcspi = spi_master_get_devdata(spi->master);
665 spi_cntrl = mcspi->master;
667 if (t != NULL && t->bits_per_word)
668 word_len = t->bits_per_word;
670 cs->word_len = word_len;
672 if (t && t->speed_hz)
673 speed_hz = t->speed_hz;
675 if (speed_hz) {
676 while (div <= 15 && (OMAP2_MCSPI_MAX_FREQ / (1 << div))
677 > speed_hz)
678 div++;
679 } else
680 div = 15;
682 l = mcspi_cached_chconf0(spi);
684 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
685 * REVISIT: this controller could support SPI_3WIRE mode.
687 l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1);
688 l |= OMAP2_MCSPI_CHCONF_DPE0;
690 /* wordlength */
691 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
692 l |= (word_len - 1) << 7;
694 /* set chipselect polarity; manage with FORCE */
695 if (!(spi->mode & SPI_CS_HIGH))
696 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
697 else
698 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
700 /* set clock divisor */
701 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
702 l |= div << 2;
704 /* set SPI mode 0..3 */
705 if (spi->mode & SPI_CPOL)
706 l |= OMAP2_MCSPI_CHCONF_POL;
707 else
708 l &= ~OMAP2_MCSPI_CHCONF_POL;
709 if (spi->mode & SPI_CPHA)
710 l |= OMAP2_MCSPI_CHCONF_PHA;
711 else
712 l &= ~OMAP2_MCSPI_CHCONF_PHA;
714 mcspi_write_chconf0(spi, l);
716 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
717 OMAP2_MCSPI_MAX_FREQ / (1 << div),
718 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
719 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
721 return 0;
724 static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data)
726 struct spi_device *spi = data;
727 struct omap2_mcspi *mcspi;
728 struct omap2_mcspi_dma *mcspi_dma;
730 mcspi = spi_master_get_devdata(spi->master);
731 mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);
733 complete(&mcspi_dma->dma_rx_completion);
735 /* We must disable the DMA RX request */
736 omap2_mcspi_set_dma_req(spi, 1, 0);
739 static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data)
741 struct spi_device *spi = data;
742 struct omap2_mcspi *mcspi;
743 struct omap2_mcspi_dma *mcspi_dma;
745 mcspi = spi_master_get_devdata(spi->master);
746 mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);
748 complete(&mcspi_dma->dma_tx_completion);
750 /* We must disable the DMA TX request */
751 omap2_mcspi_set_dma_req(spi, 0, 0);
754 static int omap2_mcspi_request_dma(struct spi_device *spi)
756 struct spi_master *master = spi->master;
757 struct omap2_mcspi *mcspi;
758 struct omap2_mcspi_dma *mcspi_dma;
760 mcspi = spi_master_get_devdata(master);
761 mcspi_dma = mcspi->dma_channels + spi->chip_select;
763 if (omap_request_dma(mcspi_dma->dma_rx_sync_dev, "McSPI RX",
764 omap2_mcspi_dma_rx_callback, spi,
765 &mcspi_dma->dma_rx_channel)) {
766 dev_err(&spi->dev, "no RX DMA channel for McSPI\n");
767 return -EAGAIN;
770 if (omap_request_dma(mcspi_dma->dma_tx_sync_dev, "McSPI TX",
771 omap2_mcspi_dma_tx_callback, spi,
772 &mcspi_dma->dma_tx_channel)) {
773 omap_free_dma(mcspi_dma->dma_rx_channel);
774 mcspi_dma->dma_rx_channel = -1;
775 dev_err(&spi->dev, "no TX DMA channel for McSPI\n");
776 return -EAGAIN;
779 init_completion(&mcspi_dma->dma_rx_completion);
780 init_completion(&mcspi_dma->dma_tx_completion);
782 return 0;
785 static int omap2_mcspi_setup(struct spi_device *spi)
787 int ret;
788 struct omap2_mcspi *mcspi;
789 struct omap2_mcspi_dma *mcspi_dma;
790 struct omap2_mcspi_cs *cs = spi->controller_state;
