RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / ath / ath5k / eeprom.c
blob9c8b5718137c3ec3054ba9a58a6fe581ee6e5f50
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
32 * Read from eeprom
34 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
36 u32 status, timeout;
39 * Initialize EEPROM access
41 if (ah->ah_version == AR5K_AR5210) {
42 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
43 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
44 } else {
45 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
46 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
47 AR5K_EEPROM_CMD_READ);
50 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
51 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
52 if (status & AR5K_EEPROM_STAT_RDDONE) {
53 if (status & AR5K_EEPROM_STAT_RDERR)
54 return -EIO;
55 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
56 0xffff);
57 return 0;
59 udelay(15);
62 return -ETIMEDOUT;
66 * Translate binary channel representation in EEPROM to frequency
68 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
69 unsigned int mode)
71 u16 val;
73 if (bin == AR5K_EEPROM_CHANNEL_DIS)
74 return bin;
76 if (mode == AR5K_EEPROM_MODE_11A) {
77 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
78 val = (5 * bin) + 4800;
79 else
80 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
81 (bin * 10) + 5100;
82 } else {
83 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
84 val = bin + 2300;
85 else
86 val = bin + 2400;
89 return val;
93 * Initialize eeprom & capabilities structs
95 static int
96 ath5k_eeprom_init_header(struct ath5k_hw *ah)
98 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
99 int ret;
100 u16 val;
101 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
104 * Read values from EEPROM and store them in the capability structure
106 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
107 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
108 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
110 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
112 /* Return if we have an old EEPROM */
113 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
114 return 0;
117 * Validate the checksum of the EEPROM date. There are some
118 * devices with invalid EEPROMs.
120 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
121 if (val) {
122 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
123 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
124 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
125 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
127 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
128 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
129 "%d (0x%04x) max expected: %d (0x%04x)\n",
130 eep_max, eep_max,
131 3 * AR5K_EEPROM_INFO_MAX,
132 3 * AR5K_EEPROM_INFO_MAX);
133 return -EIO;
137 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
138 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
139 cksum ^= val;
141 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
142 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
143 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
144 cksum, eep_max,
145 eep_max == AR5K_EEPROM_INFO_MAX ?
146 "default size" : "custom size");
147 return -EIO;
150 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
151 ee_ant_gain);
153 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
154 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
155 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
157 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
159 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
160 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
162 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
163 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
164 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
165 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
169 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
170 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
171 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
172 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
174 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
175 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
176 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
179 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
181 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
182 ee->ee_is_hb63 = true;
183 else
184 ee->ee_is_hb63 = false;
186 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
187 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
188 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
190 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
191 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
192 true : false;
194 return 0;
199 * Read antenna infos from eeprom
201 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
202 unsigned int mode)
204 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
205 u32 o = *offset;
206 u16 val;
207 int ret, i = 0;
209 AR5K_EEPROM_READ(o++, val);
210 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
211 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
212 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
214 AR5K_EEPROM_READ(o++, val);
215 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
216 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
217 ee->ee_ant_control[mode][i++] = val & 0x3f;
219 AR5K_EEPROM_READ(o++, val);
220 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
221 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
222 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
224 AR5K_EEPROM_READ(o++, val);
225 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
226 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
227 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
228 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
230 AR5K_EEPROM_READ(o++, val);
231 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
232 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
233 ee->ee_ant_control[mode][i++] = val & 0x3f;
235 /* Get antenna switch tables */
236 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
237 (ee->ee_ant_control[mode][0] << 4);
238 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
239 ee->ee_ant_control[mode][1] |
240 (ee->ee_ant_control[mode][2] << 6) |
241 (ee->ee_ant_control[mode][3] << 12) |
242 (ee->ee_ant_control[mode][4] << 18) |
243 (ee->ee_ant_control[mode][5] << 24);
244 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
245 ee->ee_ant_control[mode][6] |
246 (ee->ee_ant_control[mode][7] << 6) |
247 (ee->ee_ant_control[mode][8] << 12) |
248 (ee->ee_ant_control[mode][9] << 18) |
