RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / sfc / siena.c
blob3fab030f8ab5508aa191dd5cc2d1b7b69a935fd8
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/random.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "mcdi.h"
28 #include "mcdi_pcol.h"
30 /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
32 static void siena_init_wol(struct efx_nic *efx);
35 static void siena_push_irq_moderation(struct efx_channel *channel)
37 efx_dword_t timer_cmd;
39 if (channel->irq_moderation)
40 EFX_POPULATE_DWORD_2(timer_cmd,
41 FRF_CZ_TC_TIMER_MODE,
42 FFE_CZ_TIMER_MODE_INT_HLDOFF,
43 FRF_CZ_TC_TIMER_VAL,
44 channel->irq_moderation - 1);
45 else
46 EFX_POPULATE_DWORD_2(timer_cmd,
47 FRF_CZ_TC_TIMER_MODE,
48 FFE_CZ_TIMER_MODE_DIS,
49 FRF_CZ_TC_TIMER_VAL, 0);
50 efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
51 channel->channel);
54 static void siena_push_multicast_hash(struct efx_nic *efx)
56 WARN_ON(!mutex_is_locked(&efx->mac_lock));
58 efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
59 efx->multicast_hash.byte, sizeof(efx->multicast_hash),
60 NULL, 0, NULL);
63 static int siena_mdio_write(struct net_device *net_dev,
64 int prtad, int devad, u16 addr, u16 value)
66 struct efx_nic *efx = netdev_priv(net_dev);
67 uint32_t status;
68 int rc;
70 rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
71 addr, value, &status);
72 if (rc)
73 return rc;
74 if (status != MC_CMD_MDIO_STATUS_GOOD)
75 return -EIO;
77 return 0;
80 static int siena_mdio_read(struct net_device *net_dev,
81 int prtad, int devad, u16 addr)
83 struct efx_nic *efx = netdev_priv(net_dev);
84 uint16_t value;
85 uint32_t status;
86 int rc;
88 rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
89 addr, &value, &status);
90 if (rc)
91 return rc;
92 if (status != MC_CMD_MDIO_STATUS_GOOD)
93 return -EIO;
95 return (int)value;
98 /* This call is responsible for hooking in the MAC and PHY operations */
99 static int siena_probe_port(struct efx_nic *efx)
101 int rc;
103 /* Hook in PHY operations table */
104 efx->phy_op = &efx_mcdi_phy_ops;
106 /* Set up MDIO structure for PHY */
107 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
108 efx->mdio.mdio_read = siena_mdio_read;
109 efx->mdio.mdio_write = siena_mdio_write;
111 /* Fill out MDIO structure, loopback modes, and initial link state */
112 rc = efx->phy_op->probe(efx);
113 if (rc != 0)
114 return rc;
116 /* Allocate buffer for stats */
117 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
118 MC_CMD_MAC_NSTATS * sizeof(u64));
119 if (rc)
120 return rc;
121 netif_dbg(efx, probe, efx->net_dev,
122 "stats buffer at %llx (virt %p phys %llx)\n",
123 (u64)efx->stats_buffer.dma_addr,
124 efx->stats_buffer.addr,
125 (u64)virt_to_phys(efx->stats_buffer.addr));
127 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
129 return 0;
132 void siena_remove_port(struct efx_nic *efx)
134 efx->phy_op->remove(efx);
135 efx_nic_free_buffer(efx, &efx->stats_buffer);
138 static const struct efx_nic_register_test siena_register_tests[] = {
139 { FR_AZ_ADR_REGION,
140 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
141 { FR_CZ_USR_EV_CFG,
142 EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
143 { FR_AZ_RX_CFG,
144 EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
145 { FR_AZ_TX_CFG,
146 EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
147 { FR_AZ_TX_RESERVED,
148 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
149 { FR_AZ_SRM_TX_DC_CFG,
150 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
151 { FR_AZ_RX_DC_CFG,
152 EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
153 { FR_AZ_RX_DC_PF_WM,
154 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
155 { FR_BZ_DP_CTRL,
156 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
157 { FR_BZ_RX_RSS_TKEY,
158 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
159 { FR_CZ_RX_RSS_IPV6_REG1,
160 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
161 { FR_CZ_RX_RSS_IPV6_REG2,
162 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
163 { FR_CZ_RX_RSS_IPV6_REG3,
164 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