792 if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
793 dev_dbg(&spi->dev, "setup: unsupported %d bit words\n",
794 spi->bits_per_word);
795 return -EINVAL;
798 mcspi = spi_master_get_devdata(spi->master);
799 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
801 if (!cs) {
802 cs = kzalloc(sizeof *cs, GFP_KERNEL);
803 if (!cs)
804 return -ENOMEM;
805 cs->base = mcspi->base + spi->chip_select * 0x14;
806 cs->phys = mcspi->phys + spi->chip_select * 0x14;
807 cs->chconf0 = 0;
808 spi->controller_state = cs;
809 /* Link this to context save list */
810 list_add_tail(&cs->node,
811 &omap2_mcspi_ctx[mcspi->master->bus_num - 1].cs);
814 if (mcspi_dma->dma_rx_channel == -1
815 || mcspi_dma->dma_tx_channel == -1) {
816 ret = omap2_mcspi_request_dma(spi);
817 if (ret < 0)
818 return ret;
821 if (omap2_mcspi_enable_clocks(mcspi))
822 return -ENODEV;
824 ret = omap2_mcspi_setup_transfer(spi, NULL);
825 omap2_mcspi_disable_clocks(mcspi);
827 return ret;
830 static void omap2_mcspi_cleanup(struct spi_device *spi)
832 struct omap2_mcspi *mcspi;
833 struct omap2_mcspi_dma *mcspi_dma;
834 struct omap2_mcspi_cs *cs;
836 mcspi = spi_master_get_devdata(spi->master);
838 if (spi->controller_state) {
839 /* Unlink controller state from context save list */
840 cs = spi->controller_state;
841 list_del(&cs->node);
843 kfree(spi->controller_state);
846 if (spi->chip_select < spi->master->num_chipselect) {
847 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
849 if (mcspi_dma->dma_rx_channel != -1) {
850 omap_free_dma(mcspi_dma->dma_rx_channel);
851 mcspi_dma->dma_rx_channel = -1;
853 if (mcspi_dma->dma_tx_channel != -1) {
854 omap_free_dma(mcspi_dma->dma_tx_channel);
855 mcspi_dma->dma_tx_channel = -1;
860 static void omap2_mcspi_work(struct work_struct *work)
862 struct omap2_mcspi *mcspi;
864 mcspi = container_of(work, struct omap2_mcspi, work);
865 spin_lock_irq(&mcspi->lock);
867 if (omap2_mcspi_enable_clocks(mcspi))
868 goto out;
870 /* We only enable one channel at a time -- the one whose message is
871 * at the head of the queue -- although this controller would gladly
872 * arbitrate among multiple channels. This corresponds to "single
873 * channel" master mode. As a side effect, we need to manage the
874 * chipselect with the FORCE bit ... CS != channel enable.
876 while (!list_empty(&mcspi->msg_queue)) {
877 struct spi_message *m;
878 struct spi_device *spi;
879 struct spi_transfer *t = NULL;
880 int cs_active = 0;
881 struct omap2_mcspi_cs *cs;
882 struct omap2_mcspi_device_config *cd;
883 int par_override = 0;
884 int status = 0;
885 u32 chconf;
887 m = container_of(mcspi->msg_queue.next, struct spi_message,
888 queue);
890 list_del_init(&m->queue);
891 spin_unlock_irq(&mcspi->lock);
893 spi = m->spi;
894 cs = spi->controller_state;
895 cd = spi->controller_data;
897 omap2_mcspi_set_enable(spi, 1);
898 list_for_each_entry(t, &m->transfers, transfer_list) {
899 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
900 status = -EINVAL;
901 break;
903 if (par_override || t->speed_hz || t->bits_per_word) {
904 par_override = 1;
905 status = omap2_mcspi_setup_transfer(spi, t);
906 if (status < 0)
907 break;
908 if (!t->speed_hz && !t->bits_per_word)
909 par_override = 0;
912 if (!cs_active) {
913 omap2_mcspi_force_cs(spi, 1);
914 cs_active = 1;
917 chconf = mcspi_cached_chconf0(spi);
918 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
919 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
921 if (t->tx_buf == NULL)
922 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
