RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / e1000e / netdev.c
blob22ac341cb084605cc97ea83f2150aae4307c9080
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
53 #include "e1000.h"
55 #define DRV_EXTRAVERSION "-k2"
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
61 static const struct e1000_info *e1000_info_tbl[] = {
62 [board_82571] = &e1000_82571_info,
63 [board_82572] = &e1000_82572_info,
64 [board_82573] = &e1000_82573_info,
65 [board_82574] = &e1000_82574_info,
66 [board_82583] = &e1000_82583_info,
67 [board_80003es2lan] = &e1000_es2_info,
68 [board_ich8lan] = &e1000_ich8_info,
69 [board_ich9lan] = &e1000_ich9_info,
70 [board_ich10lan] = &e1000_ich10_info,
71 [board_pchlan] = &e1000_pch_info,
72 [board_pch2lan] = &e1000_pch2_info,
75 struct e1000_reg_info {
76 u32 ofs;
77 char *name;
80 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
86 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
94 /* General Registers */
95 {E1000_CTRL, "CTRL"},
96 {E1000_STATUS, "STATUS"},
97 {E1000_CTRL_EXT, "CTRL_EXT"},
99 /* Interrupt Registers */
100 {E1000_ICR, "ICR"},
102 /* RX Registers */
103 {E1000_RCTL, "RCTL"},
104 {E1000_RDLEN, "RDLEN"},
105 {E1000_RDH, "RDH"},
106 {E1000_RDT, "RDT"},
107 {E1000_RDTR, "RDTR"},
108 {E1000_RXDCTL(0), "RXDCTL"},
109 {E1000_ERT, "ERT"},
110 {E1000_RDBAL, "RDBAL"},
111 {E1000_RDBAH, "RDBAH"},
112 {E1000_RDFH, "RDFH"},
113 {E1000_RDFT, "RDFT"},
114 {E1000_RDFHS, "RDFHS"},
115 {E1000_RDFTS, "RDFTS"},
116 {E1000_RDFPC, "RDFPC"},
118 /* TX Registers */
119 {E1000_TCTL, "TCTL"},
120 {E1000_TDBAL, "TDBAL"},
121 {E1000_TDBAH, "TDBAH"},
122 {E1000_TDLEN, "TDLEN"},
123 {E1000_TDH, "TDH"},
124 {E1000_TDT, "TDT"},
125 {E1000_TIDV, "TIDV"},
126 {E1000_TXDCTL(0), "TXDCTL"},
127 {E1000_TADV, "TADV"},
128 {E1000_TARC(0), "TARC"},
129 {E1000_TDFH, "TDFH"},
130 {E1000_TDFT, "TDFT"},
131 {E1000_TDFHS, "TDFHS"},
132 {E1000_TDFTS, "TDFTS"},
133 {E1000_TDFPC, "TDFPC"},
135 /* List Terminator */
140 * e1000_regdump - register printout routine
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144 int n = 0;
145 char rname[16];
146 u32 regs[8];
148 switch (reginfo->ofs) {
149 case E1000_RXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_RXDCTL(n));
152 break;
153 case E1000_TXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 break;
157 case E1000_TARC(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TARC(n));
160 break;
161 default:
162 printk(KERN_INFO "%-15s %08x\n",
163 reginfo->name, __er32(hw, reginfo->ofs));
164 return;
167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168 printk(KERN_INFO "%-15s ", rname);
169 for (n = 0; n < 2; n++)
170 printk(KERN_CONT "%08x ", regs[n]);
171 printk(KERN_CONT "\n");
176 * e1000e_dump - Print registers, tx-ring and rx-ring
178 static void e1000e_dump(struct e1000_adapter *adapter)
180 struct net_device *netdev = adapter->netdev;
181 struct e1000_hw *hw = &adapter->hw;
182 struct e1000_reg_info *reginfo;
183 struct e1000_ring *tx_ring = adapter->tx_ring;
184 struct e1000_tx_desc *tx_desc;
185 struct my_u0 { u64 a; u64 b; } *u0;
186 struct e1000_buffer *buffer_info;
187 struct e1000_ring *rx_ring = adapter->rx_ring;
188 union e1000_rx_desc_packet_split *rx_desc_ps;
189 struct e1000_rx_desc *rx_desc;
190 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191 u32 staterr;
192 int i = 0;
194 if (!netif_msg_hw(adapter))
195 return;
197 /* Print netdevice Info */
198 if (netdev) {
199 dev_info(&adapter->pdev->dev, "Net device Info\n");
200 printk(KERN_INFO "Device Name state "
201 "trans_start last_rx\n");
202 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203 netdev->name,
204 netdev->state,
205 netdev->trans_start,
206 netdev->last_rx);
209 /* Print Registers */
210 dev_info(&adapter->pdev->dev, "Register Dump\n");
211 printk(KERN_INFO " Register Name Value\n");
212 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213 reginfo->name; reginfo++) {
214 e1000_regdump(hw, reginfo);
217 /* Print TX Ring Summary */
218 if (!netdev || !netif_running(netdev))
219 goto exit;
221 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
223 " leng ntw timestamp\n");
224 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227 (unsigned long long)buffer_info->dma,
228 buffer_info->length,
229 buffer_info->next_to_watch,
230 (unsigned long long)buffer_info->time_stamp);
232 /* Print TX Rings */
233 if (!netif_msg_tx_done(adapter))
234 goto rx_ring_summary;
236 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
238 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
240 * Legacy Transmit Descriptor
241 * +--------------------------------------------------------------+
242 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
243 * +--------------------------------------------------------------+
244 * 8 | Special | CSS | Status | CMD | CSO | Length |
245 * +--------------------------------------------------------------+
246 * 63 48 47 36 35 32 31 24 23 16 15 0
248 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249 * 63 48 47 40 39 32 31 16 15 8 7 0
250 * +----------------------------------------------------------------+
251 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
252 * +----------------------------------------------------------------+
253 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
254 * +----------------------------------------------------------------+
255 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
257 * Extended Data Descriptor (DTYP=0x1)
258 * +----------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] |
260 * +----------------------------------------------------------------+
261 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
262 * +----------------------------------------------------------------+
263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
265 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Legacy format\n");
268 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Context format\n");
271 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
272 " [bi->dma ] leng ntw timestamp bi->skb "
273 "<-- Ext Data format\n");
274 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275 tx_desc = E1000_TX_DESC(*tx_ring, i);
276 buffer_info = &tx_ring->buffer_info[i];
277 u0 = (struct my_u0 *)tx_desc;
278 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
279 "%04X %3X %016llX %p",
280 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282 (unsigned long long)le64_to_cpu(u0->a),
283 (unsigned long long)le64_to_cpu(u0->b),
284 (unsigned long long)buffer_info->dma,
285 buffer_info->length, buffer_info->next_to_watch,
286 (unsigned long long)buffer_info->time_stamp,
287 buffer_info->skb);
288 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289 printk(KERN_CONT " NTC/U\n");
290 else if (i == tx_ring->next_to_use)
291 printk(KERN_CONT " NTU\n");
292 else if (i == tx_ring->next_to_clean)
293 printk(KERN_CONT " NTC\n");
294 else
295 printk(KERN_CONT "\n");
297 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299 16, 1, phys_to_virt(buffer_info->dma),
300 buffer_info->length, true);
303 /* Print RX Rings Summary */
304 rx_ring_summary:
305 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306 printk(KERN_INFO "Queue [NTU] [NTC]\n");
307 printk(KERN_INFO " %5d %5X %5X\n", 0,
308 rx_ring->next_to_use, rx_ring->next_to_clean);
310 /* Print RX Rings */
311 if (!netif_msg_rx_status(adapter))
312 goto exit;
314 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315 switch (adapter->rx_ps_pages) {
316 case 1:
317 case 2:
318 case 3:
319 /* [Extended] Packet Split Receive Descriptor Format
321 * +-----------------------------------------------------+
322 * 0 | Buffer Address 0 [63:0] |
323 * +-----------------------------------------------------+
324 * 8 | Buffer Address 1 [63:0] |
325 * +-----------------------------------------------------+
326 * 16 | Buffer Address 2 [63:0] |
327 * +-----------------------------------------------------+
328 * 24 | Buffer Address 3 [63:0] |
329 * +-----------------------------------------------------+
331 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
332 "[buffer 1 63:0 ] "
333 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
334 "[bi->skb] <-- Ext Pkt Split format\n");
335 /* [Extended] Receive Descriptor (Write-Back) Format
337 * 63 48 47 32 31 13 12 8 7 4 3 0
338 * +------------------------------------------------------+
339 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
340 * | Checksum | Ident | | Queue | | Type |
341 * +------------------------------------------------------+
342 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343 * +------------------------------------------------------+
344 * 63 48 47 32 31 20 19 0
346 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
347 "[vl l0 ee es] "
348 "[ l3 l2 l1 hs] [reserved ] ---------------- "
349 "[bi->skb] <-- Ext Rx Write-Back format\n");
350 for (i = 0; i < rx_ring->count; i++) {
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356 if (staterr & E1000_RXD_STAT_DD) {
357 /* Descriptor Done */
358 printk(KERN_INFO "RWB[0x%03X] %016llX "
359 "%016llX %016llX %016llX "
360 "---------------- %p", i,
361 (unsigned long long)le64_to_cpu(u1->a),
362 (unsigned long long)le64_to_cpu(u1->b),
363 (unsigned long long)le64_to_cpu(u1->c),
364 (unsigned long long)le64_to_cpu(u1->d),
365 buffer_info->skb);
366 } else {
367 printk(KERN_INFO "R [0x%03X] %016llX "
368 "%016llX %016llX %016llX %016llX %p", i,
369 (unsigned long long)le64_to_cpu(u1->a),
370 (unsigned long long)le64_to_cpu(u1->b),
371 (unsigned long long)le64_to_cpu(u1->c),
372 (unsigned long long)le64_to_cpu(u1->d),
373 (unsigned long long)buffer_info->dma,
374 buffer_info->skb);
376 if (netif_msg_pktdata(adapter))
377 print_hex_dump(KERN_INFO, "",
378 DUMP_PREFIX_ADDRESS, 16, 1,
379 phys_to_virt(buffer_info->dma),
380 adapter->rx_ps_bsize0, true);
383 if (i == rx_ring->next_to_use)
384 printk(KERN_CONT " NTU\n");
385 else if (i == rx_ring->next_to_clean)
386 printk(KERN_CONT " NTC\n");
387 else
388 printk(KERN_CONT "\n");
390 break;
391 default:
392 case 0:
393 /* Legacy Receive Descriptor Format
395 * +-----------------------------------------------------+
396 * | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399 * +-----------------------------------------------------+
400 * 63 48 47 40 39 32 31 16 15 0
402 printk(KERN_INFO "Rl[desc] [address 63:0 ] "
403 "[vl er S cks ln] [bi->dma ] [bi->skb] "
404 "<-- Legacy format\n");
405 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 buffer_info = &rx_ring->buffer_info[i];
408 u0 = (struct my_u0 *)rx_desc;
409 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
410 "%016llX %p", i,
411 (unsigned long long)le64_to_cpu(u0->a),
412 (unsigned long long)le64_to_cpu(u0->b),
413 (unsigned long long)buffer_info->dma,
414 buffer_info->skb);
415 if (i == rx_ring->next_to_use)
416 printk(KERN_CONT " NTU\n");
417 else if (i == rx_ring->next_to_clean)
418 printk(KERN_CONT " NTC\n");
419 else
420 printk(KERN_CONT "\n");
422 if (netif_msg_pktdata(adapter))
423 print_hex_dump(KERN_INFO, "",
424 DUMP_PREFIX_ADDRESS,
425 16, 1, phys_to_virt(buffer_info->dma),
426 adapter->rx_buffer_len, true);
430 exit:
431 return;
435 * e1000_desc_unused - calculate if we have unused descriptors
437 static int e1000_desc_unused(struct e1000_ring *ring)
439 if (ring->next_to_clean > ring->next_to_use)
440 return ring->next_to_clean - ring->next_to_use - 1;
442 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
446 * e1000_receive_skb - helper function to handle Rx indications
447 * @adapter: board private structure
448 * @status: descriptor status field as written by hardware
449 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450 * @skb: pointer to sk_buff to be indicated to stack
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453 struct net_device *netdev,
454 struct sk_buff *skb,
455 u8 status, __le16 vlan)
457 skb->protocol = eth_type_trans(skb, netdev);
459 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461 le16_to_cpu(vlan), skb);
462 else
463 napi_gro_receive(&adapter->napi, skb);
467 * e1000_rx_checksum - Receive Checksum Offload for 82543
468 * @adapter: board private structure
469 * @status_err: receive descriptor status and error fields
470 * @csum: receive descriptor csum field
471 * @sk_buff: socket buffer with received data
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474 u32 csum, struct sk_buff *skb)
476 u16 status = (u16)status_err;
477 u8 errors = (u8)(status_err >> 24);
478 skb->ip_summed = CHECKSUM_NONE;
480 /* Ignore Checksum bit is set */
481 if (status & E1000_RXD_STAT_IXSM)
482 return;
483 /* TCP/UDP checksum error bit is set */
484 if (errors & E1000_RXD_ERR_TCPE) {
485 /* let the stack verify checksum errors */
486 adapter->hw_csum_err++;
487 return;
490 /* TCP/UDP Checksum has not been calculated */
491 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
492 return;
494 /* It must be a TCP or UDP packet with a valid checksum */
495 if (status & E1000_RXD_STAT_TCPCS) {
496 /* TCP checksum is good */
497 skb->ip_summed = CHECKSUM_UNNECESSARY;
498 } else {
500 * IP fragment with UDP payload
501 * Hardware complements the payload checksum, so we undo it
502 * and then put the value in host order for further stack use.
504 __sum16 sum = (__force __sum16)htons(csum);
505 skb->csum = csum_unfold(~sum);
506 skb->ip_summed = CHECKSUM_COMPLETE;
508 adapter->hw_csum_good++;
512 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
513 * @adapter: address of board private structure
515 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
516 int cleaned_count)
518 struct net_device *netdev = adapter->netdev;
519 struct pci_dev *pdev = adapter->pdev;
520 struct e1000_ring *rx_ring = adapter->rx_ring;
521 struct e1000_rx_desc *rx_desc;
522 struct e1000_buffer *buffer_info;
523 struct sk_buff *skb;
524 unsigned int i;
525 unsigned int bufsz = adapter->rx_buffer_len;
527 i = rx_ring->next_to_use;
528 buffer_info = &rx_ring->buffer_info[i];
530 while (cleaned_count--) {
531 skb = buffer_info->skb;
532 if (skb) {
533 skb_trim(skb, 0);
534 goto map_skb;
537 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
538 if (!skb) {
539 /* Better luck next round */
540 adapter->alloc_rx_buff_failed++;
541 break;
544 buffer_info->skb = skb;
545 map_skb:
546 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
547 adapter->rx_buffer_len,
548 DMA_FROM_DEVICE);
549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
550 dev_err(&pdev->dev, "RX DMA map failed\n");
551 adapter->rx_dma_failed++;
552 break;
555 rx_desc = E1000_RX_DESC(*rx_ring, i);
556 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
558 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
560 * Force memory writes to complete before letting h/w
561 * know there are new descriptors to fetch. (Only
562 * applicable for weak-ordered memory model archs,
563 * such as IA-64).
565 wmb();
566 writel(i, adapter->hw.hw_addr + rx_ring->tail);
568 i++;
569 if (i == rx_ring->count)
570 i = 0;
571 buffer_info = &rx_ring->buffer_info[i];
574 rx_ring->next_to_use = i;
578 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
579 * @adapter: address of board private structure
581 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
582 int cleaned_count)
584 struct net_device *netdev = adapter->netdev;
585 struct pci_dev *pdev = adapter->pdev;
586 union e1000_rx_desc_packet_split *rx_desc;
587 struct e1000_ring *rx_ring = adapter->rx_ring;
588 struct e1000_buffer *buffer_info;
589 struct e1000_ps_page *ps_page;
590 struct sk_buff *skb;
591 unsigned int i, j;
593 i = rx_ring->next_to_use;
594 buffer_info = &rx_ring->buffer_info[i];
596 while (cleaned_count--) {
597 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
599 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
600 ps_page = &buffer_info->ps_pages[j];
601 if (j >= adapter->rx_ps_pages) {
602 /* all unused desc entries get hw null ptr */
603 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
604 continue;
606 if (!ps_page->page) {
607 ps_page->page = alloc_page(GFP_ATOMIC);
608 if (!ps_page->page) {
609 adapter->alloc_rx_buff_failed++;
610 goto no_buffers;
612 ps_page->dma = dma_map_page(&pdev->dev,
613 ps_page->page,
614 0, PAGE_SIZE,
615 DMA_FROM_DEVICE);
616 if (dma_mapping_error(&pdev->dev,
617 ps_page->dma)) {
618 dev_err(&adapter->pdev->dev,
619 "RX DMA page map failed\n");
620 adapter->rx_dma_failed++;
621 goto no_buffers;
625 * Refresh the desc even if buffer_addrs
626 * didn't change because each write-back
627 * erases this info.
629 rx_desc->read.buffer_addr[j+1] =
630 cpu_to_le64(ps_page->dma);
633 skb = netdev_alloc_skb_ip_align(netdev,
634 adapter->rx_ps_bsize0);
636 if (!skb) {
637 adapter->alloc_rx_buff_failed++;
638 break;
641 buffer_info->skb = skb;
642 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643 adapter->rx_ps_bsize0,
644 DMA_FROM_DEVICE);
645 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646 dev_err(&pdev->dev, "RX DMA map failed\n");
647 adapter->rx_dma_failed++;
648 /* cleanup skb */
649 dev_kfree_skb_any(skb);
650 buffer_info->skb = NULL;
651 break;
654 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
656 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
658 * Force memory writes to complete before letting h/w
659 * know there are new descriptors to fetch. (Only
660 * applicable for weak-ordered memory model archs,
661 * such as IA-64).
