RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / cxgb3 / cxgb3_offload.c
blobc6485b39eb0e630c67a5f91cd683ab7365362928
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <asm/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
44 #include "common.h"
45 #include "regs.h"
46 #include "cxgb3_ioctl.h"
47 #include "cxgb3_ctl_defs.h"
48 #include "cxgb3_defs.h"
49 #include "l2t.h"
50 #include "firmware_exports.h"
51 #include "cxgb3_offload.h"
53 static LIST_HEAD(client_list);
54 static LIST_HEAD(ofld_dev_list);
55 static DEFINE_MUTEX(cxgb3_db_lock);
57 static DEFINE_RWLOCK(adapter_list_lock);
58 static LIST_HEAD(adapter_list);
60 static const unsigned int MAX_ATIDS = 64 * 1024;
61 static const unsigned int ATID_BASE = 0x10000;
63 static inline int offload_activated(struct t3cdev *tdev)
65 const struct adapter *adapter = tdev2adap(tdev);
67 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
70 /**
71 * cxgb3_register_client - register an offload client
72 * @client: the client
74 * Add the client to the client list,
75 * and call backs the client for each activated offload device
77 void cxgb3_register_client(struct cxgb3_client *client)
79 struct t3cdev *tdev;
81 mutex_lock(&cxgb3_db_lock);
82 list_add_tail(&client->client_list, &client_list);
84 if (client->add) {
85 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
86 if (offload_activated(tdev))
87 client->add(tdev);
90 mutex_unlock(&cxgb3_db_lock);
93 EXPORT_SYMBOL(cxgb3_register_client);
95 /**
96 * cxgb3_unregister_client - unregister an offload client
97 * @client: the client
99 * Remove the client to the client list,
100 * and call backs the client for each activated offload device.
102 void cxgb3_unregister_client(struct cxgb3_client *client)
104 struct t3cdev *tdev;
106 mutex_lock(&cxgb3_db_lock);
107 list_del(&client->client_list);
109 if (client->remove) {
110 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
111 if (offload_activated(tdev))
112 client->remove(tdev);
115 mutex_unlock(&cxgb3_db_lock);
118 EXPORT_SYMBOL(cxgb3_unregister_client);
121 * cxgb3_add_clients - activate registered clients for an offload device
122 * @tdev: the offload device
124 * Call backs all registered clients once a offload device is activated
126 void cxgb3_add_clients(struct t3cdev *tdev)
128 struct cxgb3_client *client;
130 mutex_lock(&cxgb3_db_lock);
131 list_for_each_entry(client, &client_list, client_list) {
132 if (client->add)
133 client->add(tdev);
135 mutex_unlock(&cxgb3_db_lock);
139 * cxgb3_remove_clients - deactivates registered clients
140 * for an offload device
141 * @tdev: the offload device
143 * Call backs all registered clients once a offload device is deactivated
145 void cxgb3_remove_clients(struct t3cdev *tdev)
147 struct cxgb3_client *client;
149 mutex_lock(&cxgb3_db_lock);
150 list_for_each_entry(client, &client_list, client_list) {
151 if (client->remove)
152 client->remove(tdev);
154 mutex_unlock(&cxgb3_db_lock);
157 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
159 struct cxgb3_client *client;
161 mutex_lock(&cxgb3_db_lock);
162 list_for_each_entry(client, &client_list, client_list) {
163 if (client->event_handler)
164 client->event_handler(tdev, event, port);
166 mutex_unlock(&cxgb3_db_lock);
169 static struct net_device *get_iff_from_mac(struct adapter *adapter,
170 const unsigned char *mac,
171 unsigned int vlan)
173 int i;
175 for_each_port(adapter, i) {
176 struct vlan_group *grp;
177 struct net_device *dev = adapter->port[i];
178 const struct port_info *p = netdev_priv(dev);
180 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
181 if (vlan && vlan != VLAN_VID_MASK) {
182 grp = p->vlan_grp;
183 dev = NULL;
184 if (grp)
185 dev = vlan_group_get_device(grp, vlan);
186 } else
187 while (dev->master)
188 dev = dev->master;
189 return dev;
192 return NULL;
195 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
196 void *data)
198 int i;
199 int ret = 0;
200 unsigned int val = 0;
201 struct ulp_iscsi_info *uiip = data;
203 switch (req) {
204 case ULP_ISCSI_GET_PARAMS:
205 uiip->pdev = adapter->pdev;
206 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
207 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
208 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
210 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
211 for (i = 0; i < 4; i++, val >>= 8)
212 uiip->pgsz_factor[i] = val & 0xFF;
214 val = t3_read_reg(adapter, A_TP_PARA_REG7);
215 uiip->max_txsz =
216 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
217 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
219 * On tx, the iscsi pdu has to be <= tx page size and has to
220 * fit into the Tx PM FIFO.