923 else if (t->rx_buf == NULL)
924 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
926 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
927 /* Turbo mode is for more than one word */
928 if (t->len > ((cs->word_len + 7) >> 3))
929 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
932 mcspi_write_chconf0(spi, chconf);
934 if (t->len) {
935 unsigned count;
937 /* RX_ONLY mode needs dummy data in TX reg */
938 if (t->tx_buf == NULL)
939 __raw_writel(0, cs->base
940 + OMAP2_MCSPI_TX0);
942 if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)
943 count = omap2_mcspi_txrx_dma(spi, t);
944 else
945 count = omap2_mcspi_txrx_pio(spi, t);
946 m->actual_length += count;
948 if (count != t->len) {
949 status = -EIO;
950 break;
954 if (t->delay_usecs)
955 udelay(t->delay_usecs);
957 /* ignore the "leave it on after last xfer" hint */
958 if (t->cs_change) {
959 omap2_mcspi_force_cs(spi, 0);
960 cs_active = 0;
964 /* Restore defaults if they were overriden */
965 if (par_override) {
966 par_override = 0;
967 status = omap2_mcspi_setup_transfer(spi, NULL);
970 if (cs_active)
971 omap2_mcspi_force_cs(spi, 0);
973 omap2_mcspi_set_enable(spi, 0);
975 m->status = status;
976 m->complete(m->context);
978 spin_lock_irq(&mcspi->lock);
981 omap2_mcspi_disable_clocks(mcspi);
983 out:
984 spin_unlock_irq(&mcspi->lock);
987 static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m)
989 struct omap2_mcspi *mcspi;
990 unsigned long flags;
991 struct spi_transfer *t;
993 m->actual_length = 0;
994 m->status = 0;
996 /* reject invalid messages and transfers */
997 if (list_empty(&m->transfers) || !m->complete)
998 return -EINVAL;
999 list_for_each_entry(t, &m->transfers, transfer_list) {
1000 const void *tx_buf = t->tx_buf;
1001 void *rx_buf = t->rx_buf;
1002 unsigned len = t->len;
1004 if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ
1005 || (len && !(rx_buf || tx_buf))
1006 || (t->bits_per_word &&
1007 ( t->bits_per_word < 4
1008 || t->bits_per_word > 32))) {
1009 dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1010 t->speed_hz,
1011 len,
1012 tx_buf ? "tx" : "",
1013 rx_buf ? "rx" : "",
1014 t->bits_per_word);
1015 return -EINVAL;
1017 if (t->speed_hz && t->speed_hz < OMAP2_MCSPI_MAX_FREQ/(1<<16)) {
1018 dev_dbg(&spi->dev, "%d Hz max exceeds %d\n",
1019 t->speed_hz,
1020 OMAP2_MCSPI_MAX_FREQ/(1<<16));
1021 return -EINVAL;
1024 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1025 continue;
1027 /* Do DMA mapping "early" for better error reporting and
1028 * dcache use. Note that if dma_unmap_single() ever starts
1029 * to do real work on ARM, we'd need to clean up mappings
1030 * for previous transfers on *ALL* exits of this loop...
1032 if (tx_buf != NULL) {
1033 t->tx_dma = dma_map_single(&spi->dev, (void *) tx_buf,
1034 len, DMA_TO_DEVICE);
1035 if (dma_mapping_error(&spi->dev, t->tx_dma)) {
1036 dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
1037 'T', len);
1038 return -EINVAL;
1041 if (rx_buf != NULL) {
1042 t->rx_dma = dma_map_single(&spi->dev, rx_buf, t->len,
1043 DMA_FROM_DEVICE);
1044 if (dma_mapping_error(&spi->dev, t->rx_dma)) {
1045 dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
1046 'R', len);
1047 if (tx_buf != NULL)
1048 dma_unmap_single(NULL, t->tx_dma,
1049 len, DMA_TO_DEVICE);
1050 return -EINVAL;
1055 mcspi = spi_master_get_devdata(spi->master);
1057 spin_lock_irqsave(&mcspi->lock, flags);
1058 list_add_tail(&m->queue, &mcspi->msg_queue);