663 wmb();
664 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
667 i++;
668 if (i == rx_ring->count)
669 i = 0;
670 buffer_info = &rx_ring->buffer_info[i];
673 no_buffers:
674 rx_ring->next_to_use = i;
678 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
679 * @adapter: address of board private structure
680 * @cleaned_count: number of buffers to allocate this pass
683 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
684 int cleaned_count)
686 struct net_device *netdev = adapter->netdev;
687 struct pci_dev *pdev = adapter->pdev;
688 struct e1000_rx_desc *rx_desc;
689 struct e1000_ring *rx_ring = adapter->rx_ring;
690 struct e1000_buffer *buffer_info;
691 struct sk_buff *skb;
692 unsigned int i;
693 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695 i = rx_ring->next_to_use;
696 buffer_info = &rx_ring->buffer_info[i];
698 while (cleaned_count--) {
699 skb = buffer_info->skb;
700 if (skb) {
701 skb_trim(skb, 0);
702 goto check_page;
705 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
706 if (unlikely(!skb)) {
707 /* Better luck next round */
708 adapter->alloc_rx_buff_failed++;
709 break;
712 buffer_info->skb = skb;
713 check_page:
714 /* allocate a new page if necessary */
715 if (!buffer_info->page) {
716 buffer_info->page = alloc_page(GFP_ATOMIC);
717 if (unlikely(!buffer_info->page)) {
718 adapter->alloc_rx_buff_failed++;
719 break;
723 if (!buffer_info->dma)
724 buffer_info->dma = dma_map_page(&pdev->dev,
725 buffer_info->page, 0,
726 PAGE_SIZE,
727 DMA_FROM_DEVICE);
729 rx_desc = E1000_RX_DESC(*rx_ring, i);
730 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
732 if (unlikely(++i == rx_ring->count))
733 i = 0;
734 buffer_info = &rx_ring->buffer_info[i];
737 if (likely(rx_ring->next_to_use != i)) {
738 rx_ring->next_to_use = i;
739 if (unlikely(i-- == 0))
740 i = (rx_ring->count - 1);
742 /* Force memory writes to complete before letting h/w
743 * know there are new descriptors to fetch. (Only
744 * applicable for weak-ordered memory model archs,
745 * such as IA-64). */
746 wmb();
747 writel(i, adapter->hw.hw_addr + rx_ring->tail);
752 * e1000_clean_rx_irq - Send received data up the network stack; legacy
753 * @adapter: board private structure
755 * the return value indicates whether actual cleaning was done, there
756 * is no guarantee that everything was cleaned
758 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
759 int *work_done, int work_to_do)
761 struct net_device *netdev = adapter->netdev;
762 struct pci_dev *pdev = adapter->pdev;
763 struct e1000_hw *hw = &adapter->hw;
764 struct e1000_ring *rx_ring = adapter->rx_ring;
765 struct e1000_rx_desc *rx_desc, *next_rxd;
766 struct e1000_buffer *buffer_info, *next_buffer;
767 u32 length;
768 unsigned int i;
769 int cleaned_count = 0;
770 bool cleaned = 0;
771 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
773 i = rx_ring->next_to_clean;
774 rx_desc = E1000_RX_DESC(*rx_ring, i);
775 buffer_info = &rx_ring->buffer_info[i];
777 while (rx_desc->status & E1000_RXD_STAT_DD) {
778 struct sk_buff *skb;
779 u8 status;
781 if (*work_done >= work_to_do)
782 break;
783 (*work_done)++;
784 rmb(); /* read descriptor and rx_buffer_info after status DD */
786 status = rx_desc->status;
787 skb = buffer_info->skb;
788 buffer_info->skb = NULL;
790 prefetch(skb->data - NET_IP_ALIGN);
792 i++;
793 if (i == rx_ring->count)
794 i = 0;
795 next_rxd = E1000_RX_DESC(*rx_ring, i);
796 prefetch(next_rxd);
798 next_buffer = &rx_ring->buffer_info[i];
800 cleaned = 1;
801 cleaned_count++;
802 dma_unmap_single(&pdev->dev,
803 buffer_info->dma,
804 adapter->rx_buffer_len,
805 DMA_FROM_DEVICE);
806 buffer_info->dma = 0;
808 length = le16_to_cpu(rx_desc->length);
811 * !EOP means multiple descriptors were used to store a single
812 * packet, if that's the case we need to toss it. In fact, we
813 * need to toss every packet with the EOP bit clear and the
814 * next frame that _does_ have the EOP bit set, as it is by
815 * definition only a frame fragment
817 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
818 adapter->flags2 |= FLAG2_IS_DISCARDING;
820 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
821 /* All receives must fit into a single buffer */
822 e_dbg("Receive packet consumed multiple buffers\n");
823 /* recycle */
824 buffer_info->skb = skb;
825 if (status & E1000_RXD_STAT_EOP)
826 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
827 goto next_desc;
830 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
831 /* recycle */
832 buffer_info->skb = skb;
833 goto next_desc;
836 /* adjust length to remove Ethernet CRC */
837 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
838 length -= 4;
840 total_rx_bytes += length;
841 total_rx_packets++;
844 * code added for copybreak, this should improve
845 * performance for small packets with large amounts
846 * of reassembly being done in the stack
848 if (length < copybreak) {
849 struct sk_buff *new_skb =
850 netdev_alloc_skb_ip_align(netdev, length);
851 if (new_skb) {
852 skb_copy_to_linear_data_offset(new_skb,
853 -NET_IP_ALIGN,
854 (skb->data -
855 NET_IP_ALIGN),
856 (length +
857 NET_IP_ALIGN));
858 /* save the skb in buffer_info as good */
859 buffer_info->skb = skb;
860 skb = new_skb;
862 /* else just continue with the old one */
864 /* end copybreak code */
865 skb_put(skb, length);
867 /* Receive Checksum Offload */
868 e1000_rx_checksum(adapter,
869 (u32)(status) |
870 ((u32)(rx_desc->errors) << 24),
871 le16_to_cpu(rx_desc->csum), skb);
873 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
875 next_desc:
876 rx_desc->status = 0;
878 /* return some buffers to hardware, one at a time is too slow */
879 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
880 adapter->alloc_rx_buf(adapter, cleaned_count);
881 cleaned_count = 0;
884 /* use prefetched values */
885 rx_desc = next_rxd;
886 buffer_info = next_buffer;
888 rx_ring->next_to_clean = i;
890 cleaned_count = e1000_desc_unused(rx_ring);
891 if (cleaned_count)
892 adapter->alloc_rx_buf(adapter, cleaned_count);
894 adapter->total_rx_bytes += total_rx_bytes;
895 adapter->total_rx_packets += total_rx_packets;
896 netdev->stats.rx_bytes += total_rx_bytes;
897 netdev->stats.rx_packets += total_rx_packets;
898 return cleaned;
901 static void e1000_put_txbuf(struct e1000_adapter *adapter,
902 struct e1000_buffer *buffer_info)
904 if (buffer_info->dma) {
905 if (buffer_info->mapped_as_page)
906 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
907 buffer_info->length, DMA_TO_DEVICE);
908 else
909 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
910 buffer_info->length, DMA_TO_DEVICE);
911 buffer_info->dma = 0;
913 if (buffer_info->skb) {
914 dev_kfree_skb_any(buffer_info->skb);
915 buffer_info->skb = NULL;
917 buffer_info->time_stamp = 0;
920 static void e1000_print_hw_hang(struct work_struct *work)
922 struct e1000_adapter *adapter = container_of(work,
923 struct e1000_adapter,
924 print_hang_task);
925 struct e1000_ring *tx_ring = adapter->tx_ring;
926 unsigned int i = tx_ring->next_to_clean;
927 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
928 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
929 struct e1000_hw *hw = &adapter->hw;
930 u16 phy_status, phy_1000t_status, phy_ext_status;
931 u16 pci_status;
933 e1e_rphy(hw, PHY_STATUS, &phy_status);
934 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
935 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
937 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
939 /* detected Hardware unit hang */
940 e_err("Detected Hardware Unit Hang:\n"
941 " TDH <%x>\n"
942 " TDT <%x>\n"
943 " next_to_use <%x>\n"
944 " next_to_clean <%x>\n"
945 "buffer_info[next_to_clean]:\n"
946 " time_stamp <%lx>\n"
947 " next_to_watch <%x>\n"
948 " jiffies <%lx>\n"
949 " next_to_watch.status <%x>\n"
950 "MAC Status <%x>\n"
951 "PHY Status <%x>\n"
952 "PHY 1000BASE-T Status <%x>\n"
953 "PHY Extended Status <%x>\n"
954 "PCI Status <%x>\n",
955 readl(adapter->hw.hw_addr + tx_ring->head),
956 readl(adapter->hw.hw_addr + tx_ring->tail),
957 tx_ring->next_to_use,
958 tx_ring->next_to_clean,
959 tx_ring->buffer_info[eop].time_stamp,
960 eop,
961 jiffies,
962 eop_desc->upper.fields.status,
963 er32(STATUS),
964 phy_status,
965 phy_1000t_status,
966 phy_ext_status,
967 pci_status);
971 * e1000_clean_tx_irq - Reclaim resources after transmit completes
972 * @adapter: board private structure
974 * the return value indicates whether actual cleaning was done, there
975 * is no guarantee that everything was cleaned
977 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
979 struct net_device *netdev = adapter->netdev;
980 struct e1000_hw *hw = &adapter->hw;
981 struct e1000_ring *tx_ring = adapter->tx_ring;
982 struct e1000_tx_desc *tx_desc, *eop_desc;
983 struct e1000_buffer *buffer_info;
984 unsigned int i, eop;
985 unsigned int count = 0;
986 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
988 i = tx_ring->next_to_clean;
989 eop = tx_ring->buffer_info[i].next_to_watch;
990 eop_desc = E1000_TX_DESC(*tx_ring, eop);
992 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
993 (count < tx_ring->count)) {
994 bool cleaned = false;
995 rmb(); /* read buffer_info after eop_desc */
996 for (; !cleaned; count++) {
997 tx_desc = E1000_TX_DESC(*tx_ring, i);
998 buffer_info = &tx_ring->buffer_info[i];
999 cleaned = (i == eop);
1001 if (cleaned) {
1002 total_tx_packets += buffer_info->segs;
1003 total_tx_bytes += buffer_info->bytecount;
1006 e1000_put_txbuf(adapter, buffer_info);
1007 tx_desc->upper.data = 0;
1009 i++;
1010 if (i == tx_ring->count)
1011 i = 0;
1014 if (i == tx_ring->next_to_use)
1015 break;
1016 eop = tx_ring->buffer_info[i].next_to_watch;
1017 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1020 tx_ring->next_to_clean = i;
1022 #define TX_WAKE_THRESHOLD 32
1023 if (count && netif_carrier_ok(netdev) &&
1024 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1025 /* Make sure that anybody stopping the queue after this
1026 * sees the new next_to_clean.
1028 smp_mb();
1030 if (netif_queue_stopped(netdev) &&
1031 !(test_bit(__E1000_DOWN, &adapter->state))) {
1032 netif_wake_queue(netdev);
1033 ++adapter->restart_queue;
1037 if (adapter->detect_tx_hung) {
1039 * Detect a transmit hang in hardware, this serializes the
1040 * check with the clearing of time_stamp and movement of i
1042 adapter->detect_tx_hung = 0;
1043 if (tx_ring->buffer_info[i].time_stamp &&
1044 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1045 + (adapter->tx_timeout_factor * HZ)) &&
1046 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1047 schedule_work(&adapter->print_hang_task);
1048 netif_stop_queue(netdev);
1051 adapter->total_tx_bytes += total_tx_bytes;
1052 adapter->total_tx_packets += total_tx_packets;
1053 netdev->stats.tx_bytes += total_tx_bytes;
1054 netdev->stats.tx_packets += total_tx_packets;
1055 return (count < tx_ring->count);
1059 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1060 * @adapter: board private structure
1062 * the return value indicates whether actual cleaning was done, there
1063 * is no guarantee that everything was cleaned
1065 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1066 int *work_done, int work_to_do)
1068 struct e1000_hw *hw = &adapter->hw;
1069 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1070 struct net_device *netdev = adapter->netdev;
1071 struct pci_dev *pdev = adapter->pdev;
1072 struct e1000_ring *rx_ring = adapter->rx_ring;
1073 struct e1000_buffer *buffer_info, *next_buffer;
1074 struct e1000_ps_page *ps_page;
1075 struct sk_buff *skb;
1076 unsigned int i, j;
1077 u32 length, staterr;
1078 int cleaned_count = 0;
1079 bool cleaned = 0;
1080 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1082 i = rx_ring->next_to_clean;
1083 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1084 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1085 buffer_info = &rx_ring->buffer_info[i];
1087 while (staterr & E1000_RXD_STAT_DD) {
1088 if (*work_done >= work_to_do)
1089 break;
1090 (*work_done)++;
1091 skb = buffer_info->skb;
1092 rmb(); /* read descriptor and rx_buffer_info after status DD */
1094 /* in the packet split case this is header only */
1095 prefetch(skb->data - NET_IP_ALIGN);
1097 i++;
1098 if (i == rx_ring->count)
1099 i = 0;
1100 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1101 prefetch(next_rxd);
1103 next_buffer = &rx_ring->buffer_info[i];
1105 cleaned = 1;
1106 cleaned_count++;
1107 dma_unmap_single(&pdev->dev, buffer_info->dma,
1108 adapter->rx_ps_bsize0,
1109 DMA_FROM_DEVICE);
1110 buffer_info->dma = 0;
1112 /* see !EOP comment in other rx routine */
1113 if (!(staterr & E1000_RXD_STAT_EOP))
1114 adapter->flags2 |= FLAG2_IS_DISCARDING;
1116 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1117 e_dbg("Packet Split buffers didn't pick up the full "
1118 "packet\n");
1119 dev_kfree_skb_irq(skb);
1120 if (staterr & E1000_RXD_STAT_EOP)
1121 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1122 goto next_desc;
1125 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1126 dev_kfree_skb_irq(skb);
1127 goto next_desc;
1130 length = le16_to_cpu(rx_desc->wb.middle.length0);
1132 if (!length) {
1133 e_dbg("Last part of the packet spanning multiple "
1134 "descriptors\n");
1135 dev_kfree_skb_irq(skb);
1136 goto next_desc;
1139 /* Good Receive */
1140 skb_put(skb, length);
1144 * this looks ugly, but it seems compiler issues make it
1145 * more efficient than reusing j
1147 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1150 * page alloc/put takes too long and effects small packet
1151 * throughput, so unsplit small packets and save the alloc/put
1152 * only valid in softirq (napi) context to call kmap_*
1154 if (l1 && (l1 <= copybreak) &&
1155 ((length + l1) <= adapter->rx_ps_bsize0)) {
1156 u8 *vaddr;
1158 ps_page = &buffer_info->ps_pages[0];
1161 * there is no documentation about how to call
1162 * kmap_atomic, so we can't hold the mapping
1163 * very long
1165 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1166 PAGE_SIZE, DMA_FROM_DEVICE);
1167 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1168 memcpy(skb_tail_pointer(skb), vaddr, l1);
1169 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1170 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1171 PAGE_SIZE, DMA_FROM_DEVICE);
1173 /* remove the CRC */
1174 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1175 l1 -= 4;
1177 skb_put(skb, l1);
1178 goto copydone;
1179 } /* if */
1182 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1183 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1184 if (!length)
1185 break;
1187 ps_page = &buffer_info->ps_pages[j];
1188 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1189 DMA_FROM_DEVICE);
1190 ps_page->dma = 0;
1191 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1192 ps_page->page = NULL;
1193 skb->len += length;
1194 skb->data_len += length;
1195 skb->truesize += length;
1198 /* strip the ethernet crc, problem is we're using pages now so
1199 * this whole operation can get a little cpu intensive
1201 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1202 pskb_trim(skb, skb->len - 4);
1204 copydone:
1205 total_rx_bytes += skb->len;
1206 total_rx_packets++;
1208 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1209 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1211 if (rx_desc->wb.upper.header_status &
1212 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1213 adapter->rx_hdr_split++;
1215 e1000_receive_skb(adapter, netdev, skb,
1216 staterr, rx_desc->wb.middle.vlan);
1218 next_desc:
1219 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1220 buffer_info->skb = NULL;
1222 /* return some buffers to hardware, one at a time is too slow */
1223 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1224 adapter->alloc_rx_buf(adapter, cleaned_count);
1225 cleaned_count = 0;
1228 /* use prefetched values */
1229 rx_desc = next_rxd;
1230 buffer_info = next_buffer;
1232 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1234 rx_ring->next_to_clean = i;
1236 cleaned_count = e1000_desc_unused(rx_ring);
1237 if (cleaned_count)
1238 adapter->alloc_rx_buf(adapter, cleaned_count);
1240 adapter->total_rx_bytes += total_rx_bytes;
1241 adapter->total_rx_packets += total_rx_packets;
1242 netdev->stats.rx_bytes += total_rx_bytes;
1243 netdev->stats.rx_packets += total_rx_packets;
1244 return cleaned;
1248 * e1000_consume_page - helper function
1250 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1251 u16 length)
1253 bi->page = NULL;
1254 skb->len += length;
1255 skb->data_len += length;
1256 skb->truesize += length;
1260 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1261 * @adapter: board private structure
1263 * the return value indicates whether actual cleaning was done, there
1264 * is no guarantee that everything was cleaned
1267 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1268 int *work_done, int work_to_do)
1270 struct net_device *netdev = adapter->netdev;
1271 struct pci_dev *pdev = adapter->pdev;
1272 struct e1000_ring *rx_ring = adapter->rx_ring;
1273 struct e1000_rx_desc *rx_desc, *next_rxd;
1274 struct e1000_buffer *buffer_info, *next_buffer;
1275 u32 length;
1276 unsigned int i;
1277 int cleaned_count = 0;
1278 bool cleaned = false;
1279 unsigned int total_rx_bytes=0, total_rx_packets=0;
1281 i = rx_ring->next_to_clean;
1282 rx_desc = E1000_RX_DESC(*rx_ring, i);
1283 buffer_info = &rx_ring->buffer_info[i];
1285 while (rx_desc->status & E1000_RXD_STAT_DD) {
1286 struct sk_buff *skb;
1287 u8 status;
1289 if (*work_done >= work_to_do)
1290 break;
1291 (*work_done)++;
1292 rmb(); /* read descriptor and rx_buffer_info after status DD */
1294 status = rx_desc->status;
1295 skb = buffer_info->skb;
1296 buffer_info->skb = NULL;
1298 ++i;
1299 if (i == rx_ring->count)
1300 i = 0;
1301 next_rxd = E1000_RX_DESC(*rx_ring, i);
1302 prefetch(next_rxd);
1304 next_buffer = &rx_ring->buffer_info[i];
1306 cleaned = true;
1307 cleaned_count++;
1308 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1309 DMA_FROM_DEVICE);
1310 buffer_info->dma = 0;
1312 length = le16_to_cpu(rx_desc->length);
1314 /* errors is only valid for DD + EOP descriptors */
1315 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1316 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1317 /* recycle both page and skb */
1318 buffer_info->skb = skb;
1319 /* an error means any chain goes out the window
1320 * too */
1321 if (rx_ring->rx_skb_top)
1322 dev_kfree_skb(rx_ring->rx_skb_top);
1323 rx_ring->rx_skb_top = NULL;
1324 goto next_desc;
1327 #define rxtop rx_ring->rx_skb_top
1328 if (!(status & E1000_RXD_STAT_EOP)) {
1329 /* this descriptor is only the beginning (or middle) */
1330 if (!rxtop) {
1331 /* this is the beginning of a chain */
1332 rxtop = skb;
1333 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1334 0, length);
1335 } else {
1336 /* this is the middle of a chain */
1337 skb_fill_page_desc(rxtop,
1338 skb_shinfo(rxtop)->nr_frags,
1339 buffer_info->page, 0, length);
1340 /* re-use the skb, only consumed the page */
1341 buffer_info->skb = skb;
1343 e1000_consume_page(buffer_info, rxtop, length);
1344 goto next_desc;
1345 } else {
1346 if (rxtop) {
1347 /* end of the chain */
1348 skb_fill_page_desc(rxtop,
1349 skb_shinfo(rxtop)->nr_frags,
1350 buffer_info->page, 0, length);
1351 /* re-use the current skb, we only consumed the
1352 * page */
1353 buffer_info->skb = skb;
1354 skb = rxtop;
1355 rxtop = NULL;
1356 e1000_consume_page(buffer_info, skb, length);
1357 } else {
1358 /* no chain, got EOP, this buf is the packet
1359 * copybreak to save the put_page/alloc_page */
1360 if (length <= copybreak &&
1361 skb_tailroom(skb) >= length) {
1362 u8 *vaddr;
1363 vaddr = kmap_atomic(buffer_info->page,
1364 KM_SKB_DATA_SOFTIRQ);
1365 memcpy(skb_tail_pointer(skb), vaddr,
1366 length);
1367 kunmap_atomic(vaddr,
1368 KM_SKB_DATA_SOFTIRQ);
1369 /* re-use the page, so don't erase
1370 * buffer_info->page */
1371 skb_put(skb, length);
1372 } else {
1373 skb_fill_page_desc(skb, 0,
1374 buffer_info->page, 0,
1375 length);
1376 e1000_consume_page(buffer_info, skb,
1377 length);
1382 e1000_rx_checksum(adapter,
1383 (u32)(status) |
1384 ((u32)(rx_desc->errors) << 24),
1385 le16_to_cpu(rx_desc->csum), skb);
1387 /* probably a little skewed due to removing CRC */
1388 total_rx_bytes += skb->len;
1389 total_rx_packets++;
1391 /* eth type trans needs skb->data to point to something */
1392 if (!pskb_may_pull(skb, ETH_HLEN)) {
1393 e_err("pskb_may_pull failed.\n");
1394 dev_kfree_skb(skb);
1395 goto next_desc;
1398 e1000_receive_skb(adapter, netdev, skb, status,
1399 rx_desc->special);
1401 next_desc:
1402 rx_desc->status = 0;
1404 /* return some buffers to hardware, one at a time is too slow */
1405 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1406 adapter->alloc_rx_buf(adapter, cleaned_count);
1407 cleaned_count = 0;
1410 /* use prefetched values */
1411 rx_desc = next_rxd;
1412 buffer_info = next_buffer;
1414 rx_ring->next_to_clean = i;
1416 cleaned_count = e1000_desc_unused(rx_ring);
1417 if (cleaned_count)
1418 adapter->alloc_rx_buf(adapter, cleaned_count);
1420 adapter->total_rx_bytes += total_rx_bytes;
1421 adapter->total_rx_packets += total_rx_packets;
1422 netdev->stats.rx_bytes += total_rx_bytes;
1423 netdev->stats.rx_packets += total_rx_packets;
1424 return cleaned;
1428 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1429 * @adapter: board private structure
1431 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1433 struct e1000_ring *rx_ring = adapter->rx_ring;
1434 struct e1000_buffer *buffer_info;
1435 struct e1000_ps_page *ps_page;
1436 struct pci_dev *pdev = adapter->pdev;
1437 unsigned int i, j;
1439 /* Free all the Rx ring sk_buffs */
1440 for (i = 0; i < rx_ring->count; i++) {
1441 buffer_info = &rx_ring->buffer_info[i];
1442 if (buffer_info->dma) {
1443 if (adapter->clean_rx == e1000_clean_rx_irq)
1444 dma_unmap_single(&pdev->dev, buffer_info->dma,
1445 adapter->rx_buffer_len,
1446 DMA_FROM_DEVICE);
1447 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1448 dma_unmap_page(&pdev->dev, buffer_info->dma,
1449 PAGE_SIZE,
1450 DMA_FROM_DEVICE);
1451 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1452 dma_unmap_single(&pdev->dev, buffer_info->dma,
1453 adapter->rx_ps_bsize0,
1454 DMA_FROM_DEVICE);
1455 buffer_info->dma = 0;
1458 if (buffer_info->page) {
1459 put_page(buffer_info->page);
1460 buffer_info->page = NULL;
1463 if (buffer_info->skb) {
1464 dev_kfree_skb(buffer_info->skb);
1465 buffer_info->skb = NULL;
1468 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1469 ps_page = &buffer_info->ps_pages[j];
1470 if (!ps_page->page)
1471 break;
1472 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1473 DMA_FROM_DEVICE);
1474 ps_page->dma = 0;
1475 put_page(ps_page->page);
1476 ps_page->page = NULL;
1480 /* there also may be some cached data from a chained receive */
1481 if (rx_ring->rx_skb_top) {
1482 dev_kfree_skb(rx_ring->rx_skb_top);
1483 rx_ring->rx_skb_top = NULL;
1486 /* Zero out the descriptor ring */
1487 memset(rx_ring->desc, 0, rx_ring->size);
1489 rx_ring->next_to_clean = 0;
1490 rx_ring->next_to_use = 0;
1491 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1493 writel(0, adapter->hw.hw_addr + rx_ring->head);
1494 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1497 static void e1000e_downshift_workaround(struct work_struct *work)
1499 struct e1000_adapter *adapter = container_of(work,
1500 struct e1000_adapter, downshift_task);
1502 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1506 * e1000_intr_msi - Interrupt Handler
1507 * @irq: interrupt number
1508 * @data: pointer to a network interface device structure
1510 static irqreturn_t e1000_intr_msi(int irq, void *data)
1512 struct net_device *netdev = data;
1513 struct e1000_adapter *adapter = netdev_priv(netdev);
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 icr = er32(ICR);
1518 * read ICR disables interrupts using IAM
1521 if (icr & E1000_ICR_LSC) {
1522 hw->mac.get_link_status = 1;
1523 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1524 (!(er32(STATUS) & E1000_STATUS_LU)))
1525 schedule_work(&adapter->downshift_task);
1527 if (netif_carrier_ok(netdev) &&
1528 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1529 /* disable receives */
1530 u32 rctl = er32(RCTL);
1531 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1532 adapter->flags |= FLAG_RX_RESTART_NOW;
1534 /* guard against interrupt when we're going down */
1535 if (!test_bit(__E1000_DOWN, &adapter->state))
1536 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1539 if (napi_schedule_prep(&adapter->napi)) {
1540 adapter->total_tx_bytes = 0;
1541 adapter->total_tx_packets = 0;
1542 adapter->total_rx_bytes = 0;
1543 adapter->total_rx_packets = 0;
1544 __napi_schedule(&adapter->napi);
1547 return IRQ_HANDLED;
1551 * e1000_intr - Interrupt Handler
1552 * @irq: interrupt number
1553 * @data: pointer to a network interface device structure
1555 static irqreturn_t e1000_intr(int irq, void *data)
1557 struct net_device *netdev = data;
1558 struct e1000_adapter *adapter = netdev_priv(netdev);
1559 struct e1000_hw *hw = &adapter->hw;
1560 u32 rctl, icr = er32(ICR);
1562 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1563 return IRQ_NONE; /* Not our interrupt */
1566 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1567 * not set, then the adapter didn't send an interrupt
1569 if (!(icr & E1000_ICR_INT_ASSERTED))
1570 return IRQ_NONE;
1573 * Interrupt Auto-Mask...upon reading ICR,
1574 * interrupts are masked. No need for the
1575 * IMC write
1578 if (icr & E1000_ICR_LSC) {
1579 hw->mac.get_link_status = 1;
1580 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1581 (!(er32(STATUS) & E1000_STATUS_LU)))
1582 schedule_work(&adapter->downshift_task);
1584 if (netif_carrier_ok(netdev) &&
1585 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1586 /* disable receives */
1587 rctl = er32(RCTL);
1588 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1589 adapter->flags |= FLAG_RX_RESTART_NOW;
1591 /* guard against interrupt when we're going down */
1592 if (!test_bit(__E1000_DOWN, &adapter->state))
1593 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1596 if (napi_schedule_prep(&adapter->napi)) {
1597 adapter->total_tx_bytes = 0;
1598 adapter->total_tx_packets = 0;
1599 adapter->total_rx_bytes = 0;
1600 adapter->total_rx_packets = 0;
1601 __napi_schedule(&adapter->napi);
1604 return IRQ_HANDLED;
1607 static irqreturn_t e1000_msix_other(int irq, void *data)
1609 struct net_device *netdev = data;
1610 struct e1000_adapter *adapter = netdev_priv(netdev);
1611 struct e1000_hw *hw = &adapter->hw;
1612 u32 icr = er32(ICR);
1614 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1615 if (!test_bit(__E1000_DOWN, &adapter->state))
1616 ew32(IMS, E1000_IMS_OTHER);
1617 return IRQ_NONE;
1620 if (icr & adapter->eiac_mask)
1621 ew32(ICS, (icr & adapter->eiac_mask));
1623 if (icr & E1000_ICR_OTHER) {
1624 if (!(icr & E1000_ICR_LSC))
1625 goto no_link_interrupt;
1626 hw->mac.get_link_status = 1;
1627 /* guard against interrupt when we're going down */
1628 if (!test_bit(__E1000_DOWN, &adapter->state))
1629 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1632 no_link_interrupt:
1633 if (!test_bit(__E1000_DOWN, &adapter->state))
1634 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1636 return IRQ_HANDLED;
1640 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1642 struct net_device *netdev = data;
1643 struct e1000_adapter *adapter = netdev_priv(netdev);
1644 struct e1000_hw *hw = &adapter->hw;
1645 struct e1000_ring *tx_ring = adapter->tx_ring;
1648 adapter->total_tx_bytes = 0;
1649 adapter->total_tx_packets = 0;
1651 if (!e1000_clean_tx_irq(adapter))
1652 /* Ring was not completely cleaned, so fire another interrupt */
1653 ew32(ICS, tx_ring->ims_val);
1655 return IRQ_HANDLED;
1658 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1660 struct net_device *netdev = data;
1661 struct e1000_adapter *adapter = netdev_priv(netdev);
1663 /* Write the ITR value calculated at the end of the
1664 * previous interrupt.