222 val = min(adapter->params.tp.tx_pg_size,
223 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
224 uiip->max_txsz = min(val, uiip->max_txsz);
226 /* set MaxRxData to 16224 */
227 val = t3_read_reg(adapter, A_TP_PARA_REG2);
228 if ((val >> S_MAXRXDATA) != 0x3f60) {
229 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
230 val |= V_MAXRXDATA(0x3f60);
231 printk(KERN_INFO
232 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
233 adapter->name, val);
234 t3_write_reg(adapter, A_TP_PARA_REG2, val);
238 * on rx, the iscsi pdu has to be < rx page size and the
239 * the max rx data length programmed in TP
241 val = min(adapter->params.tp.rx_pg_size,
242 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
243 S_MAXRXDATA) & M_MAXRXDATA);
244 uiip->max_rxsz = min(val, uiip->max_rxsz);
245 break;
246 case ULP_ISCSI_SET_PARAMS:
247 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
248 /* program the ddp page sizes */
249 for (i = 0; i < 4; i++)
250 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
251 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
252 printk(KERN_INFO
253 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
254 adapter->name, val, uiip->pgsz_factor[0],
255 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
256 uiip->pgsz_factor[3]);
257 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
259 break;
260 default:
261 ret = -EOPNOTSUPP;
263 return ret;
266 /* Response queue used for RDMA events. */
267 #define ASYNC_NOTIF_RSPQ 0
269 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
271 int ret = 0;
273 switch (req) {
274 case RDMA_GET_PARAMS: {
275 struct rdma_info *rdma = data;
276 struct pci_dev *pdev = adapter->pdev;
278 rdma->udbell_physbase = pci_resource_start(pdev, 2);
279 rdma->udbell_len = pci_resource_len(pdev, 2);
280 rdma->tpt_base =
281 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
282 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
283 rdma->pbl_base =
284 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
285 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
286 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
287 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
288 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
289 rdma->pdev = pdev;
290 break;
292 case RDMA_CQ_OP:{
293 unsigned long flags;
294 struct rdma_cq_op *rdma = data;
296 /* may be called in any context */
297 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
298 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
299 rdma->credits);
300 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
301 break;
303 case RDMA_GET_MEM:{
304 struct ch_mem_range *t = data;
305 struct mc7 *mem;
307 if ((t->addr & 7) || (t->len & 7))
308 return -EINVAL;
309 if (t->mem_id == MEM_CM)
310 mem = &adapter->cm;
311 else if (t->mem_id == MEM_PMRX)
312 mem = &adapter->pmrx;
313 else if (t->mem_id == MEM_PMTX)
314 mem = &adapter->pmtx;
315 else
316 return -EINVAL;
318 ret =
319 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
320 (u64 *) t->buf);
321 if (ret)
322 return ret;
323 break;
325 case RDMA_CQ_SETUP:{
326 struct rdma_cq_setup *rdma = data;
328 spin_lock_irq(&adapter->sge.reg_lock);
329 ret =
330 t3_sge_init_cqcntxt(adapter, rdma->id,
331 rdma->base_addr, rdma->size,
332 ASYNC_NOTIF_RSPQ,
333 rdma->ovfl_mode, rdma->credits,
334 rdma->credit_thres);
335 spin_unlock_irq(&adapter->sge.reg_lock);
336 break;
338 case RDMA_CQ_DISABLE:
339 spin_lock_irq(&adapter->sge.reg_lock);
340 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
341 spin_unlock_irq(&adapter->sge.reg_lock);
342 break;
343 case RDMA_CTRL_QP_SETUP:{
344 struct rdma_ctrlqp_setup *rdma = data;
346 spin_lock_irq(&adapter->sge.reg_lock);
347 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
348 SGE_CNTXT_RDMA,
349 ASYNC_NOTIF_RSPQ,
350 rdma->base_addr, rdma->size,
351 FW_RI_TID_START, 1, 0);
352 spin_unlock_irq(&adapter->sge.reg_lock);
353 break;
355 case RDMA_GET_MIB: {
356 spin_lock(&adapter->stats_lock);
