RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / rt2x00 / rt2400pci.c
blob6a6cd7142e311a861da283ee1c5b5436823b192b
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
61 u32 reg;
63 mutex_lock(&rt2x00dev->csr_mutex);
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
79 mutex_unlock(&rt2x00dev->csr_mutex);
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
85 u32 reg;
87 mutex_lock(&rt2x00dev->csr_mutex);
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
105 WAIT_FOR_BBP(rt2x00dev, &reg);
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
110 mutex_unlock(&rt2x00dev->csr_mutex);
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
116 u32 reg;
118 mutex_lock(&rt2x00dev->csr_mutex);
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
135 mutex_unlock(&rt2x00dev->csr_mutex);
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
186 .bbp = {
187 .read = rt2400pci_bbp_read,
188 .write = rt2400pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2400pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 u32 reg;
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
243 return 0;
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2400pci_brightness_set;
253 led->led_dev.blink_set = rt2400pci_blink_set;
254 led->flags = LED_INITIALIZED;
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
259 * Configuration handlers.
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
264 u32 reg;
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * since there is no filter for it at this time.
271 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 !(filter_flags & FIF_FCSFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 !(filter_flags & FIF_PLCPFAIL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 !(filter_flags & FIF_CONTROL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 !(filter_flags & FIF_PROMISC_IN_BSS));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 !rt2x00dev->intf_ap_count);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 struct rt2x00_intf *intf,
289 struct rt2x00intf_conf *conf,
290 const unsigned int flags)
292 unsigned int bcn_preload;
293 u32 reg;
295 if (flags & CONFIG_UPDATE_TYPE) {
297 * Enable beacon config
299 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
305 * Enable synchronisation.
307 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
314 if (flags & CONFIG_UPDATE_MAC)
315 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316 conf->mac, sizeof(conf->mac));
318 if (flags & CONFIG_UPDATE_BSSID)
319 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320 conf->bssid, sizeof(conf->bssid));
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 struct rt2x00lib_erp *erp)
326 int preamble_mask;
327 u32 reg;
330 * When short preamble is enabled, we should set bit 0x08
332 preamble_mask = erp->short_preamble << 3;
334 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
341 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
347 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
353 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
359 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
365 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
367 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
368 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
369 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
371 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
372 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
373 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
374 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
376 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
377 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
378 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
379 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
381 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
382 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
383 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
384 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
387 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
388 struct antenna_setup *ant)
390 u8 r1;
391 u8 r4;
394 * We should never come here because rt2x00lib is supposed
395 * to catch this and send us the correct antenna explicitely.
397 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
398 ant->tx == ANTENNA_SW_DIVERSITY);
400 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
404 * Configure the TX antenna.
406 switch (ant->tx) {
407 case ANTENNA_HW_DIVERSITY:
408 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409 break;
410 case ANTENNA_A:
411 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412 break;
413 case ANTENNA_B:
414 default:
415 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
416 break;
420 * Configure the RX antenna.
422 switch (ant->rx) {
423 case ANTENNA_HW_DIVERSITY:
424 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
425 break;
426 case ANTENNA_A:
427 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
428 break;
429 case ANTENNA_B:
430 default:
431 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
432 break;
435 rt2400pci_bbp_write(rt2x00dev, 4, r4);
436 rt2400pci_bbp_write(rt2x00dev, 1, r1);
439 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440 struct rf_channel *rf)
443 * Switch on tuning bits.
445 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
446 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
448 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
449 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
450 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
453 * RF2420 chipset don't need any additional actions.
455 if (rt2x00_rf(rt2x00dev, RF2420))
456 return;
459 * For the RT2421 chipsets we need to write an invalid
460 * reference clock rate to activate auto_tune.
461 * After that we set the value back to the correct channel.
463 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
467 msleep(1);
469 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
470 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
471 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
473 msleep(1);
476 * Switch off tuning bits.
478 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
479 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
481 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
485 * Clear false CRC during channel switch.
487 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
490 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
492 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
495 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
496 struct rt2x00lib_conf *libconf)
498 u32 reg;
500 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
501 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
502 libconf->conf->long_frame_max_tx_count);
503 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
504 libconf->conf->short_frame_max_tx_count);
505 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
508 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
509 struct rt2x00lib_conf *libconf)
511 enum dev_state state =
512 (libconf->conf->flags & IEEE80211_CONF_PS) ?