1666 if (adapter->rx_ring->set_itr) {
1667 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1668 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1669 adapter->rx_ring->set_itr = 0;
1672 if (napi_schedule_prep(&adapter->napi)) {
1673 adapter->total_rx_bytes = 0;
1674 adapter->total_rx_packets = 0;
1675 __napi_schedule(&adapter->napi);
1677 return IRQ_HANDLED;
1681 * e1000_configure_msix - Configure MSI-X hardware
1683 * e1000_configure_msix sets up the hardware to properly
1684 * generate MSI-X interrupts.
1686 static void e1000_configure_msix(struct e1000_adapter *adapter)
1688 struct e1000_hw *hw = &adapter->hw;
1689 struct e1000_ring *rx_ring = adapter->rx_ring;
1690 struct e1000_ring *tx_ring = adapter->tx_ring;
1691 int vector = 0;
1692 u32 ctrl_ext, ivar = 0;
1694 adapter->eiac_mask = 0;
1696 if (hw->mac.type == e1000_82574) {
1697 u32 rfctl = er32(RFCTL);
1698 rfctl |= E1000_RFCTL_ACK_DIS;
1699 ew32(RFCTL, rfctl);
1702 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1703 /* Configure Rx vector */
1704 rx_ring->ims_val = E1000_IMS_RXQ0;
1705 adapter->eiac_mask |= rx_ring->ims_val;
1706 if (rx_ring->itr_val)
1707 writel(1000000000 / (rx_ring->itr_val * 256),
1708 hw->hw_addr + rx_ring->itr_register);
1709 else
1710 writel(1, hw->hw_addr + rx_ring->itr_register);
1711 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1713 /* Configure Tx vector */
1714 tx_ring->ims_val = E1000_IMS_TXQ0;
1715 vector++;
1716 if (tx_ring->itr_val)
1717 writel(1000000000 / (tx_ring->itr_val * 256),
1718 hw->hw_addr + tx_ring->itr_register);
1719 else
1720 writel(1, hw->hw_addr + tx_ring->itr_register);
1721 adapter->eiac_mask |= tx_ring->ims_val;
1722 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1724 /* set vector for Other Causes, e.g. link changes */
1725 vector++;
1726 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1727 if (rx_ring->itr_val)
1728 writel(1000000000 / (rx_ring->itr_val * 256),
1729 hw->hw_addr + E1000_EITR_82574(vector));
1730 else
1731 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1733 /* Cause Tx interrupts on every write back */
1734 ivar |= (1 << 31);
1736 ew32(IVAR, ivar);
1738 /* enable MSI-X PBA support */
1739 ctrl_ext = er32(CTRL_EXT);
1740 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1742 /* Auto-Mask Other interrupts upon ICR read */
1743 #define E1000_EIAC_MASK_82574 0x01F00000
1744 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1745 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1746 ew32(CTRL_EXT, ctrl_ext);
1747 e1e_flush();
1750 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1752 if (adapter->msix_entries) {
1753 pci_disable_msix(adapter->pdev);
1754 kfree(adapter->msix_entries);
1755 adapter->msix_entries = NULL;
1756 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1757 pci_disable_msi(adapter->pdev);
1758 adapter->flags &= ~FLAG_MSI_ENABLED;
1763 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1765 * Attempt to configure interrupts using the best available
1766 * capabilities of the hardware and kernel.
1768 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1770 int err;
1771 int i;
1773 switch (adapter->int_mode) {
1774 case E1000E_INT_MODE_MSIX:
1775 if (adapter->flags & FLAG_HAS_MSIX) {
1776 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1777 adapter->msix_entries = kcalloc(adapter->num_vectors,
1778 sizeof(struct msix_entry),
1779 GFP_KERNEL);
1780 if (adapter->msix_entries) {
1781 for (i = 0; i < adapter->num_vectors; i++)
1782 adapter->msix_entries[i].entry = i;
1784 err = pci_enable_msix(adapter->pdev,
1785 adapter->msix_entries,
1786 adapter->num_vectors);
1787 if (err == 0) {
1788 return;
1791 /* MSI-X failed, so fall through and try MSI */
1792 e_err("Failed to initialize MSI-X interrupts. "
1793 "Falling back to MSI interrupts.\n");
1794 e1000e_reset_interrupt_capability(adapter);
1796 adapter->int_mode = E1000E_INT_MODE_MSI;
1797 /* Fall through */
1798 case E1000E_INT_MODE_MSI:
1799 if (!pci_enable_msi(adapter->pdev)) {
1800 adapter->flags |= FLAG_MSI_ENABLED;
1801 } else {
1802 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1803 e_err("Failed to initialize MSI interrupts. Falling "
1804 "back to legacy interrupts.\n");
1806 /* Fall through */
1807 case E1000E_INT_MODE_LEGACY:
1808 /* Don't do anything; this is the system default */
1809 break;
1812 /* store the number of vectors being used */
1813 adapter->num_vectors = 1;
1817 * e1000_request_msix - Initialize MSI-X interrupts
1819 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1820 * kernel.
1822 static int e1000_request_msix(struct e1000_adapter *adapter)
1824 struct net_device *netdev = adapter->netdev;
1825 int err = 0, vector = 0;
1827 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1828 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1829 else
1830 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1831 err = request_irq(adapter->msix_entries[vector].vector,
1832 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1833 netdev);
1834 if (err)
1835 goto out;
1836 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1837 adapter->rx_ring->itr_val = adapter->itr;
1838 vector++;
1840 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1841 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1842 else
1843 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1844 err = request_irq(adapter->msix_entries[vector].vector,
1845 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1846 netdev);
1847 if (err)
1848 goto out;
1849 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1850 adapter->tx_ring->itr_val = adapter->itr;
1851 vector++;
1853 err = request_irq(adapter->msix_entries[vector].vector,
1854 e1000_msix_other, 0, netdev->name, netdev);
1855 if (err)
1856 goto out;
1858 e1000_configure_msix(adapter);
1859 return 0;
1860 out:
1861 return err;
1865 * e1000_request_irq - initialize interrupts
1867 * Attempts to configure interrupts using the best available
1868 * capabilities of the hardware and kernel.
1870 static int e1000_request_irq(struct e1000_adapter *adapter)
1872 struct net_device *netdev = adapter->netdev;
1873 int err;
1875 if (adapter->msix_entries) {
1876 err = e1000_request_msix(adapter);
1877 if (!err)
1878 return err;
1879 /* fall back to MSI */
1880 e1000e_reset_interrupt_capability(adapter);
1881 adapter->int_mode = E1000E_INT_MODE_MSI;
1882 e1000e_set_interrupt_capability(adapter);
1884 if (adapter->flags & FLAG_MSI_ENABLED) {
1885 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1886 netdev->name, netdev);
1887 if (!err)
1888 return err;
1890 /* fall back to legacy interrupt */
1891 e1000e_reset_interrupt_capability(adapter);
1892 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1895 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1896 netdev->name, netdev);
1897 if (err)
1898 e_err("Unable to allocate interrupt, Error: %d\n", err);
1900 return err;
1903 static void e1000_free_irq(struct e1000_adapter *adapter)
1905 struct net_device *netdev = adapter->netdev;
1907 if (adapter->msix_entries) {
1908 int vector = 0;
1910 free_irq(adapter->msix_entries[vector].vector, netdev);
1911 vector++;
1913 free_irq(adapter->msix_entries[vector].vector, netdev);
1914 vector++;
1916 /* Other Causes interrupt vector */
1917 free_irq(adapter->msix_entries[vector].vector, netdev);
1918 return;
1921 free_irq(adapter->pdev->irq, netdev);
1925 * e1000_irq_disable - Mask off interrupt generation on the NIC
1927 static void e1000_irq_disable(struct e1000_adapter *adapter)
1929 struct e1000_hw *hw = &adapter->hw;
1931 ew32(IMC, ~0);
1932 if (adapter->msix_entries)
1933 ew32(EIAC_82574, 0);
1934 e1e_flush();
1936 if (adapter->msix_entries) {
1937 int i;
1938 for (i = 0; i < adapter->num_vectors; i++)
1939 synchronize_irq(adapter->msix_entries[i].vector);
1940 } else {
1941 synchronize_irq(adapter->pdev->irq);
1946 * e1000_irq_enable - Enable default interrupt generation settings
1948 static void e1000_irq_enable(struct e1000_adapter *adapter)
1950 struct e1000_hw *hw = &adapter->hw;
1952 if (adapter->msix_entries) {
1953 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1954 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1955 } else {
1956 ew32(IMS, IMS_ENABLE_MASK);
1958 e1e_flush();
1962 * e1000_get_hw_control - get control of the h/w from f/w
1963 * @adapter: address of board private structure
1965 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1966 * For ASF and Pass Through versions of f/w this means that
1967 * the driver is loaded. For AMT version (only with 82573)
1968 * of the f/w this means that the network i/f is open.
1970 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1972 struct e1000_hw *hw = &adapter->hw;
1973 u32 ctrl_ext;
1974 u32 swsm;
1976 /* Let firmware know the driver has taken over */
1977 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1978 swsm = er32(SWSM);
1979 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1980 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1981 ctrl_ext = er32(CTRL_EXT);
1982 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1987 * e1000_release_hw_control - release control of the h/w to f/w
1988 * @adapter: address of board private structure
1990 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1991 * For ASF and Pass Through versions of f/w this means that the
1992 * driver is no longer loaded. For AMT version (only with 82573) i
1993 * of the f/w this means that the network i/f is closed.
1996 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1998 struct e1000_hw *hw = &adapter->hw;
1999 u32 ctrl_ext;
2000 u32 swsm;
2002 /* Let firmware taken over control of h/w */
2003 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2004 swsm = er32(SWSM);
2005 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2006 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2007 ctrl_ext = er32(CTRL_EXT);
2008 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2013 * @e1000_alloc_ring - allocate memory for a ring structure
2015 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2016 struct e1000_ring *ring)
2018 struct pci_dev *pdev = adapter->pdev;
2020 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2021 GFP_KERNEL);
2022 if (!ring->desc)
2023 return -ENOMEM;
2025 return 0;
2029 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2030 * @adapter: board private structure
2032 * Return 0 on success, negative on failure
2034 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2036 struct e1000_ring *tx_ring = adapter->tx_ring;
2037 int err = -ENOMEM, size;
2039 size = sizeof(struct e1000_buffer) * tx_ring->count;
2040 tx_ring->buffer_info = vmalloc(size);
2041 if (!tx_ring->buffer_info)
2042 goto err;
2043 memset(tx_ring->buffer_info, 0, size);
2045 /* round up to nearest 4K */
2046 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2047 tx_ring->size = ALIGN(tx_ring->size, 4096);
2049 err = e1000_alloc_ring_dma(adapter, tx_ring);
2050 if (err)
2051 goto err;
2053 tx_ring->next_to_use = 0;
2054 tx_ring->next_to_clean = 0;
2056 return 0;
2057 err:
2058 vfree(tx_ring->buffer_info);
2059 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2060 return err;
2064 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2065 * @adapter: board private structure
2067 * Returns 0 on success, negative on failure
2069 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2071 struct e1000_ring *rx_ring = adapter->rx_ring;
2072 struct e1000_buffer *buffer_info;
2073 int i, size, desc_len, err = -ENOMEM;
2075 size = sizeof(struct e1000_buffer) * rx_ring->count;
2076 rx_ring->buffer_info = vmalloc(size);
2077 if (!rx_ring->buffer_info)
2078 goto err;
2079 memset(rx_ring->buffer_info, 0, size);
2081 for (i = 0; i < rx_ring->count; i++) {
2082 buffer_info = &rx_ring->buffer_info[i];
2083 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2084 sizeof(struct e1000_ps_page),
2085 GFP_KERNEL);
2086 if (!buffer_info->ps_pages)
2087 goto err_pages;
2090 desc_len = sizeof(union e1000_rx_desc_packet_split);
2092 /* Round up to nearest 4K */
2093 rx_ring->size = rx_ring->count * desc_len;
2094 rx_ring->size = ALIGN(rx_ring->size, 4096);
2096 err = e1000_alloc_ring_dma(adapter, rx_ring);
2097 if (err)
2098 goto err_pages;
2100 rx_ring->next_to_clean = 0;
2101 rx_ring->next_to_use = 0;
2102 rx_ring->rx_skb_top = NULL;
2104 return 0;
2106 err_pages:
2107 for (i = 0; i < rx_ring->count; i++) {
2108 buffer_info = &rx_ring->buffer_info[i];
2109 kfree(buffer_info->ps_pages);
2111 err:
2112 vfree(rx_ring->buffer_info);
2113 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2114 return err;
2118 * e1000_clean_tx_ring - Free Tx Buffers
2119 * @adapter: board private structure
2121 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2123 struct e1000_ring *tx_ring = adapter->tx_ring;
2124 struct e1000_buffer *buffer_info;
2125 unsigned long size;
2126 unsigned int i;
2128 for (i = 0; i < tx_ring->count; i++) {
2129 buffer_info = &tx_ring->buffer_info[i];
2130 e1000_put_txbuf(adapter, buffer_info);
2133 size = sizeof(struct e1000_buffer) * tx_ring->count;
2134 memset(tx_ring->buffer_info, 0, size);
2136 memset(tx_ring->desc, 0, tx_ring->size);
2138 tx_ring->next_to_use = 0;
2139 tx_ring->next_to_clean = 0;
2141 writel(0, adapter->hw.hw_addr + tx_ring->head);
2142 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2146 * e1000e_free_tx_resources - Free Tx Resources per Queue
2147 * @adapter: board private structure
2149 * Free all transmit software resources
2151 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2153 struct pci_dev *pdev = adapter->pdev;
2154 struct e1000_ring *tx_ring = adapter->tx_ring;
2156 e1000_clean_tx_ring(adapter);
2158 vfree(tx_ring->buffer_info);
2159 tx_ring->buffer_info = NULL;
2161 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2162 tx_ring->dma);
2163 tx_ring->desc = NULL;
2167 * e1000e_free_rx_resources - Free Rx Resources
2168 * @adapter: board private structure
2170 * Free all receive software resources
2173 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2175 struct pci_dev *pdev = adapter->pdev;
2176 struct e1000_ring *rx_ring = adapter->rx_ring;
2177 int i;
2179 e1000_clean_rx_ring(adapter);
2181 for (i = 0; i < rx_ring->count; i++) {
2182 kfree(rx_ring->buffer_info[i].ps_pages);
2185 vfree(rx_ring->buffer_info);
2186 rx_ring->buffer_info = NULL;
2188 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2189 rx_ring->dma);
2190 rx_ring->desc = NULL;
2194 * e1000_update_itr - update the dynamic ITR value based on statistics
2195 * @adapter: pointer to adapter
2196 * @itr_setting: current adapter->itr
2197 * @packets: the number of packets during this measurement interval
2198 * @bytes: the number of bytes during this measurement interval
2200 * Stores a new ITR value based on packets and byte
2201 * counts during the last interrupt. The advantage of per interrupt
2202 * computation is faster updates and more accurate ITR for the current
2203 * traffic pattern. Constants in this function were computed
2204 * based on theoretical maximum wire speed and thresholds were set based
2205 * on testing data as well as attempting to minimize response time
2206 * while increasing bulk throughput. This functionality is controlled
2207 * by the InterruptThrottleRate module parameter.