249 (ee->ee_ant_control[mode][10] << 24);
251 /* return new offset */
252 *offset = o;
254 return 0;
258 * Read supported modes and some mode-specific calibration data
259 * from eeprom
261 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
262 unsigned int mode)
264 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
265 u32 o = *offset;
266 u16 val;
267 int ret;
269 ee->ee_n_piers[mode] = 0;
270 AR5K_EEPROM_READ(o++, val);
271 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
272 switch(mode) {
273 case AR5K_EEPROM_MODE_11A:
274 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
275 ee->ee_db[mode][3] = (val >> 2) & 0x7;
276 ee->ee_ob[mode][2] = (val << 1) & 0x7;
278 AR5K_EEPROM_READ(o++, val);
279 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
280 ee->ee_db[mode][2] = (val >> 12) & 0x7;
281 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
282 ee->ee_db[mode][1] = (val >> 6) & 0x7;
283 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
284 ee->ee_db[mode][0] = val & 0x7;
285 break;
286 case AR5K_EEPROM_MODE_11G:
287 case AR5K_EEPROM_MODE_11B:
288 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
289 ee->ee_db[mode][1] = val & 0x7;
290 break;
293 AR5K_EEPROM_READ(o++, val);
294 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
295 ee->ee_thr_62[mode] = val & 0xff;
297 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
298 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
300 AR5K_EEPROM_READ(o++, val);
301 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
302 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
304 AR5K_EEPROM_READ(o++, val);
305 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
307 if ((val & 0xff) & 0x80)
308 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
309 else
310 ee->ee_noise_floor_thr[mode] = val & 0xff;
312 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
313 ee->ee_noise_floor_thr[mode] =
314 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
316 AR5K_EEPROM_READ(o++, val);
317 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
318 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
319 ee->ee_xpd[mode] = val & 0x1;
321 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
322 mode != AR5K_EEPROM_MODE_11B)
323 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
325 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
326 AR5K_EEPROM_READ(o++, val);
327 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
329 if (mode == AR5K_EEPROM_MODE_11A)
330 ee->ee_xr_power[mode] = val & 0x3f;
331 else {
332 /* b_DB_11[bg] and b_OB_11[bg] */
333 ee->ee_ob[mode][0] = val & 0x7;
334 ee->ee_db[mode][0] = (val >> 3) & 0x7;
338 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
339 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
340 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
341 } else {
342 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
344 AR5K_EEPROM_READ(o++, val);
345 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
347 if (mode == AR5K_EEPROM_MODE_11G) {
348 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
349 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
350 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
354 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
355 mode == AR5K_EEPROM_MODE_11A) {
356 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
357 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
360 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
361 goto done;
363 /* Note: >= v5 have bg freq piers on another location
364 * so these freq piers are ignored for >= v5 (should be 0xff
365 * anyway) */
366 switch(mode) {
367 case AR5K_EEPROM_MODE_11A:
368 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
369 break;
371 AR5K_EEPROM_READ(o++, val);
372 ee->ee_margin_tx_rx[mode] = val & 0x3f;
373 break;
374 case AR5K_EEPROM_MODE_11B:
375 AR5K_EEPROM_READ(o++, val);
377 ee->ee_pwr_cal_b[0].freq =
378 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
379 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
380 ee->ee_n_piers[mode]++;
382 ee->ee_pwr_cal_b[1].freq =
383 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
384 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
385 ee->ee_n_piers[mode]++;
387 AR5K_EEPROM_READ(o++, val);
388 ee->ee_pwr_cal_b[2].freq =
389 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
390 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
391 ee->ee_n_piers[mode]++;
393 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
394 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
395 break;
396 case AR5K_EEPROM_MODE_11G:
397 AR5K_EEPROM_READ(o++, val);
399 ee->ee_pwr_cal_g[0].freq =
400 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
401 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
402 ee->ee_n_piers[mode]++;
404 ee->ee_pwr_cal_g[1].freq =
405 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
406 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
407 ee->ee_n_piers[mode]++;
409 AR5K_EEPROM_READ(o++, val);
410 ee->ee_turbo_max_power[mode] = val & 0x7f;
411 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
413 AR5K_EEPROM_READ(o++, val);
414 ee->ee_pwr_cal_g[2].freq =
415 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
416 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
417 ee->ee_n_piers[mode]++;
419 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
420 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
422 AR5K_EEPROM_READ(o++, val);
423 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
424 ee->ee_q_cal[mode] = val & 0x1f;
426 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
427 AR5K_EEPROM_READ(o++, val);
428 ee->ee_cck_ofdm_gain_delta = val & 0xff;
430 break;
434 * Read turbo mode information on newer EEPROM versions
436 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
437 goto done;
439 switch (mode){
440 case AR5K_EEPROM_MODE_11A:
441 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
443 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
444 AR5K_EEPROM_READ(o++, val);
445 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
446 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
448 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
449 AR5K_EEPROM_READ(o++, val);
450 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
451 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
453 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
454 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
455 break;
456 case AR5K_EEPROM_MODE_11G:
457 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
459 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
460 AR5K_EEPROM_READ(o++, val);
461 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