513 STATE_SLEEP : STATE_AWAKE;
514 u32 reg;
516 if (state == STATE_SLEEP) {
517 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
518 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519 (rt2x00dev->beacon_int - 20) * 16);
520 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
521 libconf->conf->listen_interval - 1);
523 /* We must first disable autowake before it can be enabled */
524 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
525 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
527 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
528 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529 } else {
530 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
531 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
532 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
535 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
538 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539 struct rt2x00lib_conf *libconf,
540 const unsigned int flags)
542 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544 if (flags & IEEE80211_CONF_CHANGE_POWER)
545 rt2400pci_config_txpower(rt2x00dev,
546 libconf->conf->power_level);
547 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
548 rt2400pci_config_retry_limit(rt2x00dev, libconf);
549 if (flags & IEEE80211_CONF_CHANGE_PS)
550 rt2400pci_config_ps(rt2x00dev, libconf);
553 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554 const int cw_min, const int cw_max)
556 u32 reg;
558 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
565 * Link tuning
567 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568 struct link_qual *qual)
570 u32 reg;
571 u8 bbp;
574 * Update FCS error count from register.
576 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
580 * Update False CCA count from register.
582 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583 qual->false_cca = bbp;
586 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
587 struct link_qual *qual, u8 vgc_level)
589 if (qual->vgc_level_reg != vgc_level) {
590 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
591 qual->vgc_level = vgc_level;
592 qual->vgc_level_reg = vgc_level;
596 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
597 struct link_qual *qual)
599 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
602 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
603 struct link_qual *qual, const u32 count)
606 * The link tuner should not run longer then 60 seconds,
607 * and should run once every 2 seconds.
609 if (count > 60 || !(count & 1))
610 return;
613 * Base r13 link tuning on the false cca count.
615 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
616 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
617 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
618 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
622 * Initialization functions.
624 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
626 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
627 u32 word;
629 if (entry->queue->qid == QID_RX) {
630 rt2x00_desc_read(entry_priv->desc, 0, &word);
632 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
633 } else {
634 rt2x00_desc_read(entry_priv->desc, 0, &word);
636 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
637 rt2x00_get_field32(word, TXD_W0_VALID));
641 static void rt2400pci_clear_entry(struct queue_entry *entry)
643 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
644 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
645 u32 word;
647 if (entry->queue->qid == QID_RX) {
648 rt2x00_desc_read(entry_priv->desc, 2, &word);
649 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
650 rt2x00_desc_write(entry_priv->desc, 2, word);
652 rt2x00_desc_read(entry_priv->desc, 1, &word);
653 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
654 rt2x00_desc_write(entry_priv->desc, 1, word);
656 rt2x00_desc_read(entry_priv->desc, 0, &word);
657 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
658 rt2x00_desc_write(entry_priv->desc, 0, word);
659 } else {
660 rt2x00_desc_read(entry_priv->desc, 0, &word);
661 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
662 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
663 rt2x00_desc_write(entry_priv->desc, 0, word);
667 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
669 struct queue_entry_priv_pci *entry_priv;
670 u32 reg;
673 * Initialize registers.
675 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
676 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
677 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
678 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
679 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
680 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
682 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
683 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
684 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
685 entry_priv->desc_dma);
686 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
688 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
689 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
690 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
691 entry_priv->desc_dma);
692 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
694 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
695 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
696 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
697 entry_priv->desc_dma);
698 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
700 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
701 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
702 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
703 entry_priv->desc_dma);
704 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
706 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
707 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
708 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
709 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
711 entry_priv = rt2x00dev->rx->entries[0].priv_data;
712 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
713 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
714 entry_priv->desc_dma);
715 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
717 return 0;
720 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
722 u32 reg;
724 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
725 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
726 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
727 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
729 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
730 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
731 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
732 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
733 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
735 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
736 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
737 (rt2x00dev->rx->data_size / 128));
738 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
740 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
741 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
742 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
743 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
744 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
745 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
746 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
747 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
748 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
749 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
751 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
753 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
754 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
755 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
756 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
757 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
758 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
760 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
761 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
762 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
763 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
764 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
765 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
766 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
767 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
769 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
771 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
772 return -EBUSY;
774 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
775 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
777 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
778 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
779 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
781 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
782 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
783 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
784 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
785 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
786 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
788 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
789 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
790 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
791 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
792 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
794 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
795 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
796 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
797 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
800 * We must clear the FCS and FIFO error count.