2209 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2210 u16 itr_setting, int packets,
2211 int bytes)
2213 unsigned int retval = itr_setting;
2215 if (packets == 0)
2216 goto update_itr_done;
2218 switch (itr_setting) {
2219 case lowest_latency:
2220 /* handle TSO and jumbo frames */
2221 if (bytes/packets > 8000)
2222 retval = bulk_latency;
2223 else if ((packets < 5) && (bytes > 512)) {
2224 retval = low_latency;
2226 break;
2227 case low_latency: /* 50 usec aka 20000 ints/s */
2228 if (bytes > 10000) {
2229 /* this if handles the TSO accounting */
2230 if (bytes/packets > 8000) {
2231 retval = bulk_latency;
2232 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2233 retval = bulk_latency;
2234 } else if ((packets > 35)) {
2235 retval = lowest_latency;
2237 } else if (bytes/packets > 2000) {
2238 retval = bulk_latency;
2239 } else if (packets <= 2 && bytes < 512) {
2240 retval = lowest_latency;
2242 break;
2243 case bulk_latency: /* 250 usec aka 4000 ints/s */
2244 if (bytes > 25000) {
2245 if (packets > 35) {
2246 retval = low_latency;
2248 } else if (bytes < 6000) {
2249 retval = low_latency;
2251 break;
2254 update_itr_done:
2255 return retval;
2258 static void e1000_set_itr(struct e1000_adapter *adapter)
2260 struct e1000_hw *hw = &adapter->hw;
2261 u16 current_itr;
2262 u32 new_itr = adapter->itr;
2264 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2265 if (adapter->link_speed != SPEED_1000) {
2266 current_itr = 0;
2267 new_itr = 4000;
2268 goto set_itr_now;
2271 adapter->tx_itr = e1000_update_itr(adapter,
2272 adapter->tx_itr,
2273 adapter->total_tx_packets,
2274 adapter->total_tx_bytes);
2275 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2276 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2277 adapter->tx_itr = low_latency;
2279 adapter->rx_itr = e1000_update_itr(adapter,
2280 adapter->rx_itr,
2281 adapter->total_rx_packets,
2282 adapter->total_rx_bytes);
2283 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2284 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2285 adapter->rx_itr = low_latency;
2287 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2289 switch (current_itr) {
2290 /* counts and packets in update_itr are dependent on these numbers */
2291 case lowest_latency:
2292 new_itr = 70000;
2293 break;
2294 case low_latency:
2295 new_itr = 20000; /* aka hwitr = ~200 */
2296 break;
2297 case bulk_latency:
2298 new_itr = 4000;
2299 break;
2300 default:
2301 break;
2304 set_itr_now:
2305 if (new_itr != adapter->itr) {
2307 * this attempts to bias the interrupt rate towards Bulk
2308 * by adding intermediate steps when interrupt rate is
2309 * increasing
2311 new_itr = new_itr > adapter->itr ?
2312 min(adapter->itr + (new_itr >> 2), new_itr) :
2313 new_itr;
2314 adapter->itr = new_itr;
2315 adapter->rx_ring->itr_val = new_itr;
2316 if (adapter->msix_entries)
2317 adapter->rx_ring->set_itr = 1;
2318 else
2319 ew32(ITR, 1000000000 / (new_itr * 256));
2324 * e1000_alloc_queues - Allocate memory for all rings
2325 * @adapter: board private structure to initialize
2327 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2329 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2330 if (!adapter->tx_ring)
2331 goto err;
2333 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2334 if (!adapter->rx_ring)
2335 goto err;
2337 return 0;
2338 err:
2339 e_err("Unable to allocate memory for queues\n");
2340 kfree(adapter->rx_ring);
2341 kfree(adapter->tx_ring);
2342 return -ENOMEM;
2346 * e1000_clean - NAPI Rx polling callback
2347 * @napi: struct associated with this polling callback
2348 * @budget: amount of packets driver is allowed to process this poll
2350 static int e1000_clean(struct napi_struct *napi, int budget)
2352 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2353 struct e1000_hw *hw = &adapter->hw;
2354 struct net_device *poll_dev = adapter->netdev;
2355 int tx_cleaned = 1, work_done = 0;
2357 adapter = netdev_priv(poll_dev);
2359 if (adapter->msix_entries &&
2360 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2361 goto clean_rx;
2363 tx_cleaned = e1000_clean_tx_irq(adapter);
2365 clean_rx:
2366 adapter->clean_rx(adapter, &work_done, budget);
2368 if (!tx_cleaned)
2369 work_done = budget;
2371 /* If budget not fully consumed, exit the polling mode */
2372 if (work_done < budget) {
2373 if (adapter->itr_setting & 3)
2374 e1000_set_itr(adapter);
2375 napi_complete(napi);
2376 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2377 if (adapter->msix_entries)
2378 ew32(IMS, adapter->rx_ring->ims_val);
2379 else
2380 e1000_irq_enable(adapter);
2384 return work_done;
2387 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2389 struct e1000_adapter *adapter = netdev_priv(netdev);
2390 struct e1000_hw *hw = &adapter->hw;
2391 u32 vfta, index;
2393 /* don't update vlan cookie if already programmed */
2394 if ((adapter->hw.mng_cookie.status &
2395 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2396 (vid == adapter->mng_vlan_id))
2397 return;
2399 /* add VID to filter table */
2400 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2401 index = (vid >> 5) & 0x7F;
2402 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2403 vfta |= (1 << (vid & 0x1F));
2404 hw->mac.ops.write_vfta(hw, index, vfta);
2408 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2410 struct e1000_adapter *adapter = netdev_priv(netdev);
2411 struct e1000_hw *hw = &adapter->hw;
2412 u32 vfta, index;
2414 if (!test_bit(__E1000_DOWN, &adapter->state))
2415 e1000_irq_disable(adapter);
2416 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2418 if (!test_bit(__E1000_DOWN, &adapter->state))
2419 e1000_irq_enable(adapter);
2421 if ((adapter->hw.mng_cookie.status &
2422 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2423 (vid == adapter->mng_vlan_id)) {
2424 /* release control to f/w */
2425 e1000_release_hw_control(adapter);
2426 return;
2429 /* remove VID from filter table */
2430 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2431 index = (vid >> 5) & 0x7F;
2432 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2433 vfta &= ~(1 << (vid & 0x1F));
2434 hw->mac.ops.write_vfta(hw, index, vfta);
2438 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2440 struct net_device *netdev = adapter->netdev;
2441 u16 vid = adapter->hw.mng_cookie.vlan_id;
2442 u16 old_vid = adapter->mng_vlan_id;
2444 if (!adapter->vlgrp)
2445 return;
2447 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2448 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2449 if (adapter->hw.mng_cookie.status &
2450 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2451 e1000_vlan_rx_add_vid(netdev, vid);
2452 adapter->mng_vlan_id = vid;
2455 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2456 (vid != old_vid) &&
2457 !vlan_group_get_device(adapter->vlgrp, old_vid))
2458 e1000_vlan_rx_kill_vid(netdev, old_vid);
2459 } else {
2460 adapter->mng_vlan_id = vid;
2465 static void e1000_vlan_rx_register(struct net_device *netdev,
2466 struct vlan_group *grp)
2468 struct e1000_adapter *adapter = netdev_priv(netdev);
2469 struct e1000_hw *hw = &adapter->hw;
2470 u32 ctrl, rctl;
2472 if (!test_bit(__E1000_DOWN, &adapter->state))
2473 e1000_irq_disable(adapter);
2474 adapter->vlgrp = grp;
2476 if (grp) {
2477 /* enable VLAN tag insert/strip */
2478 ctrl = er32(CTRL);
2479 ctrl |= E1000_CTRL_VME;
2480 ew32(CTRL, ctrl);
2482 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2483 /* enable VLAN receive filtering */
2484 rctl = er32(RCTL);
2485 rctl &= ~E1000_RCTL_CFIEN;
2486 ew32(RCTL, rctl);
2487 e1000_update_mng_vlan(adapter);
2489 } else {
2490 /* disable VLAN tag insert/strip */
2491 ctrl = er32(CTRL);
2492 ctrl &= ~E1000_CTRL_VME;
2493 ew32(CTRL, ctrl);
2495 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2496 if (adapter->mng_vlan_id !=
2497 (u16)E1000_MNG_VLAN_NONE) {
2498 e1000_vlan_rx_kill_vid(netdev,
2499 adapter->mng_vlan_id);
2500 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2505 if (!test_bit(__E1000_DOWN, &adapter->state))
2506 e1000_irq_enable(adapter);
2509 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2511 u16 vid;
2513 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2515 if (!adapter->vlgrp)
2516 return;
2518 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2519 if (!vlan_group_get_device(adapter->vlgrp, vid))
2520 continue;
2521 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2525 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2527 struct e1000_hw *hw = &adapter->hw;
2528 u32 manc, manc2h, mdef, i, j;
2530 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2531 return;
2533 manc = er32(MANC);
2536 * enable receiving management packets to the host. this will probably
2537 * generate destination unreachable messages from the host OS, but
2538 * the packets will be handled on SMBUS
2540 manc |= E1000_MANC_EN_MNG2HOST;
2541 manc2h = er32(MANC2H);
2543 switch (hw->mac.type) {
2544 default:
2545 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2546 break;
2547 case e1000_82574:
2548 case e1000_82583:
2550 * Check if IPMI pass-through decision filter already exists;
2551 * if so, enable it.
2553 for (i = 0, j = 0; i < 8; i++) {
2554 mdef = er32(MDEF(i));
2556 /* Ignore filters with anything other than IPMI ports */
2557 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2558 continue;
2560 /* Enable this decision filter in MANC2H */
2561 if (mdef)
2562 manc2h |= (1 << i);
2564 j |= mdef;
2567 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2568 break;
2570 /* Create new decision filter in an empty filter */
2571 for (i = 0, j = 0; i < 8; i++)
2572 if (er32(MDEF(i)) == 0) {
2573 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2574 E1000_MDEF_PORT_664));
2575 manc2h |= (1 << 1);
2576 j++;
2577 break;
2580 if (!j)
2581 e_warn("Unable to create IPMI pass-through filter\n");
2582 break;
2585 ew32(MANC2H, manc2h);
2586 ew32(MANC, manc);
2590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2591 * @adapter: board private structure
2593 * Configure the Tx unit of the MAC after a reset.
2595 static void e1000_configure_tx(struct e1000_adapter *adapter)
2597 struct e1000_hw *hw = &adapter->hw;
2598 struct e1000_ring *tx_ring = adapter->tx_ring;
2599 u64 tdba;
2600 u32 tdlen, tctl, tipg, tarc;
2601 u32 ipgr1, ipgr2;
2603 /* Setup the HW Tx Head and Tail descriptor pointers */
2604 tdba = tx_ring->dma;
2605 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2606 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2607 ew32(TDBAH, (tdba >> 32));
2608 ew32(TDLEN, tdlen);
2609 ew32(TDH, 0);
2610 ew32(TDT, 0);
2611 tx_ring->head = E1000_TDH;
2612 tx_ring->tail = E1000_TDT;
2614 /* Set the default values for the Tx Inter Packet Gap timer */
2615 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2616 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2617 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2619 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2620 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2622 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2623 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2624 ew32(TIPG, tipg);
2626 /* Set the Tx Interrupt Delay register */
2627 ew32(TIDV, adapter->tx_int_delay);
2628 /* Tx irq moderation */
2629 ew32(TADV, adapter->tx_abs_int_delay);
2631 /* Program the Transmit Control Register */
2632 tctl = er32(TCTL);
2633 tctl &= ~E1000_TCTL_CT;
2634 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2635 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2637 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2638 tarc = er32(TARC(0));
2640 * set the speed mode bit, we'll clear it if we're not at
2641 * gigabit link later
2643 #define SPEED_MODE_BIT (1 << 21)
2644 tarc |= SPEED_MODE_BIT;
2645 ew32(TARC(0), tarc);
2648 /* errata: program both queues to unweighted RR */
2649 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2650 tarc = er32(TARC(0));
2651 tarc |= 1;
2652 ew32(TARC(0), tarc);
2653 tarc = er32(TARC(1));
2654 tarc |= 1;
2655 ew32(TARC(1), tarc);
2658 /* Setup Transmit Descriptor Settings for eop descriptor */
2659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2661 /* only set IDE if we are delaying interrupts using the timers */
2662 if (adapter->tx_int_delay)
2663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2665 /* enable Report Status bit */
2666 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2668 ew32(TCTL, tctl);
2670 e1000e_config_collision_dist(hw);
2674 * e1000_setup_rctl - configure the receive control registers
2675 * @adapter: Board private structure
2677 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2678 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2679 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2681 struct e1000_hw *hw = &adapter->hw;
2682 u32 rctl, rfctl;
2683 u32 psrctl = 0;
2684 u32 pages = 0;
2686 if (hw->mac.type == e1000_pch2lan) {
2687 s32 ret_val;
2689 if (adapter->netdev->mtu > ETH_DATA_LEN)
2690 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2691 else
2692 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2695 /* Program MC offset vector base */
2696 rctl = er32(RCTL);
2697 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2698 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2699 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2700 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2702 /* Do not Store bad packets */
2703 rctl &= ~E1000_RCTL_SBP;
2705 /* Enable Long Packet receive */
2706 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2707 rctl &= ~E1000_RCTL_LPE;
2708 else
2709 rctl |= E1000_RCTL_LPE;
2711 /* Some systems expect that the CRC is included in SMBUS traffic. The
2712 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2713 * host memory when this is enabled
2715 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2716 rctl |= E1000_RCTL_SECRC;
2718 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2719 u16 phy_data;
2721 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2722 phy_data &= 0xfff8;
2723 phy_data |= (1 << 2);
2724 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2726 e1e_rphy(hw, 22, &phy_data);
2727 phy_data &= 0x0fff;
2728 phy_data |= (1 << 14);
2729 e1e_wphy(hw, 0x10, 0x2823);
2730 e1e_wphy(hw, 0x11, 0x0003);
2731 e1e_wphy(hw, 22, phy_data);
2734 /* Setup buffer sizes */
2735 rctl &= ~E1000_RCTL_SZ_4096;
2736 rctl |= E1000_RCTL_BSEX;
2737 switch (adapter->rx_buffer_len) {
2738 case 2048:
2739 default:
2740 rctl |= E1000_RCTL_SZ_2048;
2741 rctl &= ~E1000_RCTL_BSEX;
2742 break;
2743 case 4096:
2744 rctl |= E1000_RCTL_SZ_4096;
2745 break;
2746 case 8192:
2747 rctl |= E1000_RCTL_SZ_8192;
2748 break;
2749 case 16384:
2750 rctl |= E1000_RCTL_SZ_16384;
2751 break;
2755 * 82571 and greater support packet-split where the protocol
2756 * header is placed in skb->data and the packet data is
2757 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2758 * In the case of a non-split, skb->data is linearly filled,
2759 * followed by the page buffers. Therefore, skb->data is
2760 * sized to hold the largest protocol header.
2762 * allocations using alloc_page take too long for regular MTU
2763 * so only enable packet split for jumbo frames
2765 * Using pages when the page size is greater than 16k wastes
2766 * a lot of memory, since we allocate 3 pages at all times
2767 * per packet.
2769 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2770 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2771 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2772 adapter->rx_ps_pages = pages;
2773 else
2774 adapter->rx_ps_pages = 0;
2776 if (adapter->rx_ps_pages) {
2777 /* Configure extra packet-split registers */
2778 rfctl = er32(RFCTL);
2779 rfctl |= E1000_RFCTL_EXTEN;
2781 * disable packet split support for IPv6 extension headers,
2782 * because some malformed IPv6 headers can hang the Rx
2784 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2785 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2787 ew32(RFCTL, rfctl);
2789 /* Enable Packet split descriptors */
2790 rctl |= E1000_RCTL_DTYP_PS;
2792 psrctl |= adapter->rx_ps_bsize0 >>
2793 E1000_PSRCTL_BSIZE0_SHIFT;
2795 switch (adapter->rx_ps_pages) {
2796 case 3:
2797 psrctl |= PAGE_SIZE <<
2798 E1000_PSRCTL_BSIZE3_SHIFT;
2799 case 2:
2800 psrctl |= PAGE_SIZE <<
2801 E1000_PSRCTL_BSIZE2_SHIFT;
2802 case 1:
2803 psrctl |= PAGE_SIZE >>
2804 E1000_PSRCTL_BSIZE1_SHIFT;
2805 break;
2808 ew32(PSRCTL, psrctl);
2811 ew32(RCTL, rctl);
2812 /* just started the receive unit, no need to restart */
2813 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2817 * e1000_configure_rx - Configure Receive Unit after Reset
2818 * @adapter: board private structure
2820 * Configure the Rx unit of the MAC after a reset.
2822 static void e1000_configure_rx(struct e1000_adapter *adapter)
2824 struct e1000_hw *hw = &adapter->hw;
2825 struct e1000_ring *rx_ring = adapter->rx_ring;
2826 u64 rdba;
2827 u32 rdlen, rctl, rxcsum, ctrl_ext;
2829 if (adapter->rx_ps_pages) {
2830 /* this is a 32 byte descriptor */
2831 rdlen = rx_ring->count *
2832 sizeof(union e1000_rx_desc_packet_split);
2833 adapter->clean_rx = e1000_clean_rx_irq_ps;
2834 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2835 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2836 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2837 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2838 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2839 } else {
2840 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2841 adapter->clean_rx = e1000_clean_rx_irq;
2842 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2845 /* disable receives while setting up the descriptors */
2846 rctl = er32(RCTL);
2847 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2848 e1e_flush();
2849 msleep(10);
2851 /* set the Receive Delay Timer Register */
2852 ew32(RDTR, adapter->rx_int_delay);
2854 /* irq moderation */
2855 ew32(RADV, adapter->rx_abs_int_delay);
2856 if (adapter->itr_setting != 0)
2857 ew32(ITR, 1000000000 / (adapter->itr * 256));
2859 ctrl_ext = er32(CTRL_EXT);
2860 /* Auto-Mask interrupts upon ICR access */
2861 ctrl_ext |= E1000_CTRL_EXT_IAME;
2862 ew32(IAM, 0xffffffff);
2863 ew32(CTRL_EXT, ctrl_ext);
2864 e1e_flush();
2867 * Setup the HW Rx Head and Tail Descriptor Pointers and
2868 * the Base and Length of the Rx Descriptor Ring
2870 rdba = rx_ring->dma;
2871 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2872 ew32(RDBAH, (rdba >> 32));
2873 ew32(RDLEN, rdlen);
2874 ew32(RDH, 0);
2875 ew32(RDT, 0);
2876 rx_ring->head = E1000_RDH;
2877 rx_ring->tail = E1000_RDT;
2879 /* Enable Receive Checksum Offload for TCP and UDP */
2880 rxcsum = er32(RXCSUM);
2881 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2882 rxcsum |= E1000_RXCSUM_TUOFL;
2885 * IPv4 payload checksum for UDP fragments must be
2886 * used in conjunction with packet-split.
2888 if (adapter->rx_ps_pages)
2889 rxcsum |= E1000_RXCSUM_IPPCSE;
2890 } else {
2891 rxcsum &= ~E1000_RXCSUM_TUOFL;
2892 /* no need to clear IPPCSE as it defaults to 0 */
2894 ew32(RXCSUM, rxcsum);
2897 * Enable early receives on supported devices, only takes effect when
2898 * packet size is equal or larger than the specified value (in 8 byte
2899 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2901 if (adapter->flags & FLAG_HAS_ERT) {
2902 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2903 u32 rxdctl = er32(RXDCTL(0));
2904 ew32(RXDCTL(0), rxdctl | 0x3);
2905 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2907 * With jumbo frames and early-receive enabled,
2908 * excessive C-state transition latencies result in
2909 * dropped transactions.
2911 pm_qos_update_request(
2912 &adapter->netdev->pm_qos_req, 55);
2913 } else {
2914 pm_qos_update_request(
2915 &adapter->netdev->pm_qos_req,
2916 PM_QOS_DEFAULT_VALUE);
2920 /* Enable Receives */
2921 ew32(RCTL, rctl);
2925 * e1000_update_mc_addr_list - Update Multicast addresses
2926 * @hw: pointer to the HW structure
2927 * @mc_addr_list: array of multicast addresses to program
2928 * @mc_addr_count: number of multicast addresses to program
2930 * Updates the Multicast Table Array.
2931 * The caller must have a packed mc_addr_list of multicast addresses.
2933 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2934 u32 mc_addr_count)
2936 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2940 * e1000_set_multi - Multicast and Promiscuous mode set
2941 * @netdev: network interface device structure
2943 * The set_multi entry point is called whenever the multicast address
2944 * list or the network interface flags are updated. This routine is
2945 * responsible for configuring the hardware for proper multicast,
2946 * promiscuous mode, and all-multi behavior.
2948 static void e1000_set_multi(struct net_device *netdev)
2950 struct e1000_adapter *adapter = netdev_priv(netdev);
2951 struct e1000_hw *hw = &adapter->hw;
2952 struct netdev_hw_addr *ha;
2953 u8 *mta_list;
2954 u32 rctl;
2955 int i;
2957 /* Check for Promiscuous and All Multicast modes */
2959 rctl = er32(RCTL);
2961 if (netdev->flags & IFF_PROMISC) {
2962 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2963 rctl &= ~E1000_RCTL_VFE;
2964 } else {
2965 if (netdev->flags & IFF_ALLMULTI) {
2966 rctl |= E1000_RCTL_MPE;
2967 rctl &= ~E1000_RCTL_UPE;
2968 } else {
2969 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2971 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2972 rctl |= E1000_RCTL_VFE;
2975 ew32(RCTL, rctl);
2977 if (!netdev_mc_empty(netdev)) {
2978 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2979 if (!mta_list)
2980 return;
2982 /* prepare a packed array of only addresses. */
2983 i = 0;
2984 netdev_for_each_mc_addr(ha, netdev)
2985 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
2987 e1000_update_mc_addr_list(hw, mta_list, i);
2988 kfree(mta_list);
2989 } else {
2991 * if we're called from probe, we might not have
2992 * anything to do here, so clear out the list
2994 e1000_update_mc_addr_list(hw, NULL, 0);
2999 * e1000_configure - configure the hardware for Rx and Tx
3000 * @adapter: private board structure
3002 static void e1000_configure(struct e1000_adapter *adapter)
3004 e1000_set_multi(adapter->netdev);
3006 e1000_restore_vlan(adapter);
3007 e1000_init_manageability_pt(adapter);
3009 e1000_configure_tx(adapter);
3010 e1000_setup_rctl(adapter);
3011 e1000_configure_rx(adapter);
3012 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3016 * e1000e_power_up_phy - restore link in case the phy was powered down
3017 * @adapter: address of board private structure
3019 * The phy may be powered down to save power and turn off link when the
3020 * driver is unloaded and wake on lan is not enabled (among others)
3021 * *** this routine MUST be followed by a call to e1000e_reset ***
3023 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3025 if (adapter->hw.phy.ops.power_up)
3026 adapter->hw.phy.ops.power_up(&adapter->hw);
3028 adapter->hw.mac.ops.setup_link(&adapter->hw);
3032 * e1000_power_down_phy - Power down the PHY
3034 * Power down the PHY so no link is implied when interface is down.