462 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
464 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
465 AR5K_EEPROM_READ(o++, val);
466 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
467 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
468 break;
471 done:
472 /* return new offset */
473 *offset = o;
475 return 0;
478 /* Read mode-specific data (except power calibration data) */
479 static int
480 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
482 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
483 u32 mode_offset[3];
484 unsigned int mode;
485 u32 offset;
486 int ret;
489 * Get values for all modes
491 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
492 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
493 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
495 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
496 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
498 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
499 offset = mode_offset[mode];
501 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
502 if (ret)
503 return ret;
505 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
506 if (ret)
507 return ret;
510 /* override for older eeprom versions for better performance */
511 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
512 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
513 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
514 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
517 return 0;
520 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
521 * frequency mask) */
522 static inline int
523 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
524 struct ath5k_chan_pcal_info *pc, unsigned int mode)
526 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
527 int o = *offset;
528 int i = 0;
529 u8 freq1, freq2;
530 int ret;
531 u16 val;
533 ee->ee_n_piers[mode] = 0;
534 while(i < max) {
535 AR5K_EEPROM_READ(o++, val);
537 freq1 = val & 0xff;
538 if (!freq1)
539 break;
541 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
542 freq1, mode);
543 ee->ee_n_piers[mode]++;
545 freq2 = (val >> 8) & 0xff;
546 if (!freq2)
547 break;
549 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
550 freq2, mode);
551 ee->ee_n_piers[mode]++;
554 /* return new offset */
555 *offset = o;
557 return 0;
560 /* Read frequency piers for 802.11a */
561 static int
562 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
564 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
565 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
566 int i, ret;
567 u16 val;
568 u8 mask;
570 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
571 ath5k_eeprom_read_freq_list(ah, &offset,
572 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
573 AR5K_EEPROM_MODE_11A);
574 } else {
575 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
577 AR5K_EEPROM_READ(offset++, val);
578 pcal[0].freq = (val >> 9) & mask;
579 pcal[1].freq = (val >> 2) & mask;
580 pcal[2].freq = (val << 5) & mask;
582 AR5K_EEPROM_READ(offset++, val);
583 pcal[2].freq |= (val >> 11) & 0x1f;
584 pcal[3].freq = (val >> 4) & mask;
585 pcal[4].freq = (val << 3) & mask;
587 AR5K_EEPROM_READ(offset++, val);
588 pcal[4].freq |= (val >> 13) & 0x7;
589 pcal[5].freq = (val >> 6) & mask;
590 pcal[6].freq = (val << 1) & mask;
592 AR5K_EEPROM_READ(offset++, val);
593 pcal[6].freq |= (val >> 15) & 0x1;
594 pcal[7].freq = (val >> 8) & mask;
595 pcal[8].freq = (val >> 1) & mask;
596 pcal[9].freq = (val << 6) & mask;
598 AR5K_EEPROM_READ(offset++, val);
599 pcal[9].freq |= (val >> 10) & 0x3f;
601 /* Fixed number of piers */
602 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
604 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
605 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
606 pcal[i].freq, AR5K_EEPROM_MODE_11A);
610 return 0;
613 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
614 static inline int
615 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
617 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
618 struct ath5k_chan_pcal_info *pcal;
620 switch(mode) {
621 case AR5K_EEPROM_MODE_11B:
622 pcal = ee->ee_pwr_cal_b;
623 break;
624 case AR5K_EEPROM_MODE_11G:
625 pcal = ee->ee_pwr_cal_g;
626 break;
627 default:
628 return -EINVAL;
631 ath5k_eeprom_read_freq_list(ah, &offset,
632 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
633 mode);
635 return 0;
639 * Read power calibration for RF5111 chips
641 * For RF5111 we have an XPD -eXternal Power Detector- curve
642 * for each calibrated channel. Each curve has 0,5dB Power steps
643 * on x axis and PCDAC steps (offsets) on y axis and looks like an
644 * exponential function. To recreate the curve we read 11 points
645 * here and interpolate later.
648 /* Used to match PCDAC steps with power values on RF5111 chips
649 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
650 * steps that match with the power values we read from eeprom. On
651 * older eeprom versions (< 3.2) these steps are equaly spaced at
652 * 10% of the pcdac curve -until the curve reaches it's maximum-
653 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
654 * these 11 steps are spaced in a different way. This function returns
655 * the pcdac steps based on eeprom version and curve min/max so that we
656 * can have pcdac/pwr points.
658 static inline void
659 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
661 static const u16 intercepts3[] =
662 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
663 static const u16 intercepts3_2[] =
664 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
665 const u16 *ip;
666 int i;
668 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
669 ip = intercepts3_2;
670 else
671 ip = intercepts3;
673 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
674 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
677 /* Convert RF5111 specific data to generic raw data
678 * used by interpolation code */
679 static int
680 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
681 struct ath5k_chan_pcal_info *chinfo)
683 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
684 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
685 struct ath5k_pdgain_info *pd;
686 u8 pier, point, idx;
687 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
689 /* Fill raw data for each calibration pier */
690 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
692 pcinfo = &chinfo[pier].rf5111_info;
694 /* Allocate pd_curves for this cal pier */
695 chinfo[pier].pd_curves =
696 kcalloc(AR5K_EEPROM_N_PD_CURVES,
697 sizeof(struct ath5k_pdgain_info),
698 GFP_KERNEL);
700 if (!chinfo[pier].pd_curves)
701 return -ENOMEM;
703 /* Only one curve for RF5111
704 * find out which one and place
705 * in pd_curves.