357 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
358 spin_unlock(&adapter->stats_lock);
359 break;
361 default:
362 ret = -EOPNOTSUPP;
364 return ret;
367 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
369 struct adapter *adapter = tdev2adap(tdev);
370 struct tid_range *tid;
371 struct mtutab *mtup;
372 struct iff_mac *iffmacp;
373 struct ddp_params *ddpp;
374 struct adap_ports *ports;
375 struct ofld_page_info *rx_page_info;
376 struct tp_params *tp = &adapter->params.tp;
377 int i;
379 switch (req) {
380 case GET_MAX_OUTSTANDING_WR:
381 *(unsigned int *)data = FW_WR_NUM;
382 break;
383 case GET_WR_LEN:
384 *(unsigned int *)data = WR_FLITS;
385 break;
386 case GET_TX_MAX_CHUNK:
387 *(unsigned int *)data = 1 << 20; /* 1MB */
388 break;
389 case GET_TID_RANGE:
390 tid = data;
391 tid->num = t3_mc5_size(&adapter->mc5) -
392 adapter->params.mc5.nroutes -
393 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
394 tid->base = 0;
395 break;
396 case GET_STID_RANGE:
397 tid = data;
398 tid->num = adapter->params.mc5.nservers;
399 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
400 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
401 break;
402 case GET_L2T_CAPACITY:
403 *(unsigned int *)data = 2048;
404 break;
405 case GET_MTUS:
406 mtup = data;
407 mtup->size = NMTUS;
408 mtup->mtus = adapter->params.mtus;
409 break;
410 case GET_IFF_FROM_MAC:
411 iffmacp = data;
412 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
413 iffmacp->vlan_tag &
414 VLAN_VID_MASK);
415 break;
416 case GET_DDP_PARAMS:
417 ddpp = data;
418 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
419 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
420 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
421 break;
422 case GET_PORTS:
423 ports = data;
424 ports->nports = adapter->params.nports;
425 for_each_port(adapter, i)
426 ports->lldevs[i] = adapter->port[i];
427 break;
428 case ULP_ISCSI_GET_PARAMS:
429 case ULP_ISCSI_SET_PARAMS:
430 if (!offload_running(adapter))
431 return -EAGAIN;
432 return cxgb_ulp_iscsi_ctl(adapter, req, data);
433 case RDMA_GET_PARAMS:
434 case RDMA_CQ_OP:
435 case RDMA_CQ_SETUP:
436 case RDMA_CQ_DISABLE:
437 case RDMA_CTRL_QP_SETUP:
438 case RDMA_GET_MEM:
439 case RDMA_GET_MIB:
440 if (!offload_running(adapter))
441 return -EAGAIN;
442 return cxgb_rdma_ctl(adapter, req, data);
443 case GET_RX_PAGE_INFO:
444 rx_page_info = data;
445 rx_page_info->page_size = tp->rx_pg_size;
446 rx_page_info->num = tp->rx_num_pgs;
447 break;
448 case GET_ISCSI_IPV4ADDR: {
449 struct iscsi_ipv4addr *p = data;
450 struct port_info *pi = netdev_priv(p->dev);
451 p->ipv4addr = pi->iscsi_ipv4addr;
452 break;
454 case GET_EMBEDDED_INFO: {
455 struct ch_embedded_info *e = data;
457 spin_lock(&adapter->stats_lock);
458 t3_get_fw_version(adapter, &e->fw_vers);
459 t3_get_tp_version(adapter, &e->tp_vers);
460 spin_unlock(&adapter->stats_lock);
461 break;
463 default:
464 return -EOPNOTSUPP;
466 return 0;
470 * Dummy handler for Rx offload packets in case we get an offload packet before
471 * proper processing is setup. This complains and drops the packet as it isn't
472 * normal to get offload packets at this stage.
474 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
475 int n)
477 while (n--)
478 dev_kfree_skb_any(skbs[n]);
479 return 0;
482 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
486 void cxgb3_set_dummy_ops(struct t3cdev *dev)
488 dev->recv = rx_offload_blackhole;
489 dev->neigh_update = dummy_neigh_update;
493 * Free an active-open TID.
495 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
497 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
498 union active_open_entry *p = atid2entry(t, atid);
499 void *ctx = p->t3c_tid.ctx;
501 spin_lock_bh(&t->atid_lock);
502 p->next = t->afree;
503 t->afree = p;
504 t->atids_in_use--;
505 spin_unlock_bh(&t->atid_lock);
507 return ctx;
510 EXPORT_SYMBOL(cxgb3_free_atid);
513 * Free a server TID and return it to the free pool.