167 static int siena_test_registers(struct efx_nic *efx)
169 return efx_nic_test_registers(efx, siena_register_tests,
170 ARRAY_SIZE(siena_register_tests));
173 /**************************************************************************
175 * Device reset
177 **************************************************************************
180 static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
182 int rc;
184 /* Recover from a failed assertion pre-reset */
185 rc = efx_mcdi_handle_assertion(efx);
186 if (rc)
187 return rc;
189 if (method == RESET_TYPE_WORLD)
190 return efx_mcdi_reset_mc(efx);
191 else
192 return efx_mcdi_reset_port(efx);
195 static int siena_probe_nvconfig(struct efx_nic *efx)
197 int rc;
199 rc = efx_mcdi_get_board_cfg(efx, efx->mac_address, NULL);
200 if (rc)
201 return rc;
203 return 0;
206 static int siena_probe_nic(struct efx_nic *efx)
208 struct siena_nic_data *nic_data;
209 bool already_attached = 0;
210 efx_oword_t reg;
211 int rc;
213 /* Allocate storage for hardware specific data */
214 nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
215 if (!nic_data)
216 return -ENOMEM;
217 efx->nic_data = nic_data;
219 if (efx_nic_fpga_ver(efx) != 0) {
220 netif_err(efx, probe, efx->net_dev,
221 "Siena FPGA not supported\n");
222 rc = -ENODEV;
223 goto fail1;
226 efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
227 efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
229 efx_mcdi_init(efx);
231 /* Recover from a failed assertion before probing */
232 rc = efx_mcdi_handle_assertion(efx);
233 if (rc)
234 goto fail1;
236 rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
237 if (rc) {
238 netif_err(efx, probe, efx->net_dev,
239 "Failed to read MCPU firmware version - rc %d\n", rc);
240 goto fail1; /* MCPU absent? */
243 /* Let the BMC know that the driver is now in charge of link and
244 * filter settings. We must do this before we reset the NIC */
245 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
246 if (rc) {
247 netif_err(efx, probe, efx->net_dev,
248 "Unable to register driver with MCPU\n");
249 goto fail2;
251 if (already_attached)
252 /* Not a fatal error */
253 netif_err(efx, probe, efx->net_dev,
254 "Host already registered with MCPU\n");
256 /* Now we can reset the NIC */
257 rc = siena_reset_hw(efx, RESET_TYPE_ALL);
258 if (rc) {
259 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
260 goto fail3;
263 siena_init_wol(efx);
265 /* Allocate memory for INT_KER */
266 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
267 if (rc)
268 goto fail4;
269 BUG_ON(efx->irq_status.dma_addr & 0x0f);
271 netif_dbg(efx, probe, efx->net_dev,
272 "INT_KER at %llx (virt %p phys %llx)\n",
273 (unsigned long long)efx->irq_status.dma_addr,
274 efx->irq_status.addr,
275 (unsigned long long)virt_to_phys(efx->irq_status.addr));
277 /* Read in the non-volatile configuration */
278 rc = siena_probe_nvconfig(efx);
279 if (rc == -EINVAL) {
280 netif_err(efx, probe, efx->net_dev,
281 "NVRAM is invalid therefore using defaults\n");
282 efx->phy_type = PHY_TYPE_NONE;
283 efx->mdio.prtad = MDIO_PRTAD_NONE;
284 } else if (rc) {
285 goto fail5;
288 return 0;
290 fail5:
291 efx_nic_free_buffer(efx, &efx->irq_status);
292 fail4:
293 fail3:
294 efx_mcdi_drv_attach(efx, false, NULL);
295 fail2:
296 fail1:
297 kfree(efx->nic_data);
298 return rc;
301 /* This call performs hardware-specific global initialisation, such as
302 * defining the descriptor cache sizes and number of RSS channels.
303 * It does not set up any buffers, descriptor rings or event queues.
305 static int siena_init_nic(struct efx_nic *efx)
307 efx_oword_t temp;
308 int rc;
310 /* Recover from a failed assertion post-reset */
311 rc = efx_mcdi_handle_assertion(efx);
312 if (rc)
313 return rc;
315 /* Squash TX of packets of 16 bytes or less */
316 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
317 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
318 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
320 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
321 * descriptors (which is bad).