706 * Note: ee_x_gain is reversed here */
707 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
709 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
710 pdgain_idx[0] = idx;
711 break;
715 ee->ee_pd_gains[mode] = 1;
717 pd = &chinfo[pier].pd_curves[idx];
719 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
721 /* Allocate pd points for this curve */
722 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
723 sizeof(u8), GFP_KERNEL);
724 if (!pd->pd_step)
725 return -ENOMEM;
727 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
728 sizeof(s16), GFP_KERNEL);
729 if (!pd->pd_pwr)
730 return -ENOMEM;
732 /* Fill raw dataset
733 * (convert power to 0.25dB units
734 * for RF5112 combatibility) */
735 for (point = 0; point < pd->pd_points; point++) {
737 /* Absolute values */
738 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
740 /* Already sorted */
741 pd->pd_step[point] = pcinfo->pcdac[point];
744 /* Set min/max pwr */
745 chinfo[pier].min_pwr = pd->pd_pwr[0];
746 chinfo[pier].max_pwr = pd->pd_pwr[10];
750 return 0;
753 /* Parse EEPROM data */
754 static int
755 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
757 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
758 struct ath5k_chan_pcal_info *pcal;
759 int offset, ret;
760 int i;
761 u16 val;
763 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
764 switch(mode) {
765 case AR5K_EEPROM_MODE_11A:
766 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
767 return 0;
769 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
770 offset + AR5K_EEPROM_GROUP1_OFFSET);
771 if (ret < 0)
772 return ret;
774 offset += AR5K_EEPROM_GROUP2_OFFSET;
775 pcal = ee->ee_pwr_cal_a;
776 break;
777 case AR5K_EEPROM_MODE_11B:
778 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
779 !AR5K_EEPROM_HDR_11G(ee->ee_header))
780 return 0;
782 pcal = ee->ee_pwr_cal_b;
783 offset += AR5K_EEPROM_GROUP3_OFFSET;
785 /* fixed piers */
786 pcal[0].freq = 2412;
787 pcal[1].freq = 2447;
788 pcal[2].freq = 2484;
789 ee->ee_n_piers[mode] = 3;
790 break;
791 case AR5K_EEPROM_MODE_11G:
792 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
793 return 0;
795 pcal = ee->ee_pwr_cal_g;
796 offset += AR5K_EEPROM_GROUP4_OFFSET;
798 /* fixed piers */
799 pcal[0].freq = 2312;
800 pcal[1].freq = 2412;
801 pcal[2].freq = 2484;
802 ee->ee_n_piers[mode] = 3;
803 break;
804 default:
805 return -EINVAL;
808 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
809 struct ath5k_chan_pcal_info_rf5111 *cdata =
810 &pcal[i].rf5111_info;
812 AR5K_EEPROM_READ(offset++, val);
813 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
814 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
815 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
817 AR5K_EEPROM_READ(offset++, val);
818 cdata->pwr[0] |= ((val >> 14) & 0x3);
819 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
820 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
821 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
823 AR5K_EEPROM_READ(offset++, val);
824 cdata->pwr[3] |= ((val >> 12) & 0xf);
825 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
826 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
828 AR5K_EEPROM_READ(offset++, val);
829 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
830 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
831 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
833 AR5K_EEPROM_READ(offset++, val);
834 cdata->pwr[8] |= ((val >> 14) & 0x3);
835 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
836 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
838 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
839 cdata->pcdac_max, cdata->pcdac);
842 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
847 * Read power calibration for RF5112 chips
849 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
850 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
851 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
852 * power steps on x axis and PCDAC steps on y axis and looks like a
853 * linear function. To recreate the curve and pass the power values
854 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
855 * and 3 points for xpd 3 (higher gain -> lower power) here and
856 * interpolate later.
858 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
861 /* Convert RF5112 specific data to generic raw data
862 * used by interpolation code */
863 static int
864 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
865 struct ath5k_chan_pcal_info *chinfo)
867 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
868 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
869 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
870 unsigned int pier, pdg, point;
872 /* Fill raw data for each calibration pier */
873 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
875 pcinfo = &chinfo[pier].rf5112_info;
877 /* Allocate pd_curves for this cal pier */
878 chinfo[pier].pd_curves =
879 kcalloc(AR5K_EEPROM_N_PD_CURVES,
880 sizeof(struct ath5k_pdgain_info),
881 GFP_KERNEL);
883 if (!chinfo[pier].pd_curves)
884 return -ENOMEM;
886 /* Fill pd_curves */
887 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
889 u8 idx = pdgain_idx[pdg];
890 struct ath5k_pdgain_info *pd =
891 &chinfo[pier].pd_curves[idx];
893 /* Lowest gain curve (max power) */
894 if (pdg == 0) {
895 /* One more point for better accuracy */
896 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
898 /* Allocate pd points for this curve */
899 pd->pd_step = kcalloc(pd->pd_points,
900 sizeof(u8), GFP_KERNEL);
902 if (!pd->pd_step)
903 return -ENOMEM;
905 pd->pd_pwr = kcalloc(pd->pd_points,
906 sizeof(s16), GFP_KERNEL);
908 if (!pd->pd_pwr)
909 return -ENOMEM;
912 /* Fill raw dataset
913 * (all power levels are in 0.25dB units) */
914 pd->pd_step[0] = pcinfo->pcdac_x0[0];
915 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
917 for (point = 1; point < pd->pd_points;
918 point++) {
919 /* Absolute values */
920 pd->pd_pwr[point] =
921 pcinfo->pwr_x0[point];
923 /* Deltas */
924 pd->pd_step[point] =
925 pd->pd_step[point - 1] +
926 pcinfo->pcdac_x0[point];
929 /* Set min power for this frequency */
930 chinfo[pier].min_pwr = pd->pd_pwr[0];
932 /* Highest gain curve (min power) */
933 } else if (pdg == 1) {
935 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
937 /* Allocate pd points for this curve */
938 pd->pd_step = kcalloc(pd->pd_points,
939 sizeof(u8), GFP_KERNEL);
941 if (!pd->pd_step)
942 return -ENOMEM;
944 pd->pd_pwr = kcalloc(pd->pd_points,
945 sizeof(s16), GFP_KERNEL);
947 if (!pd->pd_pwr)
948 return -ENOMEM;
950 /* Fill raw dataset
951 * (all power levels are in 0.25dB units) */
952 for (point = 0; point < pd->pd_points;
953 point++) {
954 /* Absolute values */
955 pd->pd_pwr[point] =
956 pcinfo->pwr_x3[point];
958 /* Fixed points */
959 pd->pd_step[point] =
960 pcinfo->pcdac_x3[point];
963 /* Since we have a higher gain curve
964 * override min power */
965 chinfo[pier].min_pwr = pd->pd_pwr[0];
970 return 0;
973 /* Parse EEPROM data */
974 static int
975 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
977 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
978 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
979 struct ath5k_chan_pcal_info *gen_chan_info;
980 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
981 u32 offset;
982 u8 i, c;
983 u16 val;
984 int ret;
985 u8 pd_gains = 0;
987 /* Count how many curves we have and
988 * identify them (which one of the 4
989 * available curves we have on each count).