3035 * The PHY cannot be powered down if management or WoL is active.
3037 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3039 /* WoL is enabled */
3040 if (adapter->wol)
3041 return;
3043 if (adapter->hw.phy.ops.power_down)
3044 adapter->hw.phy.ops.power_down(&adapter->hw);
3048 * e1000e_reset - bring the hardware into a known good state
3050 * This function boots the hardware and enables some settings that
3051 * require a configuration cycle of the hardware - those cannot be
3052 * set/changed during runtime. After reset the device needs to be
3053 * properly configured for Rx, Tx etc.
3055 void e1000e_reset(struct e1000_adapter *adapter)
3057 struct e1000_mac_info *mac = &adapter->hw.mac;
3058 struct e1000_fc_info *fc = &adapter->hw.fc;
3059 struct e1000_hw *hw = &adapter->hw;
3060 u32 tx_space, min_tx_space, min_rx_space;
3061 u32 pba = adapter->pba;
3062 u16 hwm;
3064 /* reset Packet Buffer Allocation to default */
3065 ew32(PBA, pba);
3067 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3069 * To maintain wire speed transmits, the Tx FIFO should be
3070 * large enough to accommodate two full transmit packets,
3071 * rounded up to the next 1KB and expressed in KB. Likewise,
3072 * the Rx FIFO should be large enough to accommodate at least
3073 * one full receive packet and is similarly rounded up and
3074 * expressed in KB.
3076 pba = er32(PBA);
3077 /* upper 16 bits has Tx packet buffer allocation size in KB */
3078 tx_space = pba >> 16;
3079 /* lower 16 bits has Rx packet buffer allocation size in KB */
3080 pba &= 0xffff;
3082 * the Tx fifo also stores 16 bytes of information about the tx
3083 * but don't include ethernet FCS because hardware appends it
3085 min_tx_space = (adapter->max_frame_size +
3086 sizeof(struct e1000_tx_desc) -
3087 ETH_FCS_LEN) * 2;
3088 min_tx_space = ALIGN(min_tx_space, 1024);
3089 min_tx_space >>= 10;
3090 /* software strips receive CRC, so leave room for it */
3091 min_rx_space = adapter->max_frame_size;
3092 min_rx_space = ALIGN(min_rx_space, 1024);
3093 min_rx_space >>= 10;
3096 * If current Tx allocation is less than the min Tx FIFO size,
3097 * and the min Tx FIFO size is less than the current Rx FIFO
3098 * allocation, take space away from current Rx allocation
3100 if ((tx_space < min_tx_space) &&
3101 ((min_tx_space - tx_space) < pba)) {
3102 pba -= min_tx_space - tx_space;
3105 * if short on Rx space, Rx wins and must trump tx
3106 * adjustment or use Early Receive if available
3108 if ((pba < min_rx_space) &&
3109 (!(adapter->flags & FLAG_HAS_ERT)))
3110 /* ERT enabled in e1000_configure_rx */
3111 pba = min_rx_space;
3114 ew32(PBA, pba);
3119 * flow control settings
3121 * The high water mark must be low enough to fit one full frame
3122 * (or the size used for early receive) above it in the Rx FIFO.
3123 * Set it to the lower of:
3124 * - 90% of the Rx FIFO size, and
3125 * - the full Rx FIFO size minus the early receive size (for parts
3126 * with ERT support assuming ERT set to E1000_ERT_2048), or
3127 * - the full Rx FIFO size minus one full frame
3129 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3130 fc->pause_time = 0xFFFF;
3131 else
3132 fc->pause_time = E1000_FC_PAUSE_TIME;
3133 fc->send_xon = 1;
3134 fc->current_mode = fc->requested_mode;
3136 switch (hw->mac.type) {
3137 default:
3138 if ((adapter->flags & FLAG_HAS_ERT) &&
3139 (adapter->netdev->mtu > ETH_DATA_LEN))
3140 hwm = min(((pba << 10) * 9 / 10),
3141 ((pba << 10) - (E1000_ERT_2048 << 3)));
3142 else
3143 hwm = min(((pba << 10) * 9 / 10),
3144 ((pba << 10) - adapter->max_frame_size));
3146 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3147 fc->low_water = fc->high_water - 8;
3148 break;
3149 case e1000_pchlan:
3150 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3151 fc->high_water = 0x3500;
3152 fc->low_water = 0x1500;
3153 } else {
3154 fc->high_water = 0x5000;
3155 fc->low_water = 0x3000;
3157 fc->refresh_time = 0x1000;
3158 break;
3159 case e1000_pch2lan:
3160 fc->high_water = 0x05C20;
3161 fc->low_water = 0x05048;
3162 fc->pause_time = 0x0650;
3163 fc->refresh_time = 0x0400;
3164 break;
3167 /* Allow time for pending master requests to run */
3168 mac->ops.reset_hw(hw);
3171 * For parts with AMT enabled, let the firmware know
3172 * that the network interface is in control
3174 if (adapter->flags & FLAG_HAS_AMT)
3175 e1000_get_hw_control(adapter);
3177 ew32(WUC, 0);
3179 if (mac->ops.init_hw(hw))
3180 e_err("Hardware Error\n");
3182 e1000_update_mng_vlan(adapter);
3184 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3185 ew32(VET, ETH_P_8021Q);
3187 e1000e_reset_adaptive(hw);
3188 e1000_get_phy_info(hw);
3190 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3191 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3192 u16 phy_data = 0;
3194 * speed up time to link by disabling smart power down, ignore
3195 * the return value of this function because there is nothing
3196 * different we would do if it failed
3198 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3199 phy_data &= ~IGP02E1000_PM_SPD;
3200 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3204 int e1000e_up(struct e1000_adapter *adapter)
3206 struct e1000_hw *hw = &adapter->hw;
3208 /* hardware has been reset, we need to reload some things */
3209 e1000_configure(adapter);
3211 clear_bit(__E1000_DOWN, &adapter->state);
3213 napi_enable(&adapter->napi);
3214 if (adapter->msix_entries)
3215 e1000_configure_msix(adapter);
3216 e1000_irq_enable(adapter);
3218 netif_wake_queue(adapter->netdev);
3220 /* fire a link change interrupt to start the watchdog */
3221 if (adapter->msix_entries)
3222 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3223 else
3224 ew32(ICS, E1000_ICS_LSC);
3226 return 0;
3229 void e1000e_down(struct e1000_adapter *adapter)
3231 struct net_device *netdev = adapter->netdev;
3232 struct e1000_hw *hw = &adapter->hw;
3233 u32 tctl, rctl;
3236 * signal that we're down so the interrupt handler does not
3237 * reschedule our watchdog timer
3239 set_bit(__E1000_DOWN, &adapter->state);
3241 /* disable receives in the hardware */
3242 rctl = er32(RCTL);
3243 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3244 /* flush and sleep below */
3246 netif_stop_queue(netdev);
3248 /* disable transmits in the hardware */
3249 tctl = er32(TCTL);
3250 tctl &= ~E1000_TCTL_EN;
3251 ew32(TCTL, tctl);
3252 /* flush both disables and wait for them to finish */
3253 e1e_flush();
3254 msleep(10);
3256 napi_disable(&adapter->napi);
3257 e1000_irq_disable(adapter);
3259 del_timer_sync(&adapter->watchdog_timer);
3260 del_timer_sync(&adapter->phy_info_timer);
3262 netif_carrier_off(netdev);
3263 adapter->link_speed = 0;
3264 adapter->link_duplex = 0;
3266 if (!pci_channel_offline(adapter->pdev))
3267 e1000e_reset(adapter);
3268 e1000_clean_tx_ring(adapter);
3269 e1000_clean_rx_ring(adapter);
3272 * TODO: for power management, we could drop the link and
3273 * pci_disable_device here.
3277 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3279 might_sleep();
3280 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3281 msleep(1);
3282 e1000e_down(adapter);
3283 e1000e_up(adapter);
3284 clear_bit(__E1000_RESETTING, &adapter->state);
3288 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3289 * @adapter: board private structure to initialize
3291 * e1000_sw_init initializes the Adapter private data structure.
3292 * Fields are initialized based on PCI device information and
3293 * OS network device settings (MTU size).
3295 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3297 struct net_device *netdev = adapter->netdev;
3299 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3300 adapter->rx_ps_bsize0 = 128;
3301 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3302 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3304 e1000e_set_interrupt_capability(adapter);
3306 if (e1000_alloc_queues(adapter))
3307 return -ENOMEM;
3309 /* Explicitly disable IRQ since the NIC can be in any state. */
3310 e1000_irq_disable(adapter);
3312 set_bit(__E1000_DOWN, &adapter->state);
3313 return 0;
3317 * e1000_intr_msi_test - Interrupt Handler
3318 * @irq: interrupt number
3319 * @data: pointer to a network interface device structure
3321 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3323 struct net_device *netdev = data;
3324 struct e1000_adapter *adapter = netdev_priv(netdev);
3325 struct e1000_hw *hw = &adapter->hw;
3326 u32 icr = er32(ICR);
3328 e_dbg("icr is %08X\n", icr);
3329 if (icr & E1000_ICR_RXSEQ) {
3330 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3331 wmb();
3334 return IRQ_HANDLED;
3338 * e1000_test_msi_interrupt - Returns 0 for successful test
3339 * @adapter: board private struct
3341 * code flow taken from tg3.c
3343 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3345 struct net_device *netdev = adapter->netdev;
3346 struct e1000_hw *hw = &adapter->hw;
3347 int err;
3349 /* poll_enable hasn't been called yet, so don't need disable */
3350 /* clear any pending events */
3351 er32(ICR);
3353 /* free the real vector and request a test handler */
3354 e1000_free_irq(adapter);
3355 e1000e_reset_interrupt_capability(adapter);
3357 /* Assume that the test fails, if it succeeds then the test
3358 * MSI irq handler will unset this flag */
3359 adapter->flags |= FLAG_MSI_TEST_FAILED;
3361 err = pci_enable_msi(adapter->pdev);
3362 if (err)
3363 goto msi_test_failed;
3365 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3366 netdev->name, netdev);
3367 if (err) {
3368 pci_disable_msi(adapter->pdev);
3369 goto msi_test_failed;
3372 wmb();
3374 e1000_irq_enable(adapter);
3376 /* fire an unusual interrupt on the test handler */
3377 ew32(ICS, E1000_ICS_RXSEQ);
3378 e1e_flush();
3379 msleep(50);
3381 e1000_irq_disable(adapter);
3383 rmb();
3385 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3386 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3387 err = -EIO;
3388 e_info("MSI interrupt test failed!\n");
3391 free_irq(adapter->pdev->irq, netdev);
3392 pci_disable_msi(adapter->pdev);
3394 if (err == -EIO)
3395 goto msi_test_failed;
3397 /* okay so the test worked, restore settings */
3398 e_dbg("MSI interrupt test succeeded!\n");
3399 msi_test_failed:
3400 e1000e_set_interrupt_capability(adapter);
3401 e1000_request_irq(adapter);
3402 return err;
3406 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3407 * @adapter: board private struct
3409 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3411 static int e1000_test_msi(struct e1000_adapter *adapter)
3413 int err;
3414 u16 pci_cmd;
3416 if (!(adapter->flags & FLAG_MSI_ENABLED))
3417 return 0;
3419 /* disable SERR in case the MSI write causes a master abort */
3420 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3421 if (pci_cmd & PCI_COMMAND_SERR)
3422 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3423 pci_cmd & ~PCI_COMMAND_SERR);
3425 err = e1000_test_msi_interrupt(adapter);
3427 /* re-enable SERR */
3428 if (pci_cmd & PCI_COMMAND_SERR) {
3429 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3430 pci_cmd |= PCI_COMMAND_SERR;
3431 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3434 /* success ! */
3435 if (!err)
3436 return 0;
3438 /* EIO means MSI test failed */
3439 if (err != -EIO)
3440 return err;
3442 /* back to INTx mode */
3443 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3445 e1000_free_irq(adapter);
3447 err = e1000_request_irq(adapter);
3449 return err;
3453 * e1000_open - Called when a network interface is made active
3454 * @netdev: network interface device structure
3456 * Returns 0 on success, negative value on failure
3458 * The open entry point is called when a network interface is made
3459 * active by the system (IFF_UP). At this point all resources needed
3460 * for transmit and receive operations are allocated, the interrupt
3461 * handler is registered with the OS, the watchdog timer is started,
3462 * and the stack is notified that the interface is ready.
3464 static int e1000_open(struct net_device *netdev)
3466 struct e1000_adapter *adapter = netdev_priv(netdev);
3467 struct e1000_hw *hw = &adapter->hw;
3468 struct pci_dev *pdev = adapter->pdev;
3469 int err;
3471 /* disallow open during test */
3472 if (test_bit(__E1000_TESTING, &adapter->state))
3473 return -EBUSY;
3475 pm_runtime_get_sync(&pdev->dev);
3477 netif_carrier_off(netdev);
3479 /* allocate transmit descriptors */
3480 err = e1000e_setup_tx_resources(adapter);
3481 if (err)
3482 goto err_setup_tx;
3484 /* allocate receive descriptors */
3485 err = e1000e_setup_rx_resources(adapter);
3486 if (err)
3487 goto err_setup_rx;
3490 * If AMT is enabled, let the firmware know that the network
3491 * interface is now open and reset the part to a known state.
3493 if (adapter->flags & FLAG_HAS_AMT) {
3494 e1000_get_hw_control(adapter);
3495 e1000e_reset(adapter);
3498 e1000e_power_up_phy(adapter);
3500 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3501 if ((adapter->hw.mng_cookie.status &
3502 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3503 e1000_update_mng_vlan(adapter);
3505 if (adapter->flags & FLAG_HAS_ERT)
3506 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3507 PM_QOS_CPU_DMA_LATENCY,
3508 PM_QOS_DEFAULT_VALUE);
3511 * before we allocate an interrupt, we must be ready to handle it.
3512 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3513 * as soon as we call pci_request_irq, so we have to setup our
3514 * clean_rx handler before we do so.
3516 e1000_configure(adapter);
3518 err = e1000_request_irq(adapter);
3519 if (err)
3520 goto err_req_irq;
3522 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3523 err = e1000_test_msi(adapter);
3524 if (err) {
3525 e_err("Interrupt allocation failed\n");
3526 goto err_req_irq;
3530 /* From here on the code is the same as e1000e_up() */
3531 clear_bit(__E1000_DOWN, &adapter->state);
3533 napi_enable(&adapter->napi);
3535 e1000_irq_enable(adapter);
3537 netif_start_queue(netdev);
3539 adapter->idle_check = true;
3540 pm_runtime_put(&pdev->dev);
3542 /* fire a link status change interrupt to start the watchdog */
3543 if (adapter->msix_entries)
3544 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3545 else
3546 ew32(ICS, E1000_ICS_LSC);
3548 return 0;
3550 err_req_irq:
3551 e1000_release_hw_control(adapter);
3552 e1000_power_down_phy(adapter);
3553 e1000e_free_rx_resources(adapter);
3554 err_setup_rx:
3555 e1000e_free_tx_resources(adapter);
3556 err_setup_tx:
3557 e1000e_reset(adapter);
3558 pm_runtime_put_sync(&pdev->dev);
3560 return err;
3564 * e1000_close - Disables a network interface
3565 * @netdev: network interface device structure
3567 * Returns 0, this is not allowed to fail
3569 * The close entry point is called when an interface is de-activated
3570 * by the OS. The hardware is still under the drivers control, but
3571 * needs to be disabled. A global MAC reset is issued to stop the
3572 * hardware, and all transmit and receive resources are freed.
3574 static int e1000_close(struct net_device *netdev)
3576 struct e1000_adapter *adapter = netdev_priv(netdev);
3577 struct pci_dev *pdev = adapter->pdev;
3579 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3581 pm_runtime_get_sync(&pdev->dev);
3583 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3584 e1000e_down(adapter);
3585 e1000_free_irq(adapter);
3587 e1000_power_down_phy(adapter);
3589 e1000e_free_tx_resources(adapter);
3590 e1000e_free_rx_resources(adapter);
3593 * kill manageability vlan ID if supported, but not if a vlan with
3594 * the same ID is registered on the host OS (let 8021q kill it)
3596 if ((adapter->hw.mng_cookie.status &
3597 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3598 !(adapter->vlgrp &&
3599 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3600 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3603 * If AMT is enabled, let the firmware know that the network
3604 * interface is now closed
3606 if (adapter->flags & FLAG_HAS_AMT)
3607 e1000_release_hw_control(adapter);
3609 if (adapter->flags & FLAG_HAS_ERT)
3610 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3612 pm_runtime_put_sync(&pdev->dev);
3614 return 0;
3617 * e1000_set_mac - Change the Ethernet Address of the NIC
3618 * @netdev: network interface device structure
3619 * @p: pointer to an address structure
3621 * Returns 0 on success, negative on failure
3623 static int e1000_set_mac(struct net_device *netdev, void *p)
3625 struct e1000_adapter *adapter = netdev_priv(netdev);
3626 struct sockaddr *addr = p;
3628 if (!is_valid_ether_addr(addr->sa_data))
3629 return -EADDRNOTAVAIL;
3631 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3632 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3634 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3636 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3637 e1000e_set_laa_state_82571(&adapter->hw, 1);
3640 * Hold a copy of the LAA in RAR[14] This is done so that
3641 * between the time RAR[0] gets clobbered and the time it
3642 * gets fixed (in e1000_watchdog), the actual LAA is in one
3643 * of the RARs and no incoming packets directed to this port
3644 * are dropped. Eventually the LAA will be in RAR[0] and
3645 * RAR[14]
3647 e1000e_rar_set(&adapter->hw,
3648 adapter->hw.mac.addr,
3649 adapter->hw.mac.rar_entry_count - 1);
3652 return 0;
3656 * e1000e_update_phy_task - work thread to update phy
3657 * @work: pointer to our work struct
3659 * this worker thread exists because we must acquire a
3660 * semaphore to read the phy, which we could msleep while
3661 * waiting for it, and we can't msleep in a timer.
3663 static void e1000e_update_phy_task(struct work_struct *work)
3665 struct e1000_adapter *adapter = container_of(work,
3666 struct e1000_adapter, update_phy_task);
3667 e1000_get_phy_info(&adapter->hw);
3671 * Need to wait a few seconds after link up to get diagnostic information from
3672 * the phy
3674 static void e1000_update_phy_info(unsigned long data)
3676 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3677 schedule_work(&adapter->update_phy_task);
3681 * e1000e_update_phy_stats - Update the PHY statistics counters
3682 * @adapter: board private structure
3684 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3686 struct e1000_hw *hw = &adapter->hw;
3687 s32 ret_val;
3688 u16 phy_data;
3690 ret_val = hw->phy.ops.acquire(hw);
3691 if (ret_val)
3692 return;
3694 hw->phy.addr = 1;
3696 #define HV_PHY_STATS_PAGE 778
3698 * A page set is expensive so check if already on desired page.
3699 * If not, set to the page with the PHY status registers.
3701 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3702 &phy_data);
3703 if (ret_val)
3704 goto release;
3705 if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3706 ret_val = e1000e_write_phy_reg_mdic(hw,
3707 IGP01E1000_PHY_PAGE_SELECT,
3708 (HV_PHY_STATS_PAGE <<
3709 IGP_PAGE_SHIFT));
3710 if (ret_val)
3711 goto release;
3714 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3716 /* Single Collision Count */
3717 e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3718 &phy_data);
3719 ret_val = e1000e_read_phy_reg_mdic(hw,
3720 HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3721 &phy_data);
3722 if (!ret_val)
3723 adapter->stats.scc += phy_data;
3725 /* Excessive Collision Count */
3726 e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3727 &phy_data);
3728 ret_val = e1000e_read_phy_reg_mdic(hw,
3729 HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3730 &phy_data);
3731 if (!ret_val)
3732 adapter->stats.ecol += phy_data;
3734 /* Multiple Collision Count */
3735 e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3736 &phy_data);
3737 ret_val = e1000e_read_phy_reg_mdic(hw,
3738 HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3739 &phy_data);
3740 if (!ret_val)
3741 adapter->stats.mcc += phy_data;
3743 /* Late Collision Count */
3744 e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3745 &phy_data);
3746 ret_val = e1000e_read_phy_reg_mdic(hw,
3747 HV_LATECOL_LOWER &
3748 MAX_PHY_REG_ADDRESS,
3749 &phy_data);
3750 if (!ret_val)
3751 adapter->stats.latecol += phy_data;
3753 /* Collision Count - also used for adaptive IFS */
3754 e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3755 &phy_data);
3756 ret_val = e1000e_read_phy_reg_mdic(hw,
3757 HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3758 &phy_data);
3759 if (!ret_val)
3760 hw->mac.collision_delta = phy_data;
3762 /* Defer Count */
3763 e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3764 &phy_data);
3765 ret_val = e1000e_read_phy_reg_mdic(hw,
3766 HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3767 &phy_data);
3768 if (!ret_val)
3769 adapter->stats.dc += phy_data;
3771 /* Transmit with no CRS */
3772 e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3773 &phy_data);
3774 ret_val = e1000e_read_phy_reg_mdic(hw,
3775 HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3776 &phy_data);
3777 if (!ret_val)
3778 adapter->stats.tncrs += phy_data;
3780 release:
3781 hw->phy.ops.release(hw);
3785 * e1000e_update_stats - Update the board statistics counters
3786 * @adapter: board private structure
3788 void e1000e_update_stats(struct e1000_adapter *adapter)
3790 struct net_device *netdev = adapter->netdev;
3791 struct e1000_hw *hw = &adapter->hw;
3792 struct pci_dev *pdev = adapter->pdev;
3795 * Prevent stats update while adapter is being reset, or if the pci
3796 * connection is down.