323 efx_reado(efx, &temp, FR_AZ_TX_CFG);
324 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
325 EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
326 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
328 efx_reado(efx, &temp, FR_AZ_RX_CFG);
329 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
330 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
331 /* Enable hash insertion. This is broken for the 'Falcon' hash
332 * if IPv6 hashing is also enabled, so also select Toeplitz
333 * TCP/IPv4 and IPv4 hashes. */
334 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
335 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
336 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
337 efx_writeo(efx, &temp, FR_AZ_RX_CFG);
339 /* Set hash key for IPv4 */
340 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
341 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
343 /* Enable IPv6 RSS */
344 BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
345 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
346 FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
347 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
348 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
349 memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
350 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
351 EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
352 FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
353 memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
354 FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
355 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
357 if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
358 /* No MCDI operation has been defined to set thresholds */
359 netif_err(efx, hw, efx->net_dev,
360 "ignoring RX flow control thresholds\n");
362 /* Enable event logging */
363 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
364 if (rc)
365 return rc;
367 /* Set destination of both TX and RX Flush events */
368 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
369 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
371 EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
372 efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
374 efx_nic_init_common(efx);
375 return 0;
378 static void siena_remove_nic(struct efx_nic *efx)
380 efx_nic_free_buffer(efx, &efx->irq_status);
382 siena_reset_hw(efx, RESET_TYPE_ALL);
384 /* Relinquish the device back to the BMC */
385 if (efx_nic_has_mc(efx))
386 efx_mcdi_drv_attach(efx, false, NULL);
388 /* Tear down the private nic state */
389 kfree(efx->nic_data);
390 efx->nic_data = NULL;
393 #define STATS_GENERATION_INVALID ((u64)(-1))
395 static int siena_try_update_nic_stats(struct efx_nic *efx)
397 u64 *dma_stats;
398 struct efx_mac_stats *mac_stats;
399 u64 generation_start;
400 u64 generation_end;
402 mac_stats = &efx->mac_stats;
403 dma_stats = (u64 *)efx->stats_buffer.addr;
405 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
406 if (generation_end == STATS_GENERATION_INVALID)
407 return 0;
408 rmb();
410 #define MAC_STAT(M, D) \
411 mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
413 MAC_STAT(tx_bytes, TX_BYTES);
414 MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
415 mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
416 mac_stats->tx_bad_bytes);
417 MAC_STAT(tx_packets, TX_PKTS);
418 MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
419 MAC_STAT(tx_pause, TX_PAUSE_PKTS);
420 MAC_STAT(tx_control, TX_CONTROL_PKTS);
421 MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
422 MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
423 MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
424 MAC_STAT(tx_lt64, TX_LT64_PKTS);
425 MAC_STAT(tx_64, TX_64_PKTS);
426 MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
427 MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
428 MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
429 MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
430 MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
431 MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
432 MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
433 mac_stats->tx_collision = 0;
434 MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
435 MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
436 MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
437 MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
438 MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
439 mac_stats->tx_collision = (mac_stats->tx_single_collision +
440 mac_stats->tx_multiple_collision +
441 mac_stats->tx_excessive_collision +
442 mac_stats->tx_late_collision);
443 MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
444 MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
445 MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
446 MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
447 MAC_STAT(rx_bytes, RX_BYTES);
448 MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
449 mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
450 mac_stats->rx_bad_bytes);
451 MAC_STAT(rx_packets, RX_PKTS);
452 MAC_STAT(rx_good, RX_GOOD_PKTS);
453 mac_stats->rx_bad = mac_stats->rx_packets - mac_stats->rx_good;
454 MAC_STAT(rx_pause, RX_PAUSE_PKTS);
455 MAC_STAT(rx_control, RX_CONTROL_PKTS);
456 MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
457 MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
458 MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
459 MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
460 MAC_STAT(rx_64, RX_64_PKTS);
461 MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
462 MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
463 MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
464 MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