515 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
517 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
518 union listen_entry *p = stid2entry(t, stid);
520 spin_lock_bh(&t->stid_lock);
521 p->next = t->sfree;
522 t->sfree = p;
523 t->stids_in_use--;
524 spin_unlock_bh(&t->stid_lock);
527 EXPORT_SYMBOL(cxgb3_free_stid);
529 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
530 void *ctx, unsigned int tid)
532 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
534 t->tid_tab[tid].client = client;
535 t->tid_tab[tid].ctx = ctx;
536 atomic_inc(&t->tids_in_use);
539 EXPORT_SYMBOL(cxgb3_insert_tid);
542 * Populate a TID_RELEASE WR. The skb must be already propely sized.
544 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
546 struct cpl_tid_release *req;
548 skb->priority = CPL_PRIORITY_SETUP;
549 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
550 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
551 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
554 static void t3_process_tid_release_list(struct work_struct *work)
556 struct t3c_data *td = container_of(work, struct t3c_data,
557 tid_release_task);
558 struct sk_buff *skb;
559 struct t3cdev *tdev = td->dev;
562 spin_lock_bh(&td->tid_release_lock);
563 while (td->tid_release_list) {
564 struct t3c_tid_entry *p = td->tid_release_list;
566 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
567 spin_unlock_bh(&td->tid_release_lock);
569 skb = alloc_skb(sizeof(struct cpl_tid_release),
570 GFP_KERNEL);
571 if (!skb)
572 skb = td->nofail_skb;
573 if (!skb) {
574 spin_lock_bh(&td->tid_release_lock);
575 p->ctx = (void *)td->tid_release_list;
576 td->tid_release_list = (struct t3c_tid_entry *)p;
577 break;
579 mk_tid_release(skb, p - td->tid_maps.tid_tab);
580 cxgb3_ofld_send(tdev, skb);
581 p->ctx = NULL;
582 if (skb == td->nofail_skb)
583 td->nofail_skb =
584 alloc_skb(sizeof(struct cpl_tid_release),
585 GFP_KERNEL);
586 spin_lock_bh(&td->tid_release_lock);
588 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
589 spin_unlock_bh(&td->tid_release_lock);
591 if (!td->nofail_skb)
592 td->nofail_skb =
593 alloc_skb(sizeof(struct cpl_tid_release),
594 GFP_KERNEL);
597 /* use ctx as a next pointer in the tid release list */
598 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
600 struct t3c_data *td = T3C_DATA(tdev);
601 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
603 spin_lock_bh(&td->tid_release_lock);
604 p->ctx = (void *)td->tid_release_list;
605 p->client = NULL;
606 td->tid_release_list = p;
607 if (!p->ctx || td->release_list_incomplete)
608 schedule_work(&td->tid_release_task);
609 spin_unlock_bh(&td->tid_release_lock);
612 EXPORT_SYMBOL(cxgb3_queue_tid_release);
615 * Remove a tid from the TID table. A client may defer processing its last
616 * CPL message if it is locked at the time it arrives, and while the message
617 * sits in the client's backlog the TID may be reused for another connection.
618 * To handle this we atomically switch the TID association if it still points
619 * to the original client context.
621 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
623 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
625 BUG_ON(tid >= t->ntids);
626 if (tdev->type == T3A)
627 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
628 else {
629 struct sk_buff *skb;
631 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
632 if (likely(skb)) {
633 mk_tid_release(skb, tid);
634 cxgb3_ofld_send(tdev, skb);
635 t->tid_tab[tid].ctx = NULL;
636 } else
637 cxgb3_queue_tid_release(tdev, tid);
639 atomic_dec(&t->tids_in_use);
642 EXPORT_SYMBOL(cxgb3_remove_tid);
644 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
645 void *ctx)
647 int atid = -1;
648 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
650 spin_lock_bh(&t->atid_lock);
651 if (t->afree &&
652 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
653 t->ntids) {
654 union active_open_entry *p = t->afree;
656 atid = (p - t->atid_tab) + t->atid_base;
657 t->afree = p->next;
658 p->t3c_tid.ctx = ctx;
659 p->t3c_tid.client = client;
660 t->atids_in_use++;
662 spin_unlock_bh(&t->atid_lock);
663 return atid;
666 EXPORT_SYMBOL(cxgb3_alloc_atid);
668 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
669 void *ctx)
671 int stid = -1;
672 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
674 spin_lock_bh(&t->stid_lock);