801 * These registers are cleared on read,
802 * so we may pass a useless variable to store the value.
804 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
805 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
807 return 0;
810 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
812 unsigned int i;
813 u8 value;
815 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
816 rt2400pci_bbp_read(rt2x00dev, 0, &value);
817 if ((value != 0xff) && (value != 0x00))
818 return 0;
819 udelay(REGISTER_BUSY_DELAY);
822 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
823 return -EACCES;
826 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
828 unsigned int i;
829 u16 eeprom;
830 u8 reg_id;
831 u8 value;
833 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
834 return -EACCES;
836 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
837 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
838 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
839 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
840 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
841 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
842 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
843 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
844 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
845 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
846 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
847 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
848 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
849 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
851 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
852 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
854 if (eeprom != 0xffff && eeprom != 0x0000) {
855 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
856 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
857 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
861 return 0;
865 * Device state switch handlers.
867 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
868 enum dev_state state)
870 u32 reg;
872 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
873 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
874 (state == STATE_RADIO_RX_OFF) ||
875 (state == STATE_RADIO_RX_OFF_LINK));
876 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
879 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
880 enum dev_state state)
882 int mask = (state == STATE_RADIO_IRQ_OFF) ||
883 (state == STATE_RADIO_IRQ_OFF_ISR);
884 u32 reg;
887 * When interrupts are being enabled, the interrupt registers
888 * should clear the register to assure a clean state.
890 if (state == STATE_RADIO_IRQ_ON) {
891 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
892 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
896 * Only toggle the interrupts bits we are going to use.
897 * Non-checked interrupt bits are disabled by default.
899 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
900 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
901 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
902 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
903 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
904 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
905 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
908 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
911 * Initialize all registers.
913 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
914 rt2400pci_init_registers(rt2x00dev) ||
915 rt2400pci_init_bbp(rt2x00dev)))
916 return -EIO;
918 return 0;
921 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
924 * Disable power
926 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
929 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
930 enum dev_state state)
932 u32 reg, reg2;
933 unsigned int i;
934 char put_to_sleep;
935 char bbp_state;
936 char rf_state;
938 put_to_sleep = (state != STATE_AWAKE);
940 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
941 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
942 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
943 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
944 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
945 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
948 * Device is not guaranteed to be in the requested state yet.
949 * We must wait until the register indicates that the
950 * device has entered the correct state.
952 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
953 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
954 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
955 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
956 if (bbp_state == state && rf_state == state)
957 return 0;
958 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
959 msleep(10);
962 return -EBUSY;
965 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
966 enum dev_state state)
968 int retval = 0;
970 switch (state) {
971 case STATE_RADIO_ON:
972 retval = rt2400pci_enable_radio(rt2x00dev);
973 break;
974 case STATE_RADIO_OFF:
975 rt2400pci_disable_radio(rt2x00dev);
976 break;
977 case STATE_RADIO_RX_ON:
978 case STATE_RADIO_RX_ON_LINK:
979 case STATE_RADIO_RX_OFF:
980 case STATE_RADIO_RX_OFF_LINK:
981 rt2400pci_toggle_rx(rt2x00dev, state);
982 break;
983 case STATE_RADIO_IRQ_ON:
984 case STATE_RADIO_IRQ_ON_ISR:
985 case STATE_RADIO_IRQ_OFF:
986 case STATE_RADIO_IRQ_OFF_ISR:
987 rt2400pci_toggle_irq(rt2x00dev, state);
988 break;
989 case STATE_DEEP_SLEEP:
990 case STATE_SLEEP:
991 case STATE_STANDBY:
992 case STATE_AWAKE:
993 retval = rt2400pci_set_state(rt2x00dev, state);
994 break;
995 default:
996 retval = -ENOTSUPP;
997 break;
1000 if (unlikely(retval))
1001 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1002 state, retval);
1004 return retval;
1008 * TX descriptor initialization
1010 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1011 struct sk_buff *skb,
1012 struct txentry_desc *txdesc)
1014 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1015 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1016 __le32 *txd = entry_priv->desc;
1017 u32 word;
1020 * Start writing the descriptor words.