3798 if (adapter->link_speed == 0)
3799 return;
3800 if (pci_channel_offline(pdev))
3801 return;
3803 adapter->stats.crcerrs += er32(CRCERRS);
3804 adapter->stats.gprc += er32(GPRC);
3805 adapter->stats.gorc += er32(GORCL);
3806 er32(GORCH); /* Clear gorc */
3807 adapter->stats.bprc += er32(BPRC);
3808 adapter->stats.mprc += er32(MPRC);
3809 adapter->stats.roc += er32(ROC);
3811 adapter->stats.mpc += er32(MPC);
3813 /* Half-duplex statistics */
3814 if (adapter->link_duplex == HALF_DUPLEX) {
3815 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3816 e1000e_update_phy_stats(adapter);
3817 } else {
3818 adapter->stats.scc += er32(SCC);
3819 adapter->stats.ecol += er32(ECOL);
3820 adapter->stats.mcc += er32(MCC);
3821 adapter->stats.latecol += er32(LATECOL);
3822 adapter->stats.dc += er32(DC);
3824 hw->mac.collision_delta = er32(COLC);
3826 if ((hw->mac.type != e1000_82574) &&
3827 (hw->mac.type != e1000_82583))
3828 adapter->stats.tncrs += er32(TNCRS);
3830 adapter->stats.colc += hw->mac.collision_delta;
3833 adapter->stats.xonrxc += er32(XONRXC);
3834 adapter->stats.xontxc += er32(XONTXC);
3835 adapter->stats.xoffrxc += er32(XOFFRXC);
3836 adapter->stats.xofftxc += er32(XOFFTXC);
3837 adapter->stats.gptc += er32(GPTC);
3838 adapter->stats.gotc += er32(GOTCL);
3839 er32(GOTCH); /* Clear gotc */
3840 adapter->stats.rnbc += er32(RNBC);
3841 adapter->stats.ruc += er32(RUC);
3843 adapter->stats.mptc += er32(MPTC);
3844 adapter->stats.bptc += er32(BPTC);
3846 /* used for adaptive IFS */
3848 hw->mac.tx_packet_delta = er32(TPT);
3849 adapter->stats.tpt += hw->mac.tx_packet_delta;
3851 adapter->stats.algnerrc += er32(ALGNERRC);
3852 adapter->stats.rxerrc += er32(RXERRC);
3853 adapter->stats.cexterr += er32(CEXTERR);
3854 adapter->stats.tsctc += er32(TSCTC);
3855 adapter->stats.tsctfc += er32(TSCTFC);
3857 /* Fill out the OS statistics structure */
3858 netdev->stats.multicast = adapter->stats.mprc;
3859 netdev->stats.collisions = adapter->stats.colc;
3861 /* Rx Errors */
3864 * RLEC on some newer hardware can be incorrect so build
3865 * our own version based on RUC and ROC
3867 netdev->stats.rx_errors = adapter->stats.rxerrc +
3868 adapter->stats.crcerrs + adapter->stats.algnerrc +
3869 adapter->stats.ruc + adapter->stats.roc +
3870 adapter->stats.cexterr;
3871 netdev->stats.rx_length_errors = adapter->stats.ruc +
3872 adapter->stats.roc;
3873 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3874 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3875 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3877 /* Tx Errors */
3878 netdev->stats.tx_errors = adapter->stats.ecol +
3879 adapter->stats.latecol;
3880 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3881 netdev->stats.tx_window_errors = adapter->stats.latecol;
3882 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3884 /* Tx Dropped needs to be maintained elsewhere */
3886 /* Management Stats */
3887 adapter->stats.mgptc += er32(MGTPTC);
3888 adapter->stats.mgprc += er32(MGTPRC);
3889 adapter->stats.mgpdc += er32(MGTPDC);
3893 * e1000_phy_read_status - Update the PHY register status snapshot
3894 * @adapter: board private structure
3896 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3898 struct e1000_hw *hw = &adapter->hw;
3899 struct e1000_phy_regs *phy = &adapter->phy_regs;
3900 int ret_val;
3902 if ((er32(STATUS) & E1000_STATUS_LU) &&
3903 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3904 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3905 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3906 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3907 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3908 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3909 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3910 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3911 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3912 if (ret_val)
3913 e_warn("Error reading PHY register\n");
3914 } else {
3916 * Do not read PHY registers if link is not up
3917 * Set values to typical power-on defaults
3919 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3920 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3921 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3922 BMSR_ERCAP);
3923 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3924 ADVERTISE_ALL | ADVERTISE_CSMA);
3925 phy->lpa = 0;
3926 phy->expansion = EXPANSION_ENABLENPAGE;
3927 phy->ctrl1000 = ADVERTISE_1000FULL;
3928 phy->stat1000 = 0;
3929 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3933 static void e1000_print_link_info(struct e1000_adapter *adapter)
3935 struct e1000_hw *hw = &adapter->hw;
3936 u32 ctrl = er32(CTRL);
3938 /* Link status message must follow this format for user tools */
3939 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3940 "Flow Control: %s\n",
3941 adapter->netdev->name,
3942 adapter->link_speed,
3943 (adapter->link_duplex == FULL_DUPLEX) ?
3944 "Full Duplex" : "Half Duplex",
3945 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3946 "RX/TX" :
3947 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3948 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3951 static bool e1000e_has_link(struct e1000_adapter *adapter)
3953 struct e1000_hw *hw = &adapter->hw;
3954 bool link_active = 0;
3955 s32 ret_val = 0;
3958 * get_link_status is set on LSC (link status) interrupt or
3959 * Rx sequence error interrupt. get_link_status will stay
3960 * false until the check_for_link establishes link
3961 * for copper adapters ONLY
3963 switch (hw->phy.media_type) {
3964 case e1000_media_type_copper:
3965 if (hw->mac.get_link_status) {
3966 ret_val = hw->mac.ops.check_for_link(hw);
3967 link_active = !hw->mac.get_link_status;
3968 } else {
3969 link_active = 1;
3971 break;
3972 case e1000_media_type_fiber:
3973 ret_val = hw->mac.ops.check_for_link(hw);
3974 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3975 break;
3976 case e1000_media_type_internal_serdes:
3977 ret_val = hw->mac.ops.check_for_link(hw);
3978 link_active = adapter->hw.mac.serdes_has_link;
3979 break;
3980 default:
3981 case e1000_media_type_unknown:
3982 break;
3985 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3986 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3987 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3988 e_info("Gigabit has been disabled, downgrading speed\n");
3991 return link_active;
3994 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3996 /* make sure the receive unit is started */
3997 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3998 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3999 struct e1000_hw *hw = &adapter->hw;
4000 u32 rctl = er32(RCTL);
4001 ew32(RCTL, rctl | E1000_RCTL_EN);
4002 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4007 * e1000_watchdog - Timer Call-back
4008 * @data: pointer to adapter cast into an unsigned long
4010 static void e1000_watchdog(unsigned long data)
4012 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4014 /* Do the rest outside of interrupt context */
4015 schedule_work(&adapter->watchdog_task);
4017 /* TODO: make this use queue_delayed_work() */
4020 static void e1000_watchdog_task(struct work_struct *work)
4022 struct e1000_adapter *adapter = container_of(work,
4023 struct e1000_adapter, watchdog_task);
4024 struct net_device *netdev = adapter->netdev;
4025 struct e1000_mac_info *mac = &adapter->hw.mac;
4026 struct e1000_phy_info *phy = &adapter->hw.phy;
4027 struct e1000_ring *tx_ring = adapter->tx_ring;
4028 struct e1000_hw *hw = &adapter->hw;
4029 u32 link, tctl;
4030 int tx_pending = 0;
4032 link = e1000e_has_link(adapter);
4033 if ((netif_carrier_ok(netdev)) && link) {
4034 /* Cancel scheduled suspend requests. */
4035 pm_runtime_resume(netdev->dev.parent);
4037 e1000e_enable_receives(adapter);
4038 goto link_up;
4041 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4042 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4043 e1000_update_mng_vlan(adapter);
4045 if (link) {
4046 if (!netif_carrier_ok(netdev)) {
4047 bool txb2b = 1;
4049 /* Cancel scheduled suspend requests. */
4050 pm_runtime_resume(netdev->dev.parent);
4052 /* update snapshot of PHY registers on LSC */
4053 e1000_phy_read_status(adapter);
4054 mac->ops.get_link_up_info(&adapter->hw,
4055 &adapter->link_speed,
4056 &adapter->link_duplex);
4057 e1000_print_link_info(adapter);
4059 * On supported PHYs, check for duplex mismatch only
4060 * if link has autonegotiated at 10/100 half
4062 if ((hw->phy.type == e1000_phy_igp_3 ||
4063 hw->phy.type == e1000_phy_bm) &&
4064 (hw->mac.autoneg == true) &&
4065 (adapter->link_speed == SPEED_10 ||
4066 adapter->link_speed == SPEED_100) &&
4067 (adapter->link_duplex == HALF_DUPLEX)) {
4068 u16 autoneg_exp;
4070 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4072 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4073 e_info("Autonegotiated half duplex but"
4074 " link partner cannot autoneg. "
4075 " Try forcing full duplex if "
4076 "link gets many collisions.\n");
4079 /* adjust timeout factor according to speed/duplex */
4080 adapter->tx_timeout_factor = 1;
4081 switch (adapter->link_speed) {
4082 case SPEED_10:
4083 txb2b = 0;
4084 adapter->tx_timeout_factor = 16;
4085 break;
4086 case SPEED_100:
4087 txb2b = 0;
4088 adapter->tx_timeout_factor = 10;
4089 break;
4092 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4093 !txb2b) {
4094 u32 tarc0;
4095 tarc0 = er32(TARC(0));
4096 tarc0 &= ~SPEED_MODE_BIT;
4097 ew32(TARC(0), tarc0);
4101 * disable TSO for pcie and 10/100 speeds, to avoid
4102 * some hardware issues
4104 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4105 switch (adapter->link_speed) {
4106 case SPEED_10:
4107 case SPEED_100:
4108 e_info("10/100 speed: disabling TSO\n");
4109 netdev->features &= ~NETIF_F_TSO;
4110 netdev->features &= ~NETIF_F_TSO6;
4111 break;
4112 case SPEED_1000:
4113 netdev->features |= NETIF_F_TSO;
4114 netdev->features |= NETIF_F_TSO6;
4115 break;
4116 default:
4117 /* oops */
4118 break;
4123 * enable transmits in the hardware, need to do this
4124 * after setting TARC(0)
4126 tctl = er32(TCTL);
4127 tctl |= E1000_TCTL_EN;
4128 ew32(TCTL, tctl);
4131 * Perform any post-link-up configuration before
4132 * reporting link up.
4134 if (phy->ops.cfg_on_link_up)
4135 phy->ops.cfg_on_link_up(hw);
4137 netif_carrier_on(netdev);
4139 if (!test_bit(__E1000_DOWN, &adapter->state))
4140 mod_timer(&adapter->phy_info_timer,
4141 round_jiffies(jiffies + 2 * HZ));
4143 } else {
4144 if (netif_carrier_ok(netdev)) {
4145 adapter->link_speed = 0;
4146 adapter->link_duplex = 0;
4147 /* Link status message must follow this format */
4148 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4149 adapter->netdev->name);
4150 netif_carrier_off(netdev);
4151 if (!test_bit(__E1000_DOWN, &adapter->state))
4152 mod_timer(&adapter->phy_info_timer,
4153 round_jiffies(jiffies + 2 * HZ));
4155 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4156 schedule_work(&adapter->reset_task);
4157 else
4158 pm_schedule_suspend(netdev->dev.parent,
4159 LINK_TIMEOUT);
4163 link_up:
4164 e1000e_update_stats(adapter);
4166 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4167 adapter->tpt_old = adapter->stats.tpt;
4168 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4169 adapter->colc_old = adapter->stats.colc;
4171 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4172 adapter->gorc_old = adapter->stats.gorc;
4173 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4174 adapter->gotc_old = adapter->stats.gotc;
4176 e1000e_update_adaptive(&adapter->hw);
4178 if (!netif_carrier_ok(netdev)) {
4179 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4180 tx_ring->count);
4181 if (tx_pending) {
4183 * We've lost link, so the controller stops DMA,
4184 * but we've got queued Tx work that's never going
4185 * to get done, so reset controller to flush Tx.
4186 * (Do the reset outside of interrupt context).
4188 adapter->tx_timeout_count++;
4189 schedule_work(&adapter->reset_task);
4190 /* return immediately since reset is imminent */
4191 return;
4195 /* Simple mode for Interrupt Throttle Rate (ITR) */
4196 if (adapter->itr_setting == 4) {
4198 * Symmetric Tx/Rx gets a reduced ITR=2000;
4199 * Total asymmetrical Tx or Rx gets ITR=8000;
4200 * everyone else is between 2000-8000.
4202 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4203 u32 dif = (adapter->gotc > adapter->gorc ?
4204 adapter->gotc - adapter->gorc :
4205 adapter->gorc - adapter->gotc) / 10000;
4206 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4208 ew32(ITR, 1000000000 / (itr * 256));
4211 /* Cause software interrupt to ensure Rx ring is cleaned */
4212 if (adapter->msix_entries)
4213 ew32(ICS, adapter->rx_ring->ims_val);
4214 else
4215 ew32(ICS, E1000_ICS_RXDMT0);
4217 /* Force detection of hung controller every watchdog period */
4218 adapter->detect_tx_hung = 1;
4221 * With 82571 controllers, LAA may be overwritten due to controller
4222 * reset from the other port. Set the appropriate LAA in RAR[0]
4224 if (e1000e_get_laa_state_82571(hw))
4225 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4227 /* Reset the timer */
4228 if (!test_bit(__E1000_DOWN, &adapter->state))
4229 mod_timer(&adapter->watchdog_timer,
4230 round_jiffies(jiffies + 2 * HZ));
4233 #define E1000_TX_FLAGS_CSUM 0x00000001
4234 #define E1000_TX_FLAGS_VLAN 0x00000002
4235 #define E1000_TX_FLAGS_TSO 0x00000004
4236 #define E1000_TX_FLAGS_IPV4 0x00000008
4237 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4238 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4240 static int e1000_tso(struct e1000_adapter *adapter,
4241 struct sk_buff *skb)
4243 struct e1000_ring *tx_ring = adapter->tx_ring;
4244 struct e1000_context_desc *context_desc;
4245 struct e1000_buffer *buffer_info;
4246 unsigned int i;
4247 u32 cmd_length = 0;
4248 u16 ipcse = 0, tucse, mss;
4249 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4250 int err;
4252 if (!skb_is_gso(skb))
4253 return 0;
4255 if (skb_header_cloned(skb)) {
4256 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4257 if (err)
4258 return err;
4261 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4262 mss = skb_shinfo(skb)->gso_size;
4263 if (skb->protocol == htons(ETH_P_IP)) {
4264 struct iphdr *iph = ip_hdr(skb);
4265 iph->tot_len = 0;
4266 iph->check = 0;
4267 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4268 0, IPPROTO_TCP, 0);
4269 cmd_length = E1000_TXD_CMD_IP;
4270 ipcse = skb_transport_offset(skb) - 1;
4271 } else if (skb_is_gso_v6(skb)) {
4272 ipv6_hdr(skb)->payload_len = 0;
4273 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4274 &ipv6_hdr(skb)->daddr,
4275 0, IPPROTO_TCP, 0);
4276 ipcse = 0;
4278 ipcss = skb_network_offset(skb);
4279 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4280 tucss = skb_transport_offset(skb);
4281 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4282 tucse = 0;
4284 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4285 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4287 i = tx_ring->next_to_use;
4288 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4289 buffer_info = &tx_ring->buffer_info[i];
4291 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4292 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4293 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4294 context_desc->upper_setup.tcp_fields.tucss = tucss;
4295 context_desc->upper_setup.tcp_fields.tucso = tucso;
4296 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4297 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4298 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4299 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4301 buffer_info->time_stamp = jiffies;
4302 buffer_info->next_to_watch = i;
4304 i++;
4305 if (i == tx_ring->count)
4306 i = 0;
4307 tx_ring->next_to_use = i;
4309 return 1;
4312 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4314 struct e1000_ring *tx_ring = adapter->tx_ring;
4315 struct e1000_context_desc *context_desc;
4316 struct e1000_buffer *buffer_info;
4317 unsigned int i;
4318 u8 css;
4319 u32 cmd_len = E1000_TXD_CMD_DEXT;
4320 __be16 protocol;
4322 if (skb->ip_summed != CHECKSUM_PARTIAL)
4323 return 0;
4325 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4326 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4327 else
4328 protocol = skb->protocol;
4330 switch (protocol) {
4331 case cpu_to_be16(ETH_P_IP):
4332 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4333 cmd_len |= E1000_TXD_CMD_TCP;
4334 break;
4335 case cpu_to_be16(ETH_P_IPV6):
4336 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4337 cmd_len |= E1000_TXD_CMD_TCP;
4338 break;
4339 default:
4340 if (unlikely(net_ratelimit()))
4341 e_warn("checksum_partial proto=%x!\n",
4342 be16_to_cpu(protocol));
4343 break;
4346 css = skb_transport_offset(skb);
4348 i = tx_ring->next_to_use;
4349 buffer_info = &tx_ring->buffer_info[i];
4350 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4352 context_desc->lower_setup.ip_config = 0;
4353 context_desc->upper_setup.tcp_fields.tucss = css;
4354 context_desc->upper_setup.tcp_fields.tucso =
4355 css + skb->csum_offset;
4356 context_desc->upper_setup.tcp_fields.tucse = 0;
4357 context_desc->tcp_seg_setup.data = 0;
4358 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4360 buffer_info->time_stamp = jiffies;
4361 buffer_info->next_to_watch = i;
4363 i++;
4364 if (i == tx_ring->count)
4365 i = 0;
4366 tx_ring->next_to_use = i;
4368 return 1;
4371 #define E1000_MAX_PER_TXD 8192
4372 #define E1000_MAX_TXD_PWR 12
4374 static int e1000_tx_map(struct e1000_adapter *adapter,
4375 struct sk_buff *skb, unsigned int first,
4376 unsigned int max_per_txd, unsigned int nr_frags,
4377 unsigned int mss)
4379 struct e1000_ring *tx_ring = adapter->tx_ring;
4380 struct pci_dev *pdev = adapter->pdev;
4381 struct e1000_buffer *buffer_info;
4382 unsigned int len = skb_headlen(skb);
4383 unsigned int offset = 0, size, count = 0, i;
4384 unsigned int f, bytecount, segs;
4386 i = tx_ring->next_to_use;
4388 while (len) {
4389 buffer_info = &tx_ring->buffer_info[i];
4390 size = min(len, max_per_txd);
4392 buffer_info->length = size;
4393 buffer_info->time_stamp = jiffies;
4394 buffer_info->next_to_watch = i;
4395 buffer_info->dma = dma_map_single(&pdev->dev,
4396 skb->data + offset,
4397 size, DMA_TO_DEVICE);
4398 buffer_info->mapped_as_page = false;
4399 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4400 goto dma_error;
4402 len -= size;
4403 offset += size;
4404 count++;
4406 if (len) {
4407 i++;
4408 if (i == tx_ring->count)
4409 i = 0;
4413 for (f = 0; f < nr_frags; f++) {
4414 struct skb_frag_struct *frag;
4416 frag = &skb_shinfo(skb)->frags[f];
4417 len = frag->size;
4418 offset = frag->page_offset;
4420 while (len) {
4421 i++;
4422 if (i == tx_ring->count)
4423 i = 0;
4425 buffer_info = &tx_ring->buffer_info[i];
4426 size = min(len, max_per_txd);
4428 buffer_info->length = size;
4429 buffer_info->time_stamp = jiffies;
4430 buffer_info->next_to_watch = i;
4431 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4432 offset, size,
4433 DMA_TO_DEVICE);
4434 buffer_info->mapped_as_page = true;
4435 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4436 goto dma_error;
4438 len -= size;
4439 offset += size;
4440 count++;
4444 segs = skb_shinfo(skb)->gso_segs ?: 1;
4445 /* multiply data chunks by size of headers */
4446 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4448 tx_ring->buffer_info[i].skb = skb;
4449 tx_ring->buffer_info[i].segs = segs;
4450 tx_ring->buffer_info[i].bytecount = bytecount;
4451 tx_ring->buffer_info[first].next_to_watch = i;
4453 return count;
4455 dma_error:
4456 dev_err(&pdev->dev, "TX DMA map failed\n");
4457 buffer_info->dma = 0;
4458 if (count)
4459 count--;
4461 while (count--) {
4462 if (i==0)
4463 i += tx_ring->count;
4464 i--;
4465 buffer_info = &tx_ring->buffer_info[i];
4466 e1000_put_txbuf(adapter, buffer_info);;
4469 return 0;
4472 static void e1000_tx_queue(struct e1000_adapter *adapter,
4473 int tx_flags, int count)
4475 struct e1000_ring *tx_ring = adapter->tx_ring;
4476 struct e1000_tx_desc *tx_desc = NULL;
4477 struct e1000_buffer *buffer_info;
4478 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4479 unsigned int i;
4481 if (tx_flags & E1000_TX_FLAGS_TSO) {
4482 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4483 E1000_TXD_CMD_TSE;
4484 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4486 if (tx_flags & E1000_TX_FLAGS_IPV4)
4487 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4490 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4491 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4492 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4495 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4496 txd_lower |= E1000_TXD_CMD_VLE;
4497 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4500 i = tx_ring->next_to_use;
4502 while (count--) {
4503 buffer_info = &tx_ring->buffer_info[i];
4504 tx_desc = E1000_TX_DESC(*tx_ring, i);
4505 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4506 tx_desc->lower.data =
4507 cpu_to_le32(txd_lower | buffer_info->length);
4508 tx_desc->upper.data = cpu_to_le32(txd_upper);
4510 i++;
4511 if (i == tx_ring->count)
4512 i = 0;
4515 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4518 * Force memory writes to complete before letting h/w
4519 * know there are new descriptors to fetch. (Only
4520 * applicable for weak-ordered memory model archs,
4521 * such as IA-64).