675 if (t->sfree) {
676 union listen_entry *p = t->sfree;
678 stid = (p - t->stid_tab) + t->stid_base;
679 t->sfree = p->next;
680 p->t3c_tid.ctx = ctx;
681 p->t3c_tid.client = client;
682 t->stids_in_use++;
684 spin_unlock_bh(&t->stid_lock);
685 return stid;
688 EXPORT_SYMBOL(cxgb3_alloc_stid);
690 /* Get the t3cdev associated with a net_device */
691 struct t3cdev *dev2t3cdev(struct net_device *dev)
693 const struct port_info *pi = netdev_priv(dev);
695 return (struct t3cdev *)pi->adapter;
698 EXPORT_SYMBOL(dev2t3cdev);
700 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
702 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
704 if (rpl->status != CPL_ERR_NONE)
705 printk(KERN_ERR
706 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
707 rpl->status, GET_TID(rpl));
709 return CPL_RET_BUF_DONE;
712 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
714 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
716 if (rpl->status != CPL_ERR_NONE)
717 printk(KERN_ERR
718 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
719 rpl->status, GET_TID(rpl));
721 return CPL_RET_BUF_DONE;
724 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
726 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
728 if (rpl->status != CPL_ERR_NONE)
729 printk(KERN_ERR
730 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
731 rpl->status, GET_TID(rpl));
733 return CPL_RET_BUF_DONE;
736 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
738 struct cpl_act_open_rpl *rpl = cplhdr(skb);
739 unsigned int atid = G_TID(ntohl(rpl->atid));
740 struct t3c_tid_entry *t3c_tid;
742 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
743 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
744 t3c_tid->client->handlers &&
745 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
746 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
747 t3c_tid->
748 ctx);
749 } else {
750 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
751 dev->name, CPL_ACT_OPEN_RPL);
752 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
756 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
758 union opcode_tid *p = cplhdr(skb);
759 unsigned int stid = G_TID(ntohl(p->opcode_tid));
760 struct t3c_tid_entry *t3c_tid;
762 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
763 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
764 t3c_tid->client->handlers[p->opcode]) {
765 return t3c_tid->client->handlers[p->opcode] (dev, skb,
766 t3c_tid->ctx);
767 } else {
768 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
769 dev->name, p->opcode);
770 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
774 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
776 union opcode_tid *p = cplhdr(skb);
777 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
778 struct t3c_tid_entry *t3c_tid;
780 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
781 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
782 t3c_tid->client->handlers[p->opcode]) {
783 return t3c_tid->client->handlers[p->opcode]
784 (dev, skb, t3c_tid->ctx);
785 } else {
786 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
787 dev->name, p->opcode);
788 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
792 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
794 struct cpl_pass_accept_req *req = cplhdr(skb);
795 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
796 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
797 struct t3c_tid_entry *t3c_tid;
798 unsigned int tid = GET_TID(req);
800 if (unlikely(tid >= t->ntids)) {
801 printk("%s: passive open TID %u too large\n",
802 dev->name, tid);
803 t3_fatal_err(tdev2adap(dev));
804 return CPL_RET_BUF_DONE;
807 t3c_tid = lookup_stid(t, stid);
808 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
809 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
810 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
811 (dev, skb, t3c_tid->ctx);
812 } else {
813 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
814 dev->name, CPL_PASS_ACCEPT_REQ);
815 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
820 * Returns an sk_buff for a reply CPL message of size len. If the input
821 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
822 * is allocated. The input skb must be of size at least len. Note that this
823 * operation does not destroy the original skb data even if it decides to reuse
824 * the buffer.