1022 rt2x00_desc_read(txd, 1, &word);
1023 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1024 rt2x00_desc_write(txd, 1, word);
1026 rt2x00_desc_read(txd, 2, &word);
1027 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1028 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1029 rt2x00_desc_write(txd, 2, word);
1031 rt2x00_desc_read(txd, 3, &word);
1032 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1033 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1034 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1036 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1037 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1038 rt2x00_desc_write(txd, 3, word);
1040 rt2x00_desc_read(txd, 4, &word);
1041 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1042 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1043 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1044 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1045 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1046 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1047 rt2x00_desc_write(txd, 4, word);
1050 * Writing TXD word 0 must the last to prevent a race condition with
1051 * the device, whereby the device may take hold of the TXD before we
1052 * finished updating it.
1054 rt2x00_desc_read(txd, 0, &word);
1055 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1056 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1057 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1058 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1059 rt2x00_set_field32(&word, TXD_W0_ACK,
1060 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1061 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1062 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1063 rt2x00_set_field32(&word, TXD_W0_RTS,
1064 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1065 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1066 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1067 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1068 rt2x00_desc_write(txd, 0, word);
1071 * Register descriptor details in skb frame descriptor.
1073 skbdesc->desc = txd;
1074 skbdesc->desc_len = TXD_DESC_SIZE;
1078 * TX data initialization
1080 static void rt2400pci_write_beacon(struct queue_entry *entry,
1081 struct txentry_desc *txdesc)
1083 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1084 u32 reg;
1087 * Disable beaconing while we are reloading the beacon data,
1088 * otherwise we might be sending out invalid data.
1090 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1091 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1092 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1094 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1097 * Write the TX descriptor for the beacon.
1099 rt2400pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1102 * Dump beacon to userspace through debugfs.
1104 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1107 * Enable beaconing again.
1109 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1110 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1111 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1112 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1115 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1116 const enum data_queue_qid queue)
1118 u32 reg;
1120 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1121 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1122 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1123 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1124 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1127 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1128 const enum data_queue_qid qid)
1130 u32 reg;
1132 if (qid == QID_BEACON) {
1133 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1134 } else {
1135 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1136 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1137 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1142 * RX control handlers
1144 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1145 struct rxdone_entry_desc *rxdesc)
1147 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1148 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1149 u32 word0;
1150 u32 word2;
1151 u32 word3;
1152 u32 word4;
1153 u64 tsf;
1154 u32 rx_low;
1155 u32 rx_high;
1157 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1158 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1159 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1160 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1162 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1163 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1164 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1165 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1168 * We only get the lower 32bits from the timestamp,
1169 * to get the full 64bits we must complement it with
1170 * the timestamp from get_tsf().
1171 * Note that when a wraparound of the lower 32bits
1172 * has occurred between the frame arrival and the get_tsf()
1173 * call, we must decrease the higher 32bits with 1 to get
1174 * to correct value.
1176 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1177 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1178 rx_high = upper_32_bits(tsf);
1180 if ((u32)tsf <= rx_low)
1181 rx_high--;
1184 * Obtain the status about this packet.
1185 * The signal is the PLCP value, and needs to be stripped
1186 * of the preamble bit (0x08).
1188 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1189 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1190 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1191 entry->queue->rt2x00dev->rssi_offset;
1192 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1194 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1195 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1196 rxdesc->dev_flags |= RXDONE_MY_BSS;
1200 * Interrupt functions.
1202 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1203 const enum data_queue_qid queue_idx)
1205 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1206 struct queue_entry_priv_pci *entry_priv;
1207 struct queue_entry *entry;
1208 struct txdone_entry_desc txdesc;
1209 u32 word;
1211 while (!rt2x00queue_empty(queue)) {
1212 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1213 entry_priv = entry->priv_data;
1214 rt2x00_desc_read(entry_priv->desc, 0, &word);
1216 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1217 !rt2x00_get_field32(word, TXD_W0_VALID))
1218 break;
1221 * Obtain the status about this packet.