990 * Curves are stored from lower (x0) to
991 * higher (x3) gain */
992 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
993 /* ee_x_gain[mode] is x gain mask */
994 if ((ee->ee_x_gain[mode] >> i) & 0x1)
995 pdgain_idx[pd_gains++] = i;
997 ee->ee_pd_gains[mode] = pd_gains;
999 if (pd_gains == 0 || pd_gains > 2)
1000 return -EINVAL;
1002 switch (mode) {
1003 case AR5K_EEPROM_MODE_11A:
1005 * Read 5GHz EEPROM channels
1007 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1008 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1010 offset += AR5K_EEPROM_GROUP2_OFFSET;
1011 gen_chan_info = ee->ee_pwr_cal_a;
1012 break;
1013 case AR5K_EEPROM_MODE_11B:
1014 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1015 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1016 offset += AR5K_EEPROM_GROUP3_OFFSET;
1018 /* NB: frequency piers parsed during mode init */
1019 gen_chan_info = ee->ee_pwr_cal_b;
1020 break;
1021 case AR5K_EEPROM_MODE_11G:
1022 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1023 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1024 offset += AR5K_EEPROM_GROUP4_OFFSET;
1025 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1026 offset += AR5K_EEPROM_GROUP2_OFFSET;
1028 /* NB: frequency piers parsed during mode init */
1029 gen_chan_info = ee->ee_pwr_cal_g;
1030 break;
1031 default:
1032 return -EINVAL;
1035 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1036 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1038 /* Power values in quarter dB
1039 * for the lower xpd gain curve
1040 * (0 dBm -> higher output power) */
1041 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1042 AR5K_EEPROM_READ(offset++, val);
1043 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1044 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1047 /* PCDAC steps
1048 * corresponding to the above power
1049 * measurements */
1050 AR5K_EEPROM_READ(offset++, val);
1051 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1052 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1053 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1055 /* Power values in quarter dB
1056 * for the higher xpd gain curve
1057 * (18 dBm -> lower output power) */
1058 AR5K_EEPROM_READ(offset++, val);
1059 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1060 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1062 AR5K_EEPROM_READ(offset++, val);
1063 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1065 /* PCDAC steps
1066 * corresponding to the above power
1067 * measurements (fixed) */
1068 chan_pcal_info->pcdac_x3[0] = 20;
1069 chan_pcal_info->pcdac_x3[1] = 35;
1070 chan_pcal_info->pcdac_x3[2] = 63;
1072 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1073 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1075 /* Last xpd0 power level is also channel maximum */
1076 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1077 } else {
1078 chan_pcal_info->pcdac_x0[0] = 1;
1079 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1084 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1089 * Read power calibration for RF2413 chips
1091 * For RF2413 we have a Power to PDDAC table (Power Detector)
1092 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1093 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1094 * axis and looks like an exponential function like the RF5111 curve.
1096 * To recreate the curves we read here the points and interpolate
1097 * later. Note that in most cases only 2 (higher and lower) curves are
1098 * used (like RF5112) but vendors have the oportunity to include all
1099 * 4 curves on eeprom. The final curve (higher power) has an extra
1100 * point for better accuracy like RF5112.
1103 /* For RF2413 power calibration data doesn't start on a fixed location and
1104 * if a mode is not supported, it's section is missing -not zeroed-.