826 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
827 gfp_t gfp)
829 if (likely(!skb_cloned(skb))) {
830 BUG_ON(skb->len < len);
831 __skb_trim(skb, len);
832 skb_get(skb);
833 } else {
834 skb = alloc_skb(len, gfp);
835 if (skb)
836 __skb_put(skb, len);
838 return skb;
841 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
843 union opcode_tid *p = cplhdr(skb);
844 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
845 struct t3c_tid_entry *t3c_tid;
847 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
848 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
849 t3c_tid->client->handlers[p->opcode]) {
850 return t3c_tid->client->handlers[p->opcode]
851 (dev, skb, t3c_tid->ctx);
852 } else {
853 struct cpl_abort_req_rss *req = cplhdr(skb);
854 struct cpl_abort_rpl *rpl;
855 struct sk_buff *reply_skb;
856 unsigned int tid = GET_TID(req);
857 u8 cmd = req->status;
859 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
860 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
861 goto out;
863 reply_skb = cxgb3_get_cpl_reply_skb(skb,
864 sizeof(struct
865 cpl_abort_rpl),
866 GFP_ATOMIC);
868 if (!reply_skb) {
869 printk("do_abort_req_rss: couldn't get skb!\n");
870 goto out;
872 reply_skb->priority = CPL_PRIORITY_DATA;
873 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
874 rpl = cplhdr(reply_skb);
875 rpl->wr.wr_hi =
876 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
877 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
878 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
879 rpl->cmd = cmd;
880 cxgb3_ofld_send(dev, reply_skb);
881 out:
882 return CPL_RET_BUF_DONE;
886 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
888 struct cpl_act_establish *req = cplhdr(skb);
889 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
890 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
891 struct t3c_tid_entry *t3c_tid;
892 unsigned int tid = GET_TID(req);
894 if (unlikely(tid >= t->ntids)) {
895 printk("%s: active establish TID %u too large\n",
896 dev->name, tid);
897 t3_fatal_err(tdev2adap(dev));
898 return CPL_RET_BUF_DONE;
901 t3c_tid = lookup_atid(t, atid);
902 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
903 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
904 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
905 (dev, skb, t3c_tid->ctx);
906 } else {
907 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
908 dev->name, CPL_ACT_ESTABLISH);
909 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
913 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
915 struct cpl_trace_pkt *p = cplhdr(skb);
917 skb->protocol = htons(0xffff);
918 skb->dev = dev->lldev;
919 skb_pull(skb, sizeof(*p));
920 skb_reset_mac_header(skb);
921 netif_receive_skb(skb);
922 return 0;
926 * That skb would better have come from process_responses() where we abuse
927 * ->priority and ->csum to carry our data. NB: if we get to per-arch
928 * ->csum, the things might get really interesting here.
931 static inline u32 get_hwtid(struct sk_buff *skb)
933 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
936 static inline u32 get_opcode(struct sk_buff *skb)
938 return G_OPCODE(ntohl((__force __be32)skb->csum));
941 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
943 unsigned int hwtid = get_hwtid(skb);
944 unsigned int opcode = get_opcode(skb);
945 struct t3c_tid_entry *t3c_tid;
947 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
948 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
949 t3c_tid->client->handlers[opcode]) {
950 return t3c_tid->client->handlers[opcode] (dev, skb,
951 t3c_tid->ctx);
952 } else {
953 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
954 dev->name, opcode);
955 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
959 static int nb_callback(struct notifier_block *self, unsigned long event,
960 void *ctx)
962 switch (event) {
963 case (NETEVENT_NEIGH_UPDATE):{
964 cxgb_neigh_update((struct neighbour *)ctx);
965 break;
967 case (NETEVENT_PMTU_UPDATE):
968 break;
969 case (NETEVENT_REDIRECT):{
970 struct netevent_redirect *nr = ctx;
971 cxgb_redirect(nr->old, nr->new);
972 cxgb_neigh_update(nr->new->neighbour);
973 break;
975 default:
976 break;
978 return 0;
981 static struct notifier_block nb = {
982 .notifier_call = nb_callback
986 * Process a received packet with an unknown/unexpected CPL opcode.
988 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
990 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
991 *skb->data);
992 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
996 * Handlers for each CPL opcode
998 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1001 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1002 * to unregister an existing handler.
1004 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1006 if (opcode < NUM_CPL_CMDS)
1007 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1008 else
1009 printk(KERN_ERR "T3C: handler registration for "
1010 "opcode %x failed\n", opcode);
1013 EXPORT_SYMBOL(t3_register_cpl_handler);
1016 * T3CDEV's receive method.