1059 queue_work(omap2_mcspi_wq, &mcspi->work);
1060 spin_unlock_irqrestore(&mcspi->lock, flags);
1062 return 0;
1065 static int __init omap2_mcspi_reset(struct omap2_mcspi *mcspi)
1067 struct spi_master *master = mcspi->master;
1068 u32 tmp;
1070 if (omap2_mcspi_enable_clocks(mcspi))
1071 return -1;
1073 mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG,
1074 OMAP2_MCSPI_SYSCONFIG_SOFTRESET);
1075 do {
1076 tmp = mcspi_read_reg(master, OMAP2_MCSPI_SYSSTATUS);
1077 } while (!(tmp & OMAP2_MCSPI_SYSSTATUS_RESETDONE));
1079 tmp = OMAP2_MCSPI_SYSCONFIG_AUTOIDLE |
1080 OMAP2_MCSPI_SYSCONFIG_ENAWAKEUP |
1081 OMAP2_MCSPI_SYSCONFIG_SMARTIDLE;
1082 mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG, tmp);
1083 omap2_mcspi_ctx[master->bus_num - 1].sysconfig = tmp;
1085 tmp = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1086 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, tmp);
1087 omap2_mcspi_ctx[master->bus_num - 1].wakeupenable = tmp;
1089 omap2_mcspi_set_master_mode(master);
1090 omap2_mcspi_disable_clocks(mcspi);
1091 return 0;
1094 static u8 __initdata spi1_rxdma_id [] = {
1095 OMAP24XX_DMA_SPI1_RX0,
1096 OMAP24XX_DMA_SPI1_RX1,
1097 OMAP24XX_DMA_SPI1_RX2,
1098 OMAP24XX_DMA_SPI1_RX3,
1101 static u8 __initdata spi1_txdma_id [] = {
1102 OMAP24XX_DMA_SPI1_TX0,
1103 OMAP24XX_DMA_SPI1_TX1,
1104 OMAP24XX_DMA_SPI1_TX2,
1105 OMAP24XX_DMA_SPI1_TX3,
1108 static u8 __initdata spi2_rxdma_id[] = {
1109 OMAP24XX_DMA_SPI2_RX0,
1110 OMAP24XX_DMA_SPI2_RX1,
1113 static u8 __initdata spi2_txdma_id[] = {
1114 OMAP24XX_DMA_SPI2_TX0,
1115 OMAP24XX_DMA_SPI2_TX1,
1118 #if defined(CONFIG_ARCH_OMAP2430) || defined(CONFIG_ARCH_OMAP3) || \
1119 defined(CONFIG_ARCH_OMAP4)
1120 static u8 __initdata spi3_rxdma_id[] = {
1121 OMAP24XX_DMA_SPI3_RX0,
1122 OMAP24XX_DMA_SPI3_RX1,
1125 static u8 __initdata spi3_txdma_id[] = {
1126 OMAP24XX_DMA_SPI3_TX0,
1127 OMAP24XX_DMA_SPI3_TX1,
1129 #endif
1131 #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_ARCH_OMAP4)
1132 static u8 __initdata spi4_rxdma_id[] = {
1133 OMAP34XX_DMA_SPI4_RX0,
1136 static u8 __initdata spi4_txdma_id[] = {
1137 OMAP34XX_DMA_SPI4_TX0,
1139 #endif
1141 static int __init omap2_mcspi_probe(struct platform_device *pdev)
1143 struct spi_master *master;
1144 struct omap2_mcspi *mcspi;
1145 struct resource *r;
1146 int status = 0, i;
1147 const u8 *rxdma_id, *txdma_id;
1148 unsigned num_chipselect;
1150 switch (pdev->id) {
1151 case 1:
1152 rxdma_id = spi1_rxdma_id;
1153 txdma_id = spi1_txdma_id;
1154 num_chipselect = 4;
1155 break;
1156 case 2:
1157 rxdma_id = spi2_rxdma_id;
1158 txdma_id = spi2_txdma_id;
1159 num_chipselect = 2;
1160 break;
1161 #if defined(CONFIG_ARCH_OMAP2430) || defined(CONFIG_ARCH_OMAP3) || \
1162 defined(CONFIG_ARCH_OMAP4)
1163 case 3:
1164 rxdma_id = spi3_rxdma_id;
1165 txdma_id = spi3_txdma_id;
1166 num_chipselect = 2;
1167 break;
1168 #endif
1169 #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_ARCH_OMAP4)
1170 case 4:
1171 rxdma_id = spi4_rxdma_id;
1172 txdma_id = spi4_txdma_id;
1173 num_chipselect = 1;
1174 break;
1175 #endif
1176 default:
1177 return -EINVAL;
1180 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1181 if (master == NULL) {
1182 dev_dbg(&pdev->dev, "master allocation failed\n");
1183 return -ENOMEM;
1186 /* the spi->mode bits understood by this driver: */
1187 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1189 if (pdev->id != -1)
1190 master->bus_num = pdev->id;
1192 master->setup = omap2_mcspi_setup;
1193 master->transfer = omap2_mcspi_transfer;