4523 wmb();
4525 tx_ring->next_to_use = i;
4526 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4528 * we need this if more than one processor can write to our tail
4529 * at a time, it synchronizes IO on IA64/Altix systems
4531 mmiowb();
4534 #define MINIMUM_DHCP_PACKET_SIZE 282
4535 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4536 struct sk_buff *skb)
4538 struct e1000_hw *hw = &adapter->hw;
4539 u16 length, offset;
4541 if (vlan_tx_tag_present(skb)) {
4542 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4543 (adapter->hw.mng_cookie.status &
4544 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4545 return 0;
4548 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4549 return 0;
4551 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4552 return 0;
4555 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4556 struct udphdr *udp;
4558 if (ip->protocol != IPPROTO_UDP)
4559 return 0;
4561 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4562 if (ntohs(udp->dest) != 67)
4563 return 0;
4565 offset = (u8 *)udp + 8 - skb->data;
4566 length = skb->len - offset;
4567 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4570 return 0;
4573 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4575 struct e1000_adapter *adapter = netdev_priv(netdev);
4577 netif_stop_queue(netdev);
4579 * Herbert's original patch had:
4580 * smp_mb__after_netif_stop_queue();
4581 * but since that doesn't exist yet, just open code it.
4583 smp_mb();
4586 * We need to check again in a case another CPU has just
4587 * made room available.
4589 if (e1000_desc_unused(adapter->tx_ring) < size)
4590 return -EBUSY;
4592 /* A reprieve! */
4593 netif_start_queue(netdev);
4594 ++adapter->restart_queue;
4595 return 0;
4598 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4600 struct e1000_adapter *adapter = netdev_priv(netdev);
4602 if (e1000_desc_unused(adapter->tx_ring) >= size)
4603 return 0;
4604 return __e1000_maybe_stop_tx(netdev, size);
4607 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4608 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4609 struct net_device *netdev)
4611 struct e1000_adapter *adapter = netdev_priv(netdev);
4612 struct e1000_ring *tx_ring = adapter->tx_ring;
4613 unsigned int first;
4614 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4615 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4616 unsigned int tx_flags = 0;
4617 unsigned int len = skb_headlen(skb);
4618 unsigned int nr_frags;
4619 unsigned int mss;
4620 int count = 0;
4621 int tso;
4622 unsigned int f;
4624 if (test_bit(__E1000_DOWN, &adapter->state)) {
4625 dev_kfree_skb_any(skb);
4626 return NETDEV_TX_OK;
4629 if (skb->len <= 0) {
4630 dev_kfree_skb_any(skb);
4631 return NETDEV_TX_OK;
4634 mss = skb_shinfo(skb)->gso_size;
4636 * The controller does a simple calculation to
4637 * make sure there is enough room in the FIFO before
4638 * initiating the DMA for each buffer. The calc is:
4639 * 4 = ceil(buffer len/mss). To make sure we don't
4640 * overrun the FIFO, adjust the max buffer len if mss
4641 * drops.
4643 if (mss) {
4644 u8 hdr_len;
4645 max_per_txd = min(mss << 2, max_per_txd);
4646 max_txd_pwr = fls(max_per_txd) - 1;
4648 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4649 if (skb->data_len && (hdr_len == len)) {
4650 unsigned int pull_size;
4652 pull_size = min((unsigned int)4, skb->data_len);
4653 if (!__pskb_pull_tail(skb, pull_size)) {
4654 e_err("__pskb_pull_tail failed.\n");
4655 dev_kfree_skb_any(skb);
4656 return NETDEV_TX_OK;
4658 len = skb_headlen(skb);
4662 /* reserve a descriptor for the offload context */
4663 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4664 count++;
4665 count++;
4667 count += TXD_USE_COUNT(len, max_txd_pwr);
4669 nr_frags = skb_shinfo(skb)->nr_frags;
4670 for (f = 0; f < nr_frags; f++)
4671 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4672 max_txd_pwr);
4674 if (adapter->hw.mac.tx_pkt_filtering)
4675 e1000_transfer_dhcp_info(adapter, skb);
4678 * need: count + 2 desc gap to keep tail from touching
4679 * head, otherwise try next time
4681 if (e1000_maybe_stop_tx(netdev, count + 2))
4682 return NETDEV_TX_BUSY;
4684 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4685 tx_flags |= E1000_TX_FLAGS_VLAN;
4686 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4689 first = tx_ring->next_to_use;
4691 tso = e1000_tso(adapter, skb);
4692 if (tso < 0) {
4693 dev_kfree_skb_any(skb);
4694 return NETDEV_TX_OK;
4697 if (tso)
4698 tx_flags |= E1000_TX_FLAGS_TSO;
4699 else if (e1000_tx_csum(adapter, skb))
4700 tx_flags |= E1000_TX_FLAGS_CSUM;
4703 * Old method was to assume IPv4 packet by default if TSO was enabled.
4704 * 82571 hardware supports TSO capabilities for IPv6 as well...
4705 * no longer assume, we must.
4707 if (skb->protocol == htons(ETH_P_IP))
4708 tx_flags |= E1000_TX_FLAGS_IPV4;
4710 /* if count is 0 then mapping error has occured */
4711 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4712 if (count) {
4713 e1000_tx_queue(adapter, tx_flags, count);
4714 /* Make sure there is space in the ring for the next send. */
4715 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4717 } else {
4718 dev_kfree_skb_any(skb);
4719 tx_ring->buffer_info[first].time_stamp = 0;
4720 tx_ring->next_to_use = first;
4723 return NETDEV_TX_OK;
4727 * e1000_tx_timeout - Respond to a Tx Hang
4728 * @netdev: network interface device structure
4730 static void e1000_tx_timeout(struct net_device *netdev)
4732 struct e1000_adapter *adapter = netdev_priv(netdev);
4734 /* Do the reset outside of interrupt context */
4735 adapter->tx_timeout_count++;
4736 schedule_work(&adapter->reset_task);
4739 static void e1000_reset_task(struct work_struct *work)
4741 struct e1000_adapter *adapter;
4742 adapter = container_of(work, struct e1000_adapter, reset_task);
4744 e1000e_dump(adapter);
4745 e_err("Reset adapter\n");
4746 e1000e_reinit_locked(adapter);
4750 * e1000_get_stats - Get System Network Statistics
4751 * @netdev: network interface device structure
4753 * Returns the address of the device statistics structure.
4754 * The statistics are actually updated from the timer callback.
4756 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4758 /* only return the current stats */
4759 return &netdev->stats;
4763 * e1000_change_mtu - Change the Maximum Transfer Unit
4764 * @netdev: network interface device structure
4765 * @new_mtu: new value for maximum frame size
4767 * Returns 0 on success, negative on failure
4769 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4771 struct e1000_adapter *adapter = netdev_priv(netdev);
4772 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4774 /* Jumbo frame support */
4775 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4776 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4777 e_err("Jumbo Frames not supported.\n");
4778 return -EINVAL;
4781 /* Supported frame sizes */
4782 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4783 (max_frame > adapter->max_hw_frame_size)) {
4784 e_err("Unsupported MTU setting\n");
4785 return -EINVAL;
4788 if ((adapter->hw.mac.type == e1000_pch2lan) &&
4789 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4790 (new_mtu > ETH_DATA_LEN)) {
4791 e_err("Jumbo Frames not supported on 82579 when CRC "
4792 "stripping is disabled.\n");
4793 return -EINVAL;
4796 /* 82573 Errata 17 */
4797 if (((adapter->hw.mac.type == e1000_82573) ||
4798 (adapter->hw.mac.type == e1000_82574)) &&
4799 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4800 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4801 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4804 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4805 msleep(1);
4806 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4807 adapter->max_frame_size = max_frame;
4808 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4809 netdev->mtu = new_mtu;
4810 if (netif_running(netdev))
4811 e1000e_down(adapter);
4814 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4815 * means we reserve 2 more, this pushes us to allocate from the next
4816 * larger slab size.
4817 * i.e. RXBUFFER_2048 --> size-4096 slab
4818 * However with the new *_jumbo_rx* routines, jumbo receives will use
4819 * fragmented skbs
4822 if (max_frame <= 2048)
4823 adapter->rx_buffer_len = 2048;
4824 else
4825 adapter->rx_buffer_len = 4096;
4827 /* adjust allocation if LPE protects us, and we aren't using SBP */
4828 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4829 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4830 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4831 + ETH_FCS_LEN;
4833 if (netif_running(netdev))
4834 e1000e_up(adapter);
4835 else
4836 e1000e_reset(adapter);
4838 clear_bit(__E1000_RESETTING, &adapter->state);
4840 return 0;
4843 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4844 int cmd)
4846 struct e1000_adapter *adapter = netdev_priv(netdev);
4847 struct mii_ioctl_data *data = if_mii(ifr);
4849 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4850 return -EOPNOTSUPP;
4852 switch (cmd) {
4853 case SIOCGMIIPHY:
4854 data->phy_id = adapter->hw.phy.addr;
4855 break;
4856 case SIOCGMIIREG:
4857 e1000_phy_read_status(adapter);
4859 switch (data->reg_num & 0x1F) {
4860 case MII_BMCR:
4861 data->val_out = adapter->phy_regs.bmcr;
4862 break;
4863 case MII_BMSR:
4864 data->val_out = adapter->phy_regs.bmsr;
4865 break;
4866 case MII_PHYSID1:
4867 data->val_out = (adapter->hw.phy.id >> 16);
4868 break;
4869 case MII_PHYSID2:
4870 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4871 break;
4872 case MII_ADVERTISE:
4873 data->val_out = adapter->phy_regs.advertise;
4874 break;
4875 case MII_LPA:
4876 data->val_out = adapter->phy_regs.lpa;
4877 break;
4878 case MII_EXPANSION:
4879 data->val_out = adapter->phy_regs.expansion;
4880 break;
4881 case MII_CTRL1000:
4882 data->val_out = adapter->phy_regs.ctrl1000;
4883 break;
4884 case MII_STAT1000:
4885 data->val_out = adapter->phy_regs.stat1000;
4886 break;
4887 case MII_ESTATUS:
4888 data->val_out = adapter->phy_regs.estatus;
4889 break;
4890 default:
4891 return -EIO;
4893 break;
4894 case SIOCSMIIREG:
4895 default:
4896 return -EOPNOTSUPP;
4898 return 0;
4901 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4903 switch (cmd) {
4904 case SIOCGMIIPHY:
4905 case SIOCGMIIREG:
4906 case SIOCSMIIREG:
4907 return e1000_mii_ioctl(netdev, ifr, cmd);
4908 default:
4909 return -EOPNOTSUPP;
4913 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4915 struct e1000_hw *hw = &adapter->hw;
4916 u32 i, mac_reg;
4917 u16 phy_reg;
4918 int retval = 0;
4920 /* copy MAC RARs to PHY RARs */
4921 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4923 /* copy MAC MTA to PHY MTA */
4924 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4925 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4926 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4927 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4930 /* configure PHY Rx Control register */
4931 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4932 mac_reg = er32(RCTL);
4933 if (mac_reg & E1000_RCTL_UPE)
4934 phy_reg |= BM_RCTL_UPE;
4935 if (mac_reg & E1000_RCTL_MPE)
4936 phy_reg |= BM_RCTL_MPE;
4937 phy_reg &= ~(BM_RCTL_MO_MASK);
4938 if (mac_reg & E1000_RCTL_MO_3)
4939 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4940 << BM_RCTL_MO_SHIFT);
4941 if (mac_reg & E1000_RCTL_BAM)
4942 phy_reg |= BM_RCTL_BAM;
4943 if (mac_reg & E1000_RCTL_PMCF)
4944 phy_reg |= BM_RCTL_PMCF;
4945 mac_reg = er32(CTRL);
4946 if (mac_reg & E1000_CTRL_RFCE)
4947 phy_reg |= BM_RCTL_RFCE;
4948 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4950 /* enable PHY wakeup in MAC register */
4951 ew32(WUFC, wufc);
4952 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4954 /* configure and enable PHY wakeup in PHY registers */
4955 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4956 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4958 /* activate PHY wakeup */
4959 retval = hw->phy.ops.acquire(hw);
4960 if (retval) {
4961 e_err("Could not acquire PHY\n");
4962 return retval;
4964 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4965 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4966 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4967 if (retval) {
4968 e_err("Could not read PHY page 769\n");
4969 goto out;
4971 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4972 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4973 if (retval)
4974 e_err("Could not set PHY Host Wakeup bit\n");
4975 out:
4976 hw->phy.ops.release(hw);
4978 return retval;
4981 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
4982 bool runtime)
4984 struct net_device *netdev = pci_get_drvdata(pdev);
4985 struct e1000_adapter *adapter = netdev_priv(netdev);
4986 struct e1000_hw *hw = &adapter->hw;
4987 u32 ctrl, ctrl_ext, rctl, status;
4988 /* Runtime suspend should only enable wakeup for link changes */
4989 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
4990 int retval = 0;
4992 netif_device_detach(netdev);
4994 if (netif_running(netdev)) {
4995 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4996 e1000e_down(adapter);
4997 e1000_free_irq(adapter);
4999 e1000e_reset_interrupt_capability(adapter);
5001 retval = pci_save_state(pdev);
5002 if (retval)
5003 return retval;
5005 status = er32(STATUS);
5006 if (status & E1000_STATUS_LU)
5007 wufc &= ~E1000_WUFC_LNKC;
5009 if (wufc) {
5010 e1000_setup_rctl(adapter);
5011 e1000_set_multi(netdev);
5013 /* turn on all-multi mode if wake on multicast is enabled */
5014 if (wufc & E1000_WUFC_MC) {
5015 rctl = er32(RCTL);
5016 rctl |= E1000_RCTL_MPE;
5017 ew32(RCTL, rctl);
5020 ctrl = er32(CTRL);
5021 /* advertise wake from D3Cold */
5022 #define E1000_CTRL_ADVD3WUC 0x00100000
5023 /* phy power management enable */
5024 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5025 ctrl |= E1000_CTRL_ADVD3WUC;
5026 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5027 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5028 ew32(CTRL, ctrl);
5030 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5031 adapter->hw.phy.media_type ==
5032 e1000_media_type_internal_serdes) {
5033 /* keep the laser running in D3 */
5034 ctrl_ext = er32(CTRL_EXT);
5035 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5036 ew32(CTRL_EXT, ctrl_ext);
5039 if (adapter->flags & FLAG_IS_ICH)
5040 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5042 /* Allow time for pending master requests to run */
5043 e1000e_disable_pcie_master(&adapter->hw);
5045 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5046 /* enable wakeup by the PHY */
5047 retval = e1000_init_phy_wakeup(adapter, wufc);
5048 if (retval)
5049 return retval;
5050 } else {
5051 /* enable wakeup by the MAC */
5052 ew32(WUFC, wufc);
5053 ew32(WUC, E1000_WUC_PME_EN);
5055 } else {
5056 ew32(WUC, 0);
5057 ew32(WUFC, 0);
5060 *enable_wake = !!wufc;
5062 /* make sure adapter isn't asleep if manageability is enabled */
5063 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5064 (hw->mac.ops.check_mng_mode(hw)))
5065 *enable_wake = true;
5067 if (adapter->hw.phy.type == e1000_phy_igp_3)
5068 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5071 * Release control of h/w to f/w. If f/w is AMT enabled, this
5072 * would have already happened in close and is redundant.
5074 e1000_release_hw_control(adapter);
5076 pci_disable_device(pdev);
5078 return 0;
5081 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5083 if (sleep && wake) {
5084 pci_prepare_to_sleep(pdev);
5085 return;
5088 pci_wake_from_d3(pdev, wake);
5089 pci_set_power_state(pdev, PCI_D3hot);
5092 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5093 bool wake)
5095 struct net_device *netdev = pci_get_drvdata(pdev);
5096 struct e1000_adapter *adapter = netdev_priv(netdev);
5099 * The pci-e switch on some quad port adapters will report a
5100 * correctable error when the MAC transitions from D0 to D3. To
5101 * prevent this we need to mask off the correctable errors on the
5102 * downstream port of the pci-e switch.
5104 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5105 struct pci_dev *us_dev = pdev->bus->self;
5106 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5107 u16 devctl;
5109 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5110 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5111 (devctl & ~PCI_EXP_DEVCTL_CERE));
5113 e1000_power_off(pdev, sleep, wake);
5115 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5116 } else {
5117 e1000_power_off(pdev, sleep, wake);
5121 #ifdef CONFIG_PCIEASPM
5122 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5124 pci_disable_link_state(pdev, state);
5126 #else
5127 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5129 int pos;
5130 u16 reg16;
5133 * Both device and parent should have the same ASPM setting.
5134 * Disable ASPM in downstream component first and then upstream.
5136 pos = pci_pcie_cap(pdev);
5137 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5138 reg16 &= ~state;
5139 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5141 if (!pdev->bus->self)
5142 return;
5144 pos = pci_pcie_cap(pdev->bus->self);
5145 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5146 reg16 &= ~state;
5147 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5149 #endif
5150 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5152 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5153 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5154 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5156 __e1000e_disable_aspm(pdev, state);
5159 #ifdef CONFIG_PM_OPS
5160 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5162 return !!adapter->tx_ring->buffer_info;
5165 static int __e1000_resume(struct pci_dev *pdev)
5167 struct net_device *netdev = pci_get_drvdata(pdev);
5168 struct e1000_adapter *adapter = netdev_priv(netdev);
5169 struct e1000_hw *hw = &adapter->hw;
5170 u32 err;
5172 pci_set_power_state(pdev, PCI_D0);
5173 pci_restore_state(pdev);
5174 pci_save_state(pdev);
5175 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5176 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5178 e1000e_set_interrupt_capability(adapter);
5179 if (netif_running(netdev)) {
5180 err = e1000_request_irq(adapter);
5181 if (err)
5182 return err;
5185 e1000e_power_up_phy(adapter);
5187 /* report the system wakeup cause from S3/S4 */
5188 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5189 u16 phy_data;
5191 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5192 if (phy_data) {
5193 e_info("PHY Wakeup cause - %s\n",
5194 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5195 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5196 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5197 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5198 phy_data & E1000_WUS_LNKC ? "Link Status "
5199 " Change" : "other");
5201 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5202 } else {
5203 u32 wus = er32(WUS);
5204 if (wus) {
5205 e_info("MAC Wakeup cause - %s\n",
5206 wus & E1000_WUS_EX ? "Unicast Packet" :
5207 wus & E1000_WUS_MC ? "Multicast Packet" :
5208 wus & E1000_WUS_BC ? "Broadcast Packet" :
5209 wus & E1000_WUS_MAG ? "Magic Packet" :
5210 wus & E1000_WUS_LNKC ? "Link Status Change" :
5211 "other");
5213 ew32(WUS, ~0);
5216 e1000e_reset(adapter);
5218 e1000_init_manageability_pt(adapter);
5220 if (netif_running(netdev))
5221 e1000e_up(adapter);
5223 netif_device_attach(netdev);
5226 * If the controller has AMT, do not set DRV_LOAD until the interface
5227 * is up. For all other cases, let the f/w know that the h/w is now
5228 * under the control of the driver.