1018 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1020 while (n--) {
1021 struct sk_buff *skb = *skbs++;
1022 unsigned int opcode = get_opcode(skb);
1023 int ret = cpl_handlers[opcode] (dev, skb);
1025 #if VALIDATE_TID
1026 if (ret & CPL_RET_UNKNOWN_TID) {
1027 union opcode_tid *p = cplhdr(skb);
1029 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1030 "unknown TID %u\n", dev->name, opcode,
1031 G_TID(ntohl(p->opcode_tid)));
1033 #endif
1034 if (ret & CPL_RET_BUF_DONE)
1035 kfree_skb(skb);
1037 return 0;
1041 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1045 int r;
1047 local_bh_disable();
1048 r = dev->send(dev, skb);
1049 local_bh_enable();
1050 return r;
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1055 static int is_offloading(struct net_device *dev)
1057 struct adapter *adapter;
1058 int i;
1060 read_lock_bh(&adapter_list_lock);
1061 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062 for_each_port(adapter, i) {
1063 if (dev == adapter->port[i]) {
1064 read_unlock_bh(&adapter_list_lock);
1065 return 1;
1069 read_unlock_bh(&adapter_list_lock);
1070 return 0;
1073 void cxgb_neigh_update(struct neighbour *neigh)
1075 struct net_device *dev = neigh->dev;
1077 if (dev && (is_offloading(dev))) {
1078 struct t3cdev *tdev = dev2t3cdev(dev);
1080 BUG_ON(!tdev);
1081 t3_l2t_update(tdev, neigh);
1085 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1087 struct sk_buff *skb;
1088 struct cpl_set_tcb_field *req;
1090 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1091 if (!skb) {
1092 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1093 return;
1095 skb->priority = CPL_PRIORITY_CONTROL;
1096 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1097 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1098 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1099 req->reply = 0;
1100 req->cpu_idx = 0;
1101 req->word = htons(W_TCB_L2T_IX);
1102 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1103 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1104 tdev->send(tdev, skb);
1107 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1109 struct net_device *olddev, *newdev;
1110 struct tid_info *ti;
1111 struct t3cdev *tdev;
1112 u32 tid;
1113 int update_tcb;
1114 struct l2t_entry *e;
1115 struct t3c_tid_entry *te;
1117 olddev = old->neighbour->dev;
1118 newdev = new->neighbour->dev;
1119 if (!is_offloading(olddev))
1120 return;
1121 if (!is_offloading(newdev)) {
1122 printk(KERN_WARNING "%s: Redirect to non-offload "
1123 "device ignored.\n", __func__);
1124 return;
1126 tdev = dev2t3cdev(olddev);
1127 BUG_ON(!tdev);
1128 if (tdev != dev2t3cdev(newdev)) {
1129 printk(KERN_WARNING "%s: Redirect to different "
1130 "offload device ignored.\n", __func__);
1131 return;
1134 /* Add new L2T entry */
1135 e = t3_l2t_get(tdev, new->neighbour, newdev);
1136 if (!e) {
1137 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1138 __func__);
1139 return;
1142 /* Walk tid table and notify clients of dst change. */
1143 ti = &(T3C_DATA(tdev))->tid_maps;
1144 for (tid = 0; tid < ti->ntids; tid++) {
1145 te = lookup_tid(ti, tid);
1146 BUG_ON(!te);
1147 if (te && te->ctx && te->client && te->client->redirect) {
1148 update_tcb = te->client->redirect(te->ctx, old, new, e);
1149 if (update_tcb) {
1150 l2t_hold(L2DATA(tdev), e);
1151 set_l2t_ix(tdev, tid, e);
1155 l2t_release(L2DATA(tdev), e);
1159 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1160 * The allocated memory is cleared.
1162 void *cxgb_alloc_mem(unsigned long size)
1164 void *p = kmalloc(size, GFP_KERNEL);
1166 if (!p)
1167 p = vmalloc(size);
1168 if (p)
1169 memset(p, 0, size);
1170 return p;
1174 * Free memory allocated through t3_alloc_mem().
1176 void cxgb_free_mem(void *addr)
1178 if (is_vmalloc_addr(addr))
1179 vfree(addr);
1180 else
1181 kfree(addr);
1185 * Allocate and initialize the TID tables. Returns 0 on success.
1187 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1188 unsigned int natids, unsigned int nstids,
1189 unsigned int atid_base, unsigned int stid_base)
1191 unsigned long size = ntids * sizeof(*t->tid_tab) +
1192 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1194 t->tid_tab = cxgb_alloc_mem(size);
1195 if (!t->tid_tab)
1196 return -ENOMEM;
1198 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1199 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1200 t->ntids = ntids;
1201 t->nstids = nstids;
1202 t->stid_base = stid_base;
1203 t->sfree = NULL;
1204 t->natids = natids;
1205 t->atid_base = atid_base;
1206 t->afree = NULL;
1207 t->stids_in_use = t->atids_in_use = 0;
1208 atomic_set(&t->tids_in_use, 0);
1209 spin_lock_init(&t->stid_lock);
1210 spin_lock_init(&t->atid_lock);
1213 * Setup the free lists for stid_tab and atid_tab.