1223 txdesc.flags = 0;
1224 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1225 case 0: /* Success */
1226 case 1: /* Success with retry */
1227 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1228 break;
1229 case 2: /* Failure, excessive retries */
1230 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1231 /* Don't break, this is a failed frame! */
1232 default: /* Failure */
1233 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1235 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1237 rt2x00lib_txdone(entry, &txdesc);
1241 static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1243 struct rt2x00_dev *rt2x00dev = dev_instance;
1244 u32 reg = rt2x00dev->irqvalue[0];
1247 * Handle interrupts, walk through all bits
1248 * and run the tasks, the bits are checked in order of
1249 * priority.
1253 * 1 - Beacon timer expired interrupt.
1255 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1256 rt2x00lib_beacondone(rt2x00dev);
1259 * 2 - Rx ring done interrupt.
1261 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1262 rt2x00pci_rxdone(rt2x00dev);
1265 * 3 - Atim ring transmit done interrupt.
1267 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1268 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1271 * 4 - Priority ring transmit done interrupt.
1273 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1274 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1277 * 5 - Tx ring transmit done interrupt.
1279 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1280 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1282 /* Enable interrupts again. */
1283 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1284 STATE_RADIO_IRQ_ON_ISR);
1285 return IRQ_HANDLED;
1288 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1290 struct rt2x00_dev *rt2x00dev = dev_instance;
1291 u32 reg;
1294 * Get the interrupt sources & saved to local variable.
1295 * Write register value back to clear pending interrupts.
1297 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1298 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1300 if (!reg)
1301 return IRQ_NONE;
1303 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1304 return IRQ_HANDLED;
1306 /* Store irqvalues for use in the interrupt thread. */
1307 rt2x00dev->irqvalue[0] = reg;
1309 /* Disable interrupts, will be enabled again in the interrupt thread. */
1310 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1311 STATE_RADIO_IRQ_OFF_ISR);
1313 return IRQ_WAKE_THREAD;
1317 * Device probe functions.
1319 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1321 struct eeprom_93cx6 eeprom;
1322 u32 reg;
1323 u16 word;
1324 u8 *mac;
1326 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1328 eeprom.data = rt2x00dev;
1329 eeprom.register_read = rt2400pci_eepromregister_read;
1330 eeprom.register_write = rt2400pci_eepromregister_write;
1331 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1332 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1333 eeprom.reg_data_in = 0;
1334 eeprom.reg_data_out = 0;
1335 eeprom.reg_data_clock = 0;
1336 eeprom.reg_chip_select = 0;
1338 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1339 EEPROM_SIZE / sizeof(u16));
1342 * Start validation of the data that has been read.
1344 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1345 if (!is_valid_ether_addr(mac)) {
1346 random_ether_addr(mac);
1347 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1350 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1351 if (word == 0xffff) {
1352 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1353 return -EINVAL;
1356 return 0;
1359 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1361 u32 reg;
1362 u16 value;
1363 u16 eeprom;
1366 * Read EEPROM word for configuration.
1368 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1371 * Identify RF chipset.
1373 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1374 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1375 rt2x00_set_chip(rt2x00dev, RT2460, value,
1376 rt2x00_get_field32(reg, CSR0_REVISION));
1378 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1379 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1380 return -ENODEV;
1384 * Identify default antenna configuration.
1386 rt2x00dev->default_ant.tx =
1387 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1388 rt2x00dev->default_ant.rx =
1389 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1392 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1393 * I am not 100% sure about this, but the legacy drivers do not
1394 * indicate antenna swapping in software is required when
1395 * diversity is enabled.
1397 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1398 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1399 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1400 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1403 * Store led mode, for correct led behaviour.
1405 #ifdef CONFIG_RT2X00_LIB_LEDS
1406 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1408 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1409 if (value == LED_MODE_TXRX_ACTIVITY ||
1410 value == LED_MODE_DEFAULT ||
1411 value == LED_MODE_ASUS)
1412 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1413 LED_TYPE_ACTIVITY);
1414 #endif /* CONFIG_RT2X00_LIB_LEDS */
1417 * Detect if this device has an hardware controlled radio.