5230 if (!(adapter->flags & FLAG_HAS_AMT))
5231 e1000_get_hw_control(adapter);
5233 return 0;
5236 #ifdef CONFIG_PM_SLEEP
5237 static int e1000_suspend(struct device *dev)
5239 struct pci_dev *pdev = to_pci_dev(dev);
5240 int retval;
5241 bool wake;
5243 retval = __e1000_shutdown(pdev, &wake, false);
5244 if (!retval)
5245 e1000_complete_shutdown(pdev, true, wake);
5247 return retval;
5250 static int e1000_resume(struct device *dev)
5252 struct pci_dev *pdev = to_pci_dev(dev);
5253 struct net_device *netdev = pci_get_drvdata(pdev);
5254 struct e1000_adapter *adapter = netdev_priv(netdev);
5256 if (e1000e_pm_ready(adapter))
5257 adapter->idle_check = true;
5259 return __e1000_resume(pdev);
5261 #endif /* CONFIG_PM_SLEEP */
5263 #ifdef CONFIG_PM_RUNTIME
5264 static int e1000_runtime_suspend(struct device *dev)
5266 struct pci_dev *pdev = to_pci_dev(dev);
5267 struct net_device *netdev = pci_get_drvdata(pdev);
5268 struct e1000_adapter *adapter = netdev_priv(netdev);
5270 if (e1000e_pm_ready(adapter)) {
5271 bool wake;
5273 __e1000_shutdown(pdev, &wake, true);
5276 return 0;
5279 static int e1000_idle(struct device *dev)
5281 struct pci_dev *pdev = to_pci_dev(dev);
5282 struct net_device *netdev = pci_get_drvdata(pdev);
5283 struct e1000_adapter *adapter = netdev_priv(netdev);
5285 if (!e1000e_pm_ready(adapter))
5286 return 0;
5288 if (adapter->idle_check) {
5289 adapter->idle_check = false;
5290 if (!e1000e_has_link(adapter))
5291 pm_schedule_suspend(dev, MSEC_PER_SEC);
5294 return -EBUSY;
5297 static int e1000_runtime_resume(struct device *dev)
5299 struct pci_dev *pdev = to_pci_dev(dev);
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct e1000_adapter *adapter = netdev_priv(netdev);
5303 if (!e1000e_pm_ready(adapter))
5304 return 0;
5306 adapter->idle_check = !dev->power.runtime_auto;
5307 return __e1000_resume(pdev);
5309 #endif /* CONFIG_PM_RUNTIME */
5310 #endif /* CONFIG_PM_OPS */
5312 static void e1000_shutdown(struct pci_dev *pdev)
5314 bool wake = false;
5316 __e1000_shutdown(pdev, &wake, false);
5318 if (system_state == SYSTEM_POWER_OFF)
5319 e1000_complete_shutdown(pdev, false, wake);
5322 #ifdef CONFIG_NET_POLL_CONTROLLER
5324 * Polling 'interrupt' - used by things like netconsole to send skbs
5325 * without having to re-enable interrupts. It's not called while
5326 * the interrupt routine is executing.
5328 static void e1000_netpoll(struct net_device *netdev)
5330 struct e1000_adapter *adapter = netdev_priv(netdev);
5332 disable_irq(adapter->pdev->irq);
5333 e1000_intr(adapter->pdev->irq, netdev);
5335 enable_irq(adapter->pdev->irq);
5337 #endif
5340 * e1000_io_error_detected - called when PCI error is detected
5341 * @pdev: Pointer to PCI device
5342 * @state: The current pci connection state
5344 * This function is called after a PCI bus error affecting
5345 * this device has been detected.
5347 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5348 pci_channel_state_t state)
5350 struct net_device *netdev = pci_get_drvdata(pdev);
5351 struct e1000_adapter *adapter = netdev_priv(netdev);
5353 netif_device_detach(netdev);
5355 if (state == pci_channel_io_perm_failure)
5356 return PCI_ERS_RESULT_DISCONNECT;
5358 if (netif_running(netdev))
5359 e1000e_down(adapter);
5360 pci_disable_device(pdev);
5362 /* Request a slot slot reset. */
5363 return PCI_ERS_RESULT_NEED_RESET;
5367 * e1000_io_slot_reset - called after the pci bus has been reset.
5368 * @pdev: Pointer to PCI device
5370 * Restart the card from scratch, as if from a cold-boot. Implementation
5371 * resembles the first-half of the e1000_resume routine.
5373 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5375 struct net_device *netdev = pci_get_drvdata(pdev);
5376 struct e1000_adapter *adapter = netdev_priv(netdev);
5377 struct e1000_hw *hw = &adapter->hw;
5378 int err;
5379 pci_ers_result_t result;
5381 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5382 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5383 err = pci_enable_device_mem(pdev);
5384 if (err) {
5385 dev_err(&pdev->dev,
5386 "Cannot re-enable PCI device after reset.\n");
5387 result = PCI_ERS_RESULT_DISCONNECT;
5388 } else {
5389 pci_set_master(pdev);
5390 pdev->state_saved = true;
5391 pci_restore_state(pdev);
5393 pci_enable_wake(pdev, PCI_D3hot, 0);
5394 pci_enable_wake(pdev, PCI_D3cold, 0);
5396 e1000e_reset(adapter);
5397 ew32(WUS, ~0);
5398 result = PCI_ERS_RESULT_RECOVERED;
5401 pci_cleanup_aer_uncorrect_error_status(pdev);
5403 return result;
5407 * e1000_io_resume - called when traffic can start flowing again.
5408 * @pdev: Pointer to PCI device
5410 * This callback is called when the error recovery driver tells us that
5411 * its OK to resume normal operation. Implementation resembles the
5412 * second-half of the e1000_resume routine.
5414 static void e1000_io_resume(struct pci_dev *pdev)
5416 struct net_device *netdev = pci_get_drvdata(pdev);
5417 struct e1000_adapter *adapter = netdev_priv(netdev);
5419 e1000_init_manageability_pt(adapter);
5421 if (netif_running(netdev)) {
5422 if (e1000e_up(adapter)) {
5423 dev_err(&pdev->dev,
5424 "can't bring device back up after reset\n");
5425 return;
5429 netif_device_attach(netdev);
5432 * If the controller has AMT, do not set DRV_LOAD until the interface
5433 * is up. For all other cases, let the f/w know that the h/w is now
5434 * under the control of the driver.
5436 if (!(adapter->flags & FLAG_HAS_AMT))
5437 e1000_get_hw_control(adapter);
5441 static void e1000_print_device_info(struct e1000_adapter *adapter)
5443 struct e1000_hw *hw = &adapter->hw;
5444 struct net_device *netdev = adapter->netdev;
5445 u32 pba_num;
5447 /* print bus type/speed/width info */
5448 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5449 /* bus width */
5450 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5451 "Width x1"),
5452 /* MAC address */
5453 netdev->dev_addr);
5454 e_info("Intel(R) PRO/%s Network Connection\n",
5455 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5456 e1000e_read_pba_num(hw, &pba_num);
5457 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5458 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5461 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5463 struct e1000_hw *hw = &adapter->hw;
5464 int ret_val;
5465 u16 buf = 0;
5467 if (hw->mac.type != e1000_82573)
5468 return;
5470 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5471 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5472 /* Deep Smart Power Down (DSPD) */
5473 dev_warn(&adapter->pdev->dev,
5474 "Warning: detected DSPD enabled in EEPROM\n");
5478 static const struct net_device_ops e1000e_netdev_ops = {
5479 .ndo_open = e1000_open,
5480 .ndo_stop = e1000_close,
5481 .ndo_start_xmit = e1000_xmit_frame,
5482 .ndo_get_stats = e1000_get_stats,
5483 .ndo_set_multicast_list = e1000_set_multi,
5484 .ndo_set_mac_address = e1000_set_mac,
5485 .ndo_change_mtu = e1000_change_mtu,
5486 .ndo_do_ioctl = e1000_ioctl,
5487 .ndo_tx_timeout = e1000_tx_timeout,
5488 .ndo_validate_addr = eth_validate_addr,
5490 .ndo_vlan_rx_register = e1000_vlan_rx_register,
5491 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5492 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5493 #ifdef CONFIG_NET_POLL_CONTROLLER
5494 .ndo_poll_controller = e1000_netpoll,
5495 #endif
5499 * e1000_probe - Device Initialization Routine
5500 * @pdev: PCI device information struct
5501 * @ent: entry in e1000_pci_tbl
5503 * Returns 0 on success, negative on failure
5505 * e1000_probe initializes an adapter identified by a pci_dev structure.
5506 * The OS initialization, configuring of the adapter private structure,
5507 * and a hardware reset occur.
5509 static int __devinit e1000_probe(struct pci_dev *pdev,
5510 const struct pci_device_id *ent)
5512 struct net_device *netdev;
5513 struct e1000_adapter *adapter;
5514 struct e1000_hw *hw;
5515 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5516 resource_size_t mmio_start, mmio_len;
5517 resource_size_t flash_start, flash_len;
5519 static int cards_found;
5520 int i, err, pci_using_dac;
5521 u16 eeprom_data = 0;
5522 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5524 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5525 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5527 err = pci_enable_device_mem(pdev);
5528 if (err)
5529 return err;
5531 pci_using_dac = 0;
5532 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5533 if (!err) {
5534 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5535 if (!err)
5536 pci_using_dac = 1;
5537 } else {
5538 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5539 if (err) {
5540 err = dma_set_coherent_mask(&pdev->dev,
5541 DMA_BIT_MASK(32));
5542 if (err) {
5543 dev_err(&pdev->dev, "No usable DMA "
5544 "configuration, aborting\n");
5545 goto err_dma;
5550 err = pci_request_selected_regions_exclusive(pdev,
5551 pci_select_bars(pdev, IORESOURCE_MEM),
5552 e1000e_driver_name);
5553 if (err)
5554 goto err_pci_reg;
5556 /* AER (Advanced Error Reporting) hooks */
5557 pci_enable_pcie_error_reporting(pdev);
5559 pci_set_master(pdev);
5560 /* PCI config space info */
5561 err = pci_save_state(pdev);
5562 if (err)
5563 goto err_alloc_etherdev;
5565 err = -ENOMEM;
5566 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5567 if (!netdev)
5568 goto err_alloc_etherdev;
5570 SET_NETDEV_DEV(netdev, &pdev->dev);
5572 netdev->irq = pdev->irq;
5574 pci_set_drvdata(pdev, netdev);
5575 adapter = netdev_priv(netdev);
5576 hw = &adapter->hw;
5577 adapter->netdev = netdev;
5578 adapter->pdev = pdev;
5579 adapter->ei = ei;
5580 adapter->pba = ei->pba;
5581 adapter->flags = ei->flags;
5582 adapter->flags2 = ei->flags2;
5583 adapter->hw.adapter = adapter;
5584 adapter->hw.mac.type = ei->mac;
5585 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5586 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5588 mmio_start = pci_resource_start(pdev, 0);
5589 mmio_len = pci_resource_len(pdev, 0);
5591 err = -EIO;
5592 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5593 if (!adapter->hw.hw_addr)
5594 goto err_ioremap;
5596 if ((adapter->flags & FLAG_HAS_FLASH) &&
5597 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5598 flash_start = pci_resource_start(pdev, 1);
5599 flash_len = pci_resource_len(pdev, 1);
5600 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5601 if (!adapter->hw.flash_address)
5602 goto err_flashmap;
5605 /* construct the net_device struct */
5606 netdev->netdev_ops = &e1000e_netdev_ops;
5607 e1000e_set_ethtool_ops(netdev);
5608 netdev->watchdog_timeo = 5 * HZ;
5609 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5610 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5612 netdev->mem_start = mmio_start;
5613 netdev->mem_end = mmio_start + mmio_len;
5615 adapter->bd_number = cards_found++;
5617 e1000e_check_options(adapter);
5619 /* setup adapter struct */
5620 err = e1000_sw_init(adapter);
5621 if (err)
5622 goto err_sw_init;
5624 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5625 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5626 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5628 err = ei->get_variants(adapter);
5629 if (err)
5630 goto err_hw_init;
5632 if ((adapter->flags & FLAG_IS_ICH) &&
5633 (adapter->flags & FLAG_READ_ONLY_NVM))
5634 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5636 hw->mac.ops.get_bus_info(&adapter->hw);
5638 adapter->hw.phy.autoneg_wait_to_complete = 0;
5640 /* Copper options */
5641 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5642 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5643 adapter->hw.phy.disable_polarity_correction = 0;
5644 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5647 if (e1000_check_reset_block(&adapter->hw))
5648 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5650 netdev->features = NETIF_F_SG |
5651 NETIF_F_HW_CSUM |
5652 NETIF_F_HW_VLAN_TX |
5653 NETIF_F_HW_VLAN_RX;
5655 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5656 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5658 netdev->features |= NETIF_F_TSO;
5659 netdev->features |= NETIF_F_TSO6;
5661 netdev->vlan_features |= NETIF_F_TSO;
5662 netdev->vlan_features |= NETIF_F_TSO6;
5663 netdev->vlan_features |= NETIF_F_HW_CSUM;
5664 netdev->vlan_features |= NETIF_F_SG;
5666 if (pci_using_dac)
5667 netdev->features |= NETIF_F_HIGHDMA;
5669 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5670 adapter->flags |= FLAG_MNG_PT_ENABLED;
5673 * before reading the NVM, reset the controller to
5674 * put the device in a known good starting state
5676 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5679 * systems with ASPM and others may see the checksum fail on the first
5680 * attempt. Let's give it a few tries
5682 for (i = 0;; i++) {
5683 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5684 break;
5685 if (i == 2) {
5686 e_err("The NVM Checksum Is Not Valid\n");
5687 err = -EIO;
5688 goto err_eeprom;
5692 e1000_eeprom_checks(adapter);
5694 /* copy the MAC address */
5695 if (e1000e_read_mac_addr(&adapter->hw))
5696 e_err("NVM Read Error while reading MAC address\n");
5698 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5699 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5701 if (!is_valid_ether_addr(netdev->perm_addr)) {
5702 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5703 err = -EIO;
5704 goto err_eeprom;
5707 init_timer(&adapter->watchdog_timer);
5708 adapter->watchdog_timer.function = &e1000_watchdog;
5709 adapter->watchdog_timer.data = (unsigned long) adapter;
5711 init_timer(&adapter->phy_info_timer);
5712 adapter->phy_info_timer.function = &e1000_update_phy_info;
5713 adapter->phy_info_timer.data = (unsigned long) adapter;
5715 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5716 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5717 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5718 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5719 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5721 /* Initialize link parameters. User can change them with ethtool */
5722 adapter->hw.mac.autoneg = 1;
5723 adapter->fc_autoneg = 1;
5724 adapter->hw.fc.requested_mode = e1000_fc_default;
5725 adapter->hw.fc.current_mode = e1000_fc_default;
5726 adapter->hw.phy.autoneg_advertised = 0x2f;
5728 /* ring size defaults */
5729 adapter->rx_ring->count = 256;
5730 adapter->tx_ring->count = 256;
5733 * Initial Wake on LAN setting - If APM wake is enabled in
5734 * the EEPROM, enable the ACPI Magic Packet filter
5736 if (adapter->flags & FLAG_APME_IN_WUC) {
5737 /* APME bit in EEPROM is mapped to WUC.APME */
5738 eeprom_data = er32(WUC);
5739 eeprom_apme_mask = E1000_WUC_APME;
5740 if (eeprom_data & E1000_WUC_PHY_WAKE)
5741 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5742 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5743 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5744 (adapter->hw.bus.func == 1))
5745 e1000_read_nvm(&adapter->hw,
5746 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5747 else
5748 e1000_read_nvm(&adapter->hw,
5749 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5752 /* fetch WoL from EEPROM */
5753 if (eeprom_data & eeprom_apme_mask)
5754 adapter->eeprom_wol |= E1000_WUFC_MAG;
5757 * now that we have the eeprom settings, apply the special cases
5758 * where the eeprom may be wrong or the board simply won't support
5759 * wake on lan on a particular port
5761 if (!(adapter->flags & FLAG_HAS_WOL))
5762 adapter->eeprom_wol = 0;
5764 /* initialize the wol settings based on the eeprom settings */
5765 adapter->wol = adapter->eeprom_wol;
5766 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5768 /* save off EEPROM version number */
5769 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5771 /* reset the hardware with the new settings */
5772 e1000e_reset(adapter);
5775 * If the controller has AMT, do not set DRV_LOAD until the interface
5776 * is up. For all other cases, let the f/w know that the h/w is now
5777 * under the control of the driver.
5779 if (!(adapter->flags & FLAG_HAS_AMT))
5780 e1000_get_hw_control(adapter);
5782 strcpy(netdev->name, "eth%d");
5783 err = register_netdev(netdev);
5784 if (err)
5785 goto err_register;
5787 /* carrier off reporting is important to ethtool even BEFORE open */
5788 netif_carrier_off(netdev);
5790 e1000_print_device_info(adapter);
5792 if (pci_dev_run_wake(pdev))
5793 pm_runtime_put_noidle(&pdev->dev);
5795 return 0;
5797 err_register:
5798 if (!(adapter->flags & FLAG_HAS_AMT))
5799 e1000_release_hw_control(adapter);
5800 err_eeprom:
5801 if (!e1000_check_reset_block(&adapter->hw))
5802 e1000_phy_hw_reset(&adapter->hw);
5803 err_hw_init:
5805 kfree(adapter->tx_ring);
5806 kfree(adapter->rx_ring);
5807 err_sw_init:
5808 if (adapter->hw.flash_address)
5809 iounmap(adapter->hw.flash_address);
5810 e1000e_reset_interrupt_capability(adapter);
5811 err_flashmap:
5812 iounmap(adapter->hw.hw_addr);
5813 err_ioremap:
5814 free_netdev(netdev);
5815 err_alloc_etherdev:
5816 pci_release_selected_regions(pdev,
5817 pci_select_bars(pdev, IORESOURCE_MEM));
5818 err_pci_reg:
5819 err_dma:
5820 pci_disable_device(pdev);
5821 return err;
5825 * e1000_remove - Device Removal Routine
5826 * @pdev: PCI device information struct
5828 * e1000_remove is called by the PCI subsystem to alert the driver
5829 * that it should release a PCI device. The could be caused by a
5830 * Hot-Plug event, or because the driver is going to be removed from
5831 * memory.
5833 static void __devexit e1000_remove(struct pci_dev *pdev)
5835 struct net_device *netdev = pci_get_drvdata(pdev);
5836 struct e1000_adapter *adapter = netdev_priv(netdev);
5837 bool down = test_bit(__E1000_DOWN, &adapter->state);
5840 * flush_scheduled work may reschedule our watchdog task, so
5841 * explicitly disable watchdog tasks from being rescheduled
5843 if (!down)
5844 set_bit(__E1000_DOWN, &adapter->state);
5845 del_timer_sync(&adapter->watchdog_timer);
5846 del_timer_sync(&adapter->phy_info_timer);
5848 cancel_work_sync(&adapter->reset_task);
5849 cancel_work_sync(&adapter->watchdog_task);
5850 cancel_work_sync(&adapter->downshift_task);
5851 cancel_work_sync(&adapter->update_phy_task);
5852 cancel_work_sync(&adapter->print_hang_task);
5853 flush_scheduled_work();
5855 if (!(netdev->flags & IFF_UP))
5856 e1000_power_down_phy(adapter);
5858 /* Don't lie to e1000_close() down the road. */
5859 if (!down)
5860 clear_bit(__E1000_DOWN, &adapter->state);
5861 unregister_netdev(netdev);
5863 if (pci_dev_run_wake(pdev))
5864 pm_runtime_get_noresume(&pdev->dev);
5867 * Release control of h/w to f/w. If f/w is AMT enabled, this
5868 * would have already happened in close and is redundant.
5870 e1000_release_hw_control(adapter);
5872 e1000e_reset_interrupt_capability(adapter);
5873 kfree(adapter->tx_ring);
5874 kfree(adapter->rx_ring);
5876 iounmap(adapter->hw.hw_addr);
5877 if (adapter->hw.flash_address)
5878 iounmap(adapter->hw.flash_address);
5879 pci_release_selected_regions(pdev,
5880 pci_select_bars(pdev, IORESOURCE_MEM));
5882 free_netdev(netdev);
5884 /* AER disable */
5885 pci_disable_pcie_error_reporting(pdev);
5887 pci_disable_device(pdev);
5890 /* PCI Error Recovery (ERS) */
5891 static struct pci_error_handlers e1000_err_handler = {
5892 .error_detected = e1000_io_error_detected,
5893 .slot_reset = e1000_io_slot_reset,
5894 .resume = e1000_io_resume,
5897 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5917 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5918 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5919 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5921 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5922 board_80003es2lan },
5923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5924 board_80003es2lan },
5925 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5926 board_80003es2lan },
5927 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5928 board_80003es2lan },
5930 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5931 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5932 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5933 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5934 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5935 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5936 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5937 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5943 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5947 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5953 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
5957 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5958 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5962 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
5963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
5965 { } /* terminate list */
5967 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5969 #ifdef CONFIG_PM_OPS
5970 static const struct dev_pm_ops e1000_pm_ops = {
5971 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
5972 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
5973 e1000_runtime_resume, e1000_idle)
5975 #endif
5977 /* PCI Device API Driver */
5978 static struct pci_driver e1000_driver = {
5979 .name = e1000e_driver_name,
5980 .id_table = e1000_pci_tbl,
5981 .probe = e1000_probe,
5982 .remove = __devexit_p(e1000_remove),
5983 #ifdef CONFIG_PM_OPS
5984 .driver.pm = &e1000_pm_ops,
5985 #endif
5986 .shutdown = e1000_shutdown,
5987 .err_handler = &e1000_err_handler
5991 * e1000_init_module - Driver Registration Routine
5993 * e1000_init_module is the first routine called when the driver is
5994 * loaded. All it does is register with the PCI subsystem.
5996 static int __init e1000_init_module(void)
5998 int ret;
5999 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6000 e1000e_driver_version);
6001 pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6002 ret = pci_register_driver(&e1000_driver);
6004 return ret;
6006 module_init(e1000_init_module);
6009 * e1000_exit_module - Driver Exit Cleanup Routine
6011 * e1000_exit_module is called just before the driver is removed
6012 * from memory.
6014 static void __exit e1000_exit_module(void)
6016 pci_unregister_driver(&e1000_driver);
6018 module_exit(e1000_exit_module);
6021 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6022 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6023 MODULE_LICENSE("GPL");
6024 MODULE_VERSION(DRV_VERSION);
6026 /* e1000_main.c */