1194 master->cleanup = omap2_mcspi_cleanup;
1195 master->num_chipselect = num_chipselect;
1197 dev_set_drvdata(&pdev->dev, master);
1199 mcspi = spi_master_get_devdata(master);
1200 mcspi->master = master;
1202 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1203 if (r == NULL) {
1204 status = -ENODEV;
1205 goto err1;
1207 if (!request_mem_region(r->start, (r->end - r->start) + 1,
1208 dev_name(&pdev->dev))) {
1209 status = -EBUSY;
1210 goto err1;
1213 mcspi->phys = r->start;
1214 mcspi->base = ioremap(r->start, r->end - r->start + 1);
1215 if (!mcspi->base) {
1216 dev_dbg(&pdev->dev, "can't ioremap MCSPI\n");
1217 status = -ENOMEM;
1218 goto err1aa;
1221 INIT_WORK(&mcspi->work, omap2_mcspi_work);
1223 spin_lock_init(&mcspi->lock);
1224 INIT_LIST_HEAD(&mcspi->msg_queue);
1225 INIT_LIST_HEAD(&omap2_mcspi_ctx[master->bus_num - 1].cs);
1227 mcspi->ick = clk_get(&pdev->dev, "ick");
1228 if (IS_ERR(mcspi->ick)) {
1229 dev_dbg(&pdev->dev, "can't get mcspi_ick\n");
1230 status = PTR_ERR(mcspi->ick);
1231 goto err1a;
1233 mcspi->fck = clk_get(&pdev->dev, "fck");
1234 if (IS_ERR(mcspi->fck)) {
1235 dev_dbg(&pdev->dev, "can't get mcspi_fck\n");
1236 status = PTR_ERR(mcspi->fck);
1237 goto err2;
1240 mcspi->dma_channels = kcalloc(master->num_chipselect,
1241 sizeof(struct omap2_mcspi_dma),
1242 GFP_KERNEL);
1244 if (mcspi->dma_channels == NULL)
1245 goto err3;
1247 for (i = 0; i < num_chipselect; i++) {
1248 mcspi->dma_channels[i].dma_rx_channel = -1;
1249 mcspi->dma_channels[i].dma_rx_sync_dev = rxdma_id[i];
1250 mcspi->dma_channels[i].dma_tx_channel = -1;
1251 mcspi->dma_channels[i].dma_tx_sync_dev = txdma_id[i];
1254 if (omap2_mcspi_reset(mcspi) < 0)
1255 goto err4;
1257 status = spi_register_master(master);
1258 if (status < 0)
1259 goto err4;
1261 return status;
1263 err4:
1264 kfree(mcspi->dma_channels);
1265 err3:
1266 clk_put(mcspi->fck);
1267 err2:
1268 clk_put(mcspi->ick);
1269 err1a:
1270 iounmap(mcspi->base);
1271 err1aa:
1272 release_mem_region(r->start, (r->end - r->start) + 1);
1273 err1:
1274 spi_master_put(master);
1275 return status;
1278 static int __exit omap2_mcspi_remove(struct platform_device *pdev)
1280 struct spi_master *master;
1281 struct omap2_mcspi *mcspi;
1282 struct omap2_mcspi_dma *dma_channels;
1283 struct resource *r;
1284 void __iomem *base;
1286 master = dev_get_drvdata(&pdev->dev);
1287 mcspi = spi_master_get_devdata(master);
1288 dma_channels = mcspi->dma_channels;
1290 clk_put(mcspi->fck);
1291 clk_put(mcspi->ick);
1293 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1294 release_mem_region(r->start, (r->end - r->start) + 1);
1296 base = mcspi->base;
1297 spi_unregister_master(master);
1298 iounmap(base);
1299 kfree(dma_channels);
1301 return 0;
1304 /* work with hotplug and coldplug */
1305 MODULE_ALIAS("platform:omap2_mcspi");
1307 static struct platform_driver omap2_mcspi_driver = {
1308 .driver = {
1309 .name = "omap2_mcspi",
1310 .owner = THIS_MODULE,
1312 .remove = __exit_p(omap2_mcspi_remove),
1316 static int __init omap2_mcspi_init(void)
1318 omap2_mcspi_wq = create_singlethread_workqueue(
1319 omap2_mcspi_driver.driver.name);
1320 if (omap2_mcspi_wq == NULL)
1321 return -1;
1322 return platform_driver_probe(&omap2_mcspi_driver, omap2_mcspi_probe);
1324 subsys_initcall(omap2_mcspi_init);
1326 static void __exit omap2_mcspi_exit(void)
1328 platform_driver_unregister(&omap2_mcspi_driver);
1330 destroy_workqueue(omap2_mcspi_wq);
1332 module_exit(omap2_mcspi_exit);
1334 MODULE_LICENSE("GPL");