1419 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1420 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1423 * Check if the BBP tuning should be enabled.
1425 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1426 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1428 return 0;
1432 * RF value list for RF2420 & RF2421
1433 * Supports: 2.4 GHz
1435 static const struct rf_channel rf_vals_b[] = {
1436 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1437 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1438 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1439 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1440 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1441 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1442 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1443 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1444 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1445 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1446 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1447 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1448 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1449 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1452 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1454 struct hw_mode_spec *spec = &rt2x00dev->spec;
1455 struct channel_info *info;
1456 char *tx_power;
1457 unsigned int i;
1460 * Initialize all hw fields.
1462 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1463 IEEE80211_HW_SIGNAL_DBM |
1464 IEEE80211_HW_SUPPORTS_PS |
1465 IEEE80211_HW_PS_NULLFUNC_STACK;
1467 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1468 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1469 rt2x00_eeprom_addr(rt2x00dev,
1470 EEPROM_MAC_ADDR_0));
1473 * Initialize hw_mode information.
1475 spec->supported_bands = SUPPORT_BAND_2GHZ;
1476 spec->supported_rates = SUPPORT_RATE_CCK;
1478 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1479 spec->channels = rf_vals_b;
1482 * Create channel information array
1484 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1485 if (!info)
1486 return -ENOMEM;
1488 spec->channels_info = info;
1490 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1491 for (i = 0; i < 14; i++) {
1492 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1493 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1496 return 0;
1499 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1501 int retval;
1504 * Allocate eeprom data.
1506 retval = rt2400pci_validate_eeprom(rt2x00dev);
1507 if (retval)
1508 return retval;
1510 retval = rt2400pci_init_eeprom(rt2x00dev);
1511 if (retval)
1512 return retval;
1515 * Initialize hw specifications.
1517 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1518 if (retval)
1519 return retval;
1522 * This device requires the atim queue and DMA-mapped skbs.
1524 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1525 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1528 * Set the rssi offset.
1530 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1532 return 0;
1536 * IEEE80211 stack callback functions.
1538 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1539 const struct ieee80211_tx_queue_params *params)
1541 struct rt2x00_dev *rt2x00dev = hw->priv;
1544 * We don't support variating cw_min and cw_max variables
1545 * per queue. So by default we only configure the TX queue,
1546 * and ignore all other configurations.
1548 if (queue != 0)
1549 return -EINVAL;
1551 if (rt2x00mac_conf_tx(hw, queue, params))
1552 return -EINVAL;
1555 * Write configuration to register.
1557 rt2400pci_config_cw(rt2x00dev,
1558 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1560 return 0;
1563 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1565 struct rt2x00_dev *rt2x00dev = hw->priv;
1566 u64 tsf;
1567 u32 reg;
1569 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1570 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1571 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1572 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1574 return tsf;
1577 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1579 struct rt2x00_dev *rt2x00dev = hw->priv;
1580 u32 reg;