1105 * So we need to calculate the starting offset for each section by using
1106 * these two functions */
1108 /* Return the size of each section based on the mode and the number of pd
1109 * gains available (maximum 4). */
1110 static inline unsigned int
1111 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1113 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1114 unsigned int sz;
1116 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1117 sz *= ee->ee_n_piers[mode];
1119 return sz;
1122 /* Return the starting offset for a section based on the modes supported
1123 * and each section's size. */
1124 static unsigned int
1125 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1127 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1129 switch(mode) {
1130 case AR5K_EEPROM_MODE_11G:
1131 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1132 offset += ath5k_pdgains_size_2413(ee,
1133 AR5K_EEPROM_MODE_11B) +
1134 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1135 /* fall through */
1136 case AR5K_EEPROM_MODE_11B:
1137 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1138 offset += ath5k_pdgains_size_2413(ee,
1139 AR5K_EEPROM_MODE_11A) +
1140 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1141 /* fall through */
1142 case AR5K_EEPROM_MODE_11A:
1143 break;
1144 default:
1145 break;
1148 return offset;
1151 /* Convert RF2413 specific data to generic raw data
1152 * used by interpolation code */
1153 static int
1154 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1155 struct ath5k_chan_pcal_info *chinfo)
1157 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1158 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1159 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1160 unsigned int pier, pdg, point;
1162 /* Fill raw data for each calibration pier */
1163 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1165 pcinfo = &chinfo[pier].rf2413_info;
1167 /* Allocate pd_curves for this cal pier */
1168 chinfo[pier].pd_curves =
1169 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1170 sizeof(struct ath5k_pdgain_info),
1171 GFP_KERNEL);
1173 if (!chinfo[pier].pd_curves)
1174 return -ENOMEM;
1176 /* Fill pd_curves */
1177 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1179 u8 idx = pdgain_idx[pdg];
1180 struct ath5k_pdgain_info *pd =
1181 &chinfo[pier].pd_curves[idx];
1183 /* One more point for the highest power
1184 * curve (lowest gain) */
1185 if (pdg == ee->ee_pd_gains[mode] - 1)
1186 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1187 else
1188 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1190 /* Allocate pd points for this curve */
1191 pd->pd_step = kcalloc(pd->pd_points,
1192 sizeof(u8), GFP_KERNEL);
1194 if (!pd->pd_step)
1195 return -ENOMEM;
1197 pd->pd_pwr = kcalloc(pd->pd_points,
1198 sizeof(s16), GFP_KERNEL);
1200 if (!pd->pd_pwr)
1201 return -ENOMEM;
1203 /* Fill raw dataset
1204 * convert all pwr levels to
1205 * quarter dB for RF5112 combatibility */
1206 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1207 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1209 for (point = 1; point < pd->pd_points; point++) {
1211 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1212 2 * pcinfo->pwr[pdg][point - 1];
1214 pd->pd_step[point] = pd->pd_step[point - 1] +
1215 pcinfo->pddac[pdg][point - 1];
1219 /* Highest gain curve -> min power */
1220 if (pdg == 0)
1221 chinfo[pier].min_pwr = pd->pd_pwr[0];
1223 /* Lowest gain curve -> max power */
1224 if (pdg == ee->ee_pd_gains[mode] - 1)
1225 chinfo[pier].max_pwr =
1226 pd->pd_pwr[pd->pd_points - 1];
1230 return 0;
1233 /* Parse EEPROM data */
1234 static int
1235 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1237 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1238 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1239 struct ath5k_chan_pcal_info *chinfo;
1240 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1241 u32 offset;
1242 int idx, i, ret;
1243 u16 val;
1244 u8 pd_gains = 0;
1246 /* Count how many curves we have and
1247 * identify them (which one of the 4
1248 * available curves we have on each count).
1249 * Curves are stored from higher to
1250 * lower gain so we go backwards */
1251 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1252 /* ee_x_gain[mode] is x gain mask */
1253 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1254 pdgain_idx[pd_gains++] = idx;
1257 ee->ee_pd_gains[mode] = pd_gains;
1259 if (pd_gains == 0)
1260 return -EINVAL;
1262 offset = ath5k_cal_data_offset_2413(ee, mode);
1263 switch (mode) {
1264 case AR5K_EEPROM_MODE_11A:
1265 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1266 return 0;
1268 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1269 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1270 chinfo = ee->ee_pwr_cal_a;
1271 break;
1272 case AR5K_EEPROM_MODE_11B:
1273 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1274 return 0;
1276 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1277 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1278 chinfo = ee->ee_pwr_cal_b;
1279 break;
1280 case AR5K_EEPROM_MODE_11G:
1281 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1282 return 0;
1284 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1285 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1286 chinfo = ee->ee_pwr_cal_g;
1287 break;
1288 default:
1289 return -EINVAL;
1292 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1293 pcinfo = &chinfo[i].rf2413_info;
1296 * Read pwr_i, pddac_i and the first
1297 * 2 pd points (pwr, pddac)
1299 AR5K_EEPROM_READ(offset++, val);
1300 pcinfo->pwr_i[0] = val & 0x1f;
1301 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1302 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1304 AR5K_EEPROM_READ(offset++, val);
1305 pcinfo->pddac[0][0] = val & 0x3f;
1306 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1307 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1309 AR5K_EEPROM_READ(offset++, val);
1310 pcinfo->pwr[0][2] = val & 0xf;
1311 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1313 pcinfo->pwr[0][3] = 0;
1314 pcinfo->pddac[0][3] = 0;
1316 if (pd_gains > 1) {
1318 * Pd gain 0 is not the last pd gain
1319 * so it only has 2 pd points.
1320 * Continue wih pd gain 1.
1322 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1324 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1325 AR5K_EEPROM_READ(offset++, val);
1326 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1328 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1329 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1331 AR5K_EEPROM_READ(offset++, val);
1332 pcinfo->pwr[1][1] = val & 0xf;
1333 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1334 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1336 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1337 AR5K_EEPROM_READ(offset++, val);
1338 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1340 pcinfo->pwr[1][3] = 0;
1341 pcinfo->pddac[1][3] = 0;
1342 } else if (pd_gains == 1) {
1344 * Pd gain 0 is the last one so
1345 * read the extra point.
1347 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1349 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1350 AR5K_EEPROM_READ(offset++, val);
1351 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1355 * Proceed with the other pd_gains
1356 * as above.