465 MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
466 MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
467 MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
468 mac_stats->rx_bad_lt64 = 0;
469 mac_stats->rx_bad_64_to_15xx = 0;
470 mac_stats->rx_bad_15xx_to_jumbo = 0;
471 MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
472 MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
473 mac_stats->rx_missed = 0;
474 MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
475 MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
476 MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
477 MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
478 MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
479 mac_stats->rx_good_lt64 = 0;
481 efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
483 #undef MAC_STAT
485 rmb();
486 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
487 if (generation_end != generation_start)
488 return -EAGAIN;
490 return 0;
493 static void siena_update_nic_stats(struct efx_nic *efx)
495 int retry;
497 /* If we're unlucky enough to read statistics wduring the DMA, wait
498 * up to 10ms for it to finish (typically takes <500us) */
499 for (retry = 0; retry < 100; ++retry) {
500 if (siena_try_update_nic_stats(efx) == 0)
501 return;
502 udelay(100);
505 /* Use the old values instead */
508 static void siena_start_nic_stats(struct efx_nic *efx)
510 u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
512 dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
514 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
515 MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
518 static void siena_stop_nic_stats(struct efx_nic *efx)
520 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
523 void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
525 struct siena_nic_data *nic_data = efx->nic_data;
526 snprintf(buf, len, "%u.%u.%u.%u",
527 (unsigned int)(nic_data->fw_version >> 48),
528 (unsigned int)(nic_data->fw_version >> 32 & 0xffff),
529 (unsigned int)(nic_data->fw_version >> 16 & 0xffff),
530 (unsigned int)(nic_data->fw_version & 0xffff));
533 /**************************************************************************
535 * Wake on LAN
537 **************************************************************************
540 static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
542 struct siena_nic_data *nic_data = efx->nic_data;
544 wol->supported = WAKE_MAGIC;
545 if (nic_data->wol_filter_id != -1)
546 wol->wolopts = WAKE_MAGIC;
547 else
548 wol->wolopts = 0;
549 memset(&wol->sopass, 0, sizeof(wol->sopass));
553 static int siena_set_wol(struct efx_nic *efx, u32 type)
555 struct siena_nic_data *nic_data = efx->nic_data;
556 int rc;
558 if (type & ~WAKE_MAGIC)
559 return -EINVAL;
561 if (type & WAKE_MAGIC) {
562 if (nic_data->wol_filter_id != -1)
563 efx_mcdi_wol_filter_remove(efx,
564 nic_data->wol_filter_id);
565 rc = efx_mcdi_wol_filter_set_magic(efx, efx->mac_address,
566 &nic_data->wol_filter_id);
567 if (rc)
568 goto fail;
570 pci_wake_from_d3(efx->pci_dev, true);
571 } else {
572 rc = efx_mcdi_wol_filter_reset(efx);
573 nic_data->wol_filter_id = -1;
574 pci_wake_from_d3(efx->pci_dev, false);
575 if (rc)
576 goto fail;
579 return 0;
580 fail:
581 netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
582 __func__, type, rc);
583 return rc;
587 static void siena_init_wol(struct efx_nic *efx)
589 struct siena_nic_data *nic_data = efx->nic_data;
590 int rc;
592 rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
594 if (rc != 0) {
595 /* If it failed, attempt to get into a synchronised
596 * state with MC by resetting any set WoL filters */
597 efx_mcdi_wol_filter_reset(efx);
598 nic_data->wol_filter_id = -1;
599 } else if (nic_data->wol_filter_id != -1) {
600 pci_wake_from_d3(efx->pci_dev, true);
605 /**************************************************************************
607 * Revision-dependent attributes used by efx.c and nic.c
609 **************************************************************************
612 struct efx_nic_type siena_a0_nic_type = {
613 .probe = siena_probe_nic,
614 .remove = siena_remove_nic,
615 .init = siena_init_nic,
616 .fini = efx_port_dummy_op_void,
617 .monitor = NULL,
618 .reset = siena_reset_hw,
619 .probe_port = siena_probe_port,
620 .remove_port = siena_remove_port,
621 .prepare_flush = efx_port_dummy_op_void,
622 .update_stats = siena_update_nic_stats,
623 .start_stats = siena_start_nic_stats,
624 .stop_stats = siena_stop_nic_stats,
625 .set_id_led = efx_mcdi_set_id_led,
626 .push_irq_moderation = siena_push_irq_moderation,
627 .push_multicast_hash = siena_push_multicast_hash,
628 .reconfigure_port = efx_mcdi_phy_reconfigure,
629 .get_wol = siena_get_wol,
630 .set_wol = siena_set_wol,
631 .resume_wol = siena_init_wol,
632 .test_registers = siena_test_registers,
633 .test_nvram = efx_mcdi_nvram_test_all,
634 .default_mac_ops = &efx_mcdi_mac_operations,
636 .revision = EFX_REV_SIENA_A0,
637 .mem_map_size = (FR_CZ_MC_TREG_SMEM +
638 FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
639 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
640 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
641 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
642 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
643 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
644 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
645 .rx_buffer_hash_size = 0x10,
646 .rx_buffer_padding = 0,
647 .max_interrupt_mode = EFX_INT_MODE_MSIX,
648 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
649 * interrupt handler only supports 32
650 * channels */
651 .tx_dc_base = 0x88000,
652 .rx_dc_base = 0x68000,
653 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
654 NETIF_F_RXHASH),
655 .reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,