1582 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1583 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1586 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1587 .tx = rt2x00mac_tx,
1588 .start = rt2x00mac_start,
1589 .stop = rt2x00mac_stop,
1590 .add_interface = rt2x00mac_add_interface,
1591 .remove_interface = rt2x00mac_remove_interface,
1592 .config = rt2x00mac_config,
1593 .configure_filter = rt2x00mac_configure_filter,
1594 .sw_scan_start = rt2x00mac_sw_scan_start,
1595 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1596 .get_stats = rt2x00mac_get_stats,
1597 .bss_info_changed = rt2x00mac_bss_info_changed,
1598 .conf_tx = rt2400pci_conf_tx,
1599 .get_tsf = rt2400pci_get_tsf,
1600 .tx_last_beacon = rt2400pci_tx_last_beacon,
1601 .rfkill_poll = rt2x00mac_rfkill_poll,
1604 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1605 .irq_handler = rt2400pci_interrupt,
1606 .irq_handler_thread = rt2400pci_interrupt_thread,
1607 .probe_hw = rt2400pci_probe_hw,
1608 .initialize = rt2x00pci_initialize,
1609 .uninitialize = rt2x00pci_uninitialize,
1610 .get_entry_state = rt2400pci_get_entry_state,
1611 .clear_entry = rt2400pci_clear_entry,
1612 .set_device_state = rt2400pci_set_device_state,
1613 .rfkill_poll = rt2400pci_rfkill_poll,
1614 .link_stats = rt2400pci_link_stats,
1615 .reset_tuner = rt2400pci_reset_tuner,
1616 .link_tuner = rt2400pci_link_tuner,
1617 .write_tx_desc = rt2400pci_write_tx_desc,
1618 .write_beacon = rt2400pci_write_beacon,
1619 .kick_tx_queue = rt2400pci_kick_tx_queue,
1620 .kill_tx_queue = rt2400pci_kill_tx_queue,
1621 .fill_rxdone = rt2400pci_fill_rxdone,
1622 .config_filter = rt2400pci_config_filter,
1623 .config_intf = rt2400pci_config_intf,
1624 .config_erp = rt2400pci_config_erp,
1625 .config_ant = rt2400pci_config_ant,
1626 .config = rt2400pci_config,
1629 static const struct data_queue_desc rt2400pci_queue_rx = {
1630 .entry_num = RX_ENTRIES,
1631 .data_size = DATA_FRAME_SIZE,
1632 .desc_size = RXD_DESC_SIZE,
1633 .priv_size = sizeof(struct queue_entry_priv_pci),
1636 static const struct data_queue_desc rt2400pci_queue_tx = {
1637 .entry_num = TX_ENTRIES,
1638 .data_size = DATA_FRAME_SIZE,
1639 .desc_size = TXD_DESC_SIZE,
1640 .priv_size = sizeof(struct queue_entry_priv_pci),
1643 static const struct data_queue_desc rt2400pci_queue_bcn = {
1644 .entry_num = BEACON_ENTRIES,
1645 .data_size = MGMT_FRAME_SIZE,
1646 .desc_size = TXD_DESC_SIZE,
1647 .priv_size = sizeof(struct queue_entry_priv_pci),
1650 static const struct data_queue_desc rt2400pci_queue_atim = {
1651 .entry_num = ATIM_ENTRIES,
1652 .data_size = DATA_FRAME_SIZE,
1653 .desc_size = TXD_DESC_SIZE,
1654 .priv_size = sizeof(struct queue_entry_priv_pci),
1657 static const struct rt2x00_ops rt2400pci_ops = {
1658 .name = KBUILD_MODNAME,
1659 .max_sta_intf = 1,
1660 .max_ap_intf = 1,
1661 .eeprom_size = EEPROM_SIZE,
1662 .rf_size = RF_SIZE,
1663 .tx_queues = NUM_TX_QUEUES,
1664 .extra_tx_headroom = 0,
1665 .rx = &rt2400pci_queue_rx,
1666 .tx = &rt2400pci_queue_tx,
1667 .bcn = &rt2400pci_queue_bcn,
1668 .atim = &rt2400pci_queue_atim,
1669 .lib = &rt2400pci_rt2x00_ops,
1670 .hw = &rt2400pci_mac80211_ops,
1671 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1672 .debugfs = &rt2400pci_rt2x00debug,
1673 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1677 * RT2400pci module information.
1679 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1680 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1681 { 0, }
1684 MODULE_AUTHOR(DRV_PROJECT);
1685 MODULE_VERSION(DRV_VERSION);
1686 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1687 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1688 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1689 MODULE_LICENSE("GPL");
1691 static struct pci_driver rt2400pci_driver = {
1692 .name = KBUILD_MODNAME,
1693 .id_table = rt2400pci_device_table,
1694 .probe = rt2x00pci_probe,
1695 .remove = __devexit_p(rt2x00pci_remove),
1696 .suspend = rt2x00pci_suspend,
1697 .resume = rt2x00pci_resume,
1700 static int __init rt2400pci_init(void)
1702 return pci_register_driver(&rt2400pci_driver);
1705 static void __exit rt2400pci_exit(void)
1707 pci_unregister_driver(&rt2400pci_driver);
1710 module_init(rt2400pci_init);
1711 module_exit(rt2400pci_exit);