1215 if (nstids) {
1216 while (--nstids)
1217 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1218 t->sfree = t->stid_tab;
1220 if (natids) {
1221 while (--natids)
1222 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1223 t->afree = t->atid_tab;
1225 return 0;
1228 static void free_tid_maps(struct tid_info *t)
1230 cxgb_free_mem(t->tid_tab);
1233 static inline void add_adapter(struct adapter *adap)
1235 write_lock_bh(&adapter_list_lock);
1236 list_add_tail(&adap->adapter_list, &adapter_list);
1237 write_unlock_bh(&adapter_list_lock);
1240 static inline void remove_adapter(struct adapter *adap)
1242 write_lock_bh(&adapter_list_lock);
1243 list_del(&adap->adapter_list);
1244 write_unlock_bh(&adapter_list_lock);
1247 int cxgb3_offload_activate(struct adapter *adapter)
1249 struct t3cdev *dev = &adapter->tdev;
1250 int natids, err;
1251 struct t3c_data *t;
1252 struct tid_range stid_range, tid_range;
1253 struct mtutab mtutab;
1254 unsigned int l2t_capacity;
1256 t = kzalloc(sizeof(*t), GFP_KERNEL);
1257 if (!t)
1258 return -ENOMEM;
1260 err = -EOPNOTSUPP;
1261 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1262 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1263 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1264 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1265 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1266 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1267 goto out_free;
1269 err = -ENOMEM;
1270 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1271 if (!L2DATA(dev))
1272 goto out_free;
1274 natids = min(tid_range.num / 2, MAX_ATIDS);
1275 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1276 stid_range.num, ATID_BASE, stid_range.base);
1277 if (err)
1278 goto out_free_l2t;
1280 t->mtus = mtutab.mtus;
1281 t->nmtus = mtutab.size;
1283 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1284 spin_lock_init(&t->tid_release_lock);
1285 INIT_LIST_HEAD(&t->list_node);
1286 t->dev = dev;
1288 T3C_DATA(dev) = t;
1289 dev->recv = process_rx;
1290 dev->neigh_update = t3_l2t_update;
1292 /* Register netevent handler once */
1293 if (list_empty(&adapter_list))
1294 register_netevent_notifier(&nb);
1296 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1297 t->release_list_incomplete = 0;
1299 add_adapter(adapter);
1300 return 0;
1302 out_free_l2t:
1303 t3_free_l2t(L2DATA(dev));
1304 L2DATA(dev) = NULL;
1305 out_free:
1306 kfree(t);
1307 return err;
1310 void cxgb3_offload_deactivate(struct adapter *adapter)
1312 struct t3cdev *tdev = &adapter->tdev;
1313 struct t3c_data *t = T3C_DATA(tdev);
1315 remove_adapter(adapter);
1316 if (list_empty(&adapter_list))
1317 unregister_netevent_notifier(&nb);
1319 free_tid_maps(&t->tid_maps);
1320 T3C_DATA(tdev) = NULL;
1321 t3_free_l2t(L2DATA(tdev));
1322 L2DATA(tdev) = NULL;
1323 if (t->nofail_skb)
1324 kfree_skb(t->nofail_skb);
1325 kfree(t);
1328 static inline void register_tdev(struct t3cdev *tdev)
1330 static int unit;
1332 mutex_lock(&cxgb3_db_lock);
1333 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1334 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1335 mutex_unlock(&cxgb3_db_lock);
1338 static inline void unregister_tdev(struct t3cdev *tdev)
1340 mutex_lock(&cxgb3_db_lock);
1341 list_del(&tdev->ofld_dev_list);
1342 mutex_unlock(&cxgb3_db_lock);
1345 static inline int adap2type(struct adapter *adapter)
1347 int type = 0;
1349 switch (adapter->params.rev) {
1350 case T3_REV_A:
1351 type = T3A;
1352 break;
1353 case T3_REV_B:
1354 case T3_REV_B2:
1355 type = T3B;
1356 break;
1357 case T3_REV_C:
1358 type = T3C;
1359 break;
1361 return type;
1364 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1366 struct t3cdev *tdev = &adapter->tdev;
1368 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1370 cxgb3_set_dummy_ops(tdev);
1371 tdev->send = t3_offload_tx;
1372 tdev->ctl = cxgb_offload_ctl;
1373 tdev->type = adap2type(adapter);
1375 register_tdev(tdev);
1378 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1380 struct t3cdev *tdev = &adapter->tdev;
1382 tdev->recv = NULL;
1383 tdev->neigh_update = NULL;
1385 unregister_tdev(tdev);
1388 void __init cxgb3_offload_init(void)
1390 int i;
1392 for (i = 0; i < NUM_CPL_CMDS; ++i)
1393 cpl_handlers[i] = do_bad_cpl;
1395 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1396 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1397 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1398 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1399 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1400 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1401 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1402 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1403 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1404 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1405 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1406 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1407 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1408 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1409 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1410 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1411 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1412 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1413 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1414 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1415 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1416 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1417 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1418 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1419 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1420 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);