1358 if (pd_gains > 2) {
1359 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1360 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1362 AR5K_EEPROM_READ(offset++, val);
1363 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1364 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1365 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1367 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1368 AR5K_EEPROM_READ(offset++, val);
1369 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1371 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1372 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1374 pcinfo->pwr[2][3] = 0;
1375 pcinfo->pddac[2][3] = 0;
1376 } else if (pd_gains == 2) {
1377 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1378 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1381 if (pd_gains > 3) {
1382 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1383 AR5K_EEPROM_READ(offset++, val);
1384 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1386 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1387 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1388 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1390 AR5K_EEPROM_READ(offset++, val);
1391 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1392 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1393 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1395 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1396 AR5K_EEPROM_READ(offset++, val);
1397 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1399 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1400 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1402 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1403 AR5K_EEPROM_READ(offset++, val);
1404 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1405 } else if (pd_gains == 3) {
1406 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1407 AR5K_EEPROM_READ(offset++, val);
1408 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1410 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1414 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1419 * Read per rate target power (this is the maximum tx power
1420 * supported by the card). This info is used when setting
1421 * tx power, no matter the channel.
1423 * This also works for v5 EEPROMs.
1425 static int
1426 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1428 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1429 struct ath5k_rate_pcal_info *rate_pcal_info;
1430 u8 *rate_target_pwr_num;
1431 u32 offset;
1432 u16 val;
1433 int ret, i;
1435 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1436 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1437 switch (mode) {
1438 case AR5K_EEPROM_MODE_11A:
1439 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1440 rate_pcal_info = ee->ee_rate_tpwr_a;
1441 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1442 break;
1443 case AR5K_EEPROM_MODE_11B:
1444 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1445 rate_pcal_info = ee->ee_rate_tpwr_b;
1446 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1447 break;
1448 case AR5K_EEPROM_MODE_11G:
1449 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1450 rate_pcal_info = ee->ee_rate_tpwr_g;
1451 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1452 break;
1453 default:
1454 return -EINVAL;
1457 /* Different freq mask for older eeproms (<= v3.2) */
1458 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1459 for (i = 0; i < (*rate_target_pwr_num); i++) {
1460 AR5K_EEPROM_READ(offset++, val);
1461 rate_pcal_info[i].freq =
1462 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1464 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1465 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1467 AR5K_EEPROM_READ(offset++, val);
1469 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1470 val == 0) {
1471 (*rate_target_pwr_num) = i;
1472 break;
1475 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1476 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1477 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1479 } else {
1480 for (i = 0; i < (*rate_target_pwr_num); i++) {
1481 AR5K_EEPROM_READ(offset++, val);
1482 rate_pcal_info[i].freq =
1483 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1485 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1486 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1488 AR5K_EEPROM_READ(offset++, val);
1490 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1491 val == 0) {
1492 (*rate_target_pwr_num) = i;
1493 break;
1496 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1497 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1498 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1502 return 0;
1506 * Read per channel calibration info from EEPROM
1508 * This info is used to calibrate the baseband power table. Imagine
1509 * that for each channel there is a power curve that's hw specific
1510 * (depends on amplifier etc) and we try to "correct" this curve using
1511 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1512 * it can use accurate power values when setting tx power (takes amplifier's
1513 * performance on each channel into account).
1515 * EEPROM provides us with the offsets for some pre-calibrated channels
1516 * and we have to interpolate to create the full table for these channels and
1517 * also the table for any channel.
1519 static int
1520 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1522 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1523 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1524 int mode;
1525 int err;
1527 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1528 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1529 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1530 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1531 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1532 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1533 else
1534 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1537 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1538 mode++) {
1539 err = read_pcal(ah, mode);
1540 if (err)
1541 return err;
1543 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1544 if (err < 0)
1545 return err;
1548 return 0;
1551 static int
1552 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1554 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1555 struct ath5k_chan_pcal_info *chinfo;
1556 u8 pier, pdg;
1558 switch (mode) {
1559 case AR5K_EEPROM_MODE_11A:
1560 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1561 return 0;
1562 chinfo = ee->ee_pwr_cal_a;
1563 break;
1564 case AR5K_EEPROM_MODE_11B:
1565 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1566 return 0;
1567 chinfo = ee->ee_pwr_cal_b;
1568 break;
1569 case AR5K_EEPROM_MODE_11G:
1570 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1571 return 0;
1572 chinfo = ee->ee_pwr_cal_g;
1573 break;
1574 default:
1575 return -EINVAL;
1578 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1579 if (!chinfo[pier].pd_curves)
1580 continue;
1582 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1583 struct ath5k_pdgain_info *pd =
1584 &chinfo[pier].pd_curves[pdg];
1586 if (pd != NULL) {
1587 kfree(pd->pd_step);
1588 kfree(pd->pd_pwr);
1592 kfree(chinfo[pier].pd_curves);
1595 return 0;
1598 void
1599 ath5k_eeprom_detach(struct ath5k_hw *ah)
1601 u8 mode;
1603 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1604 ath5k_eeprom_free_pcal_info(ah, mode);
1607 /* Read conformance test limits used for regulatory control */
1608 static int
1609 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1611 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1612 struct ath5k_edge_power *rep;
1613 unsigned int fmask, pmask;
1614 unsigned int ctl_mode;
1615 int ret, i, j;
1616 u32 offset;
1617 u16 val;
1619 pmask = AR5K_EEPROM_POWER_M;
1620 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1621 offset = AR5K_EEPROM_CTL(ee->ee_version);
1622 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1623 for (i = 0; i < ee->ee_ctls; i += 2) {
1624 AR5K_EEPROM_READ(offset++, val);
1625 ee->ee_ctl[i] = (val >> 8) & 0xff;
1626 ee->ee_ctl[i + 1] = val & 0xff;
1629 offset = AR5K_EEPROM_GROUP8_OFFSET;
1630 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1631 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1632 AR5K_EEPROM_GROUP5_OFFSET;
1633 else
1634 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1636 rep = ee->ee_ctl_pwr;
1637 for(i = 0; i < ee->ee_ctls; i++) {
1638 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1639 case AR5K_CTL_11A:
1640 case AR5K_CTL_TURBO:
1641 ctl_mode = AR5K_EEPROM_MODE_11A;
1642 break;
1643 default:
1644 ctl_mode = AR5K_EEPROM_MODE_11G;
1645 break;
1647 if (ee->ee_ctl[i] == 0) {
1648 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1649 offset += 8;
1650 else
1651 offset += 7;
1652 rep += AR5K_EEPROM_N_EDGES;
1653 continue;
1655 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1656 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1657 AR5K_EEPROM_READ(offset++, val);
1658 rep[j].freq = (val >> 8) & fmask;
1659 rep[j + 1].freq = val & fmask;
1661 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1662 AR5K_EEPROM_READ(offset++, val);
1663 rep[j].edge = (val >> 8) & pmask;
1664 rep[j].flag = (val >> 14) & 1;
1665 rep[j + 1].edge = val & pmask;
1666 rep[j + 1].flag = (val >> 6) & 1;
1668 } else {
1669 AR5K_EEPROM_READ(offset++, val);
1670 rep[0].freq = (val >> 9) & fmask;
1671 rep[1].freq = (val >> 2) & fmask;
1672 rep[2].freq = (val << 5) & fmask;
1674 AR5K_EEPROM_READ(offset++, val);
1675 rep[2].freq |= (val >> 11) & 0x1f;
1676 rep[3].freq = (val >> 4) & fmask;
1677 rep[4].freq = (val << 3) & fmask;
1679 AR5K_EEPROM_READ(offset++, val);
1680 rep[4].freq |= (val >> 13) & 0x7;
1681 rep[5].freq = (val >> 6) & fmask;
1682 rep[6].freq = (val << 1) & fmask;
1684 AR5K_EEPROM_READ(offset++, val);
1685 rep[6].freq |= (val >> 15) & 0x1;
1686 rep[7].freq = (val >> 8) & fmask;
1688 rep[0].edge = (val >> 2) & pmask;
1689 rep[1].edge = (val << 4) & pmask;
1691 AR5K_EEPROM_READ(offset++, val);
1692 rep[1].edge |= (val >> 12) & 0xf;
1693 rep[2].edge = (val >> 6) & pmask;
1694 rep[3].edge = val & pmask;
1696 AR5K_EEPROM_READ(offset++, val);
1697 rep[4].edge = (val >> 10) & pmask;
1698 rep[5].edge = (val >> 4) & pmask;
1699 rep[6].edge = (val << 2) & pmask;
1701 AR5K_EEPROM_READ(offset++, val);
1702 rep[6].edge |= (val >> 14) & 0x3;
1703 rep[7].edge = (val >> 8) & pmask;
1705 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1706 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1707 rep[j].freq, ctl_mode);
1709 rep += AR5K_EEPROM_N_EDGES;
1712 return 0;
1715 static int
1716 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1718 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1719 u32 offset;
1720 u16 val;
1721 int ret = 0, i;
1723 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1724 AR5K_EEPROM_N_CTLS(ee->ee_version);
1726 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1727 /* No spur info for 5GHz */
1728 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1729 /* 2 channels for 2GHz (2464/2420) */
1730 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1731 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1732 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1733 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1734 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1735 AR5K_EEPROM_READ(offset, val);
1736 ee->ee_spur_chans[i][0] = val;
1737 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1738 val);
1739 ee->ee_spur_chans[i][1] = val;
1740 offset++;
1744 return ret;
1748 * Initialize eeprom data structure
1751 ath5k_eeprom_init(struct ath5k_hw *ah)
1753 int err;
1755 err = ath5k_eeprom_init_header(ah);
1756 if (err < 0)
1757 return err;
1759 err = ath5k_eeprom_init_modes(ah);
1760 if (err < 0)
1761 return err;
1763 err = ath5k_eeprom_read_pcal_info(ah);
1764 if (err < 0)
1765 return err;
1767 err = ath5k_eeprom_read_ctl_info(ah);
1768 if (err < 0)
1769 return err;
1771 err = ath5k_eeprom_read_spur_chans(ah);
1772 if (err < 0)
1773 return err;
1775 return 0;
1779 * Read the MAC address from eeprom
1781 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1783 u8 mac_d[ETH_ALEN] = {};
1784 u32 total, offset;
1785 u16 data;
1786 int octet, ret;
1788 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1789 if (ret)
1790 return ret;
1792 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1793 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1794 if (ret)
1795 return ret;
1797 total += data;
1798 mac_d[octet + 1] = data & 0xff;
1799 mac_d[octet] = data >> 8;
1800 octet += 2;
1803 if (!total || total == 3 * 0xffff)
1804 return -EINVAL;
1806 memcpy(mac, mac_d, ETH_ALEN);
1808 return 0;