RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / 3c527.c
blobcd2408c4d2caeaac40cc21facb25d324b0ae52c8
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
27 /**
28 * DOC: Traps for the unwary
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
44 * DOC: Theory Of Operation
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
75 * DOC: Notes
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
85 #include <linux/module.h>
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
113 #include "3c527.h"
115 MODULE_LICENSE("GPL");
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
121 static const char* cardname = DRV_NAME;
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
128 static unsigned int mc32_debug = NET_DEBUG;
130 /* The number of low I/O ports used by the ethercard. */
131 #define MC32_IO_EXTENT 8
133 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
134 #define TX_RING_LEN 32 /* Typically the card supports 37 */
135 #define RX_RING_LEN 8 /* " " " */
137 /* Copy break point, see above for details.
138 * Setting to > 1512 effectively disables this feature. */
139 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
141 static const int WORKAROUND_82586=1;
143 /* Pointers to buffers and their on-card records */
144 struct mc32_ring_desc
146 volatile struct skb_header *p;
147 struct sk_buff *skb;
150 /* Information that needs to be kept for each board. */
151 struct mc32_local
153 int slot;
155 u32 base;
156 volatile struct mc32_mailbox *rx_box;
157 volatile struct mc32_mailbox *tx_box;
158 volatile struct mc32_mailbox *exec_box;
159 volatile struct mc32_stats *stats; /* Start of on-card statistics */
160 u16 tx_chain; /* Transmit list start offset */
161 u16 rx_chain; /* Receive list start offset */
162 u16 tx_len; /* Transmit list count */
163 u16 rx_len; /* Receive list count */
165 u16 xceiver_desired_state; /* HALTED or RUNNING */
166 u16 cmd_nonblocking; /* Thread is uninterested in command result */
167 u16 mc_reload_wait; /* A multicast load request is pending */
168 u32 mc_list_valid; /* True when the mclist is set */
170 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
171 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
173 atomic_t tx_count; /* buffers left */
174 atomic_t tx_ring_head; /* index to tx en-queue end */
175 u16 tx_ring_tail; /* index to tx de-queue end */
177 u16 rx_ring_tail; /* index to rx de-queue end */
179 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
180 struct completion execution_cmd; /* Card has completed an execute command */
181 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
184 /* The station (ethernet) address prefix, used for a sanity check. */
185 #define SA_ADDR0 0x02
186 #define SA_ADDR1 0x60
187 #define SA_ADDR2 0xAC
189 struct mca_adapters_t {
190 unsigned int id;
191 char *name;
194 static const struct mca_adapters_t mc32_adapters[] = {
195 { 0x0041, "3COM EtherLink MC/32" },
196 { 0x8EF5, "IBM High Performance Lan Adapter" },
197 { 0x0000, NULL }
201 /* Macros for ring index manipulations */
202 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
203 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
205 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
208 /* Index to functions, as function prototypes. */
209 static int mc32_probe1(struct net_device *dev, int ioaddr);
210 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
211 static int mc32_open(struct net_device *dev);
212 static void mc32_timeout(struct net_device *dev);
213 static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
214 struct net_device *dev);
215 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
216 static int mc32_close(struct net_device *dev);
217 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
218 static void mc32_set_multicast_list(struct net_device *dev);
219 static void mc32_reset_multicast_list(struct net_device *dev);
220 static const struct ethtool_ops netdev_ethtool_ops;
222 static void cleanup_card(struct net_device *dev)
224 struct mc32_local *lp = netdev_priv(dev);
225 unsigned slot = lp->slot;
226 mca_mark_as_unused(slot);
227 mca_set_adapter_name(slot, NULL);
228 free_irq(dev->irq, dev);
229 release_region(dev->base_addr, MC32_IO_EXTENT);
233 * mc32_probe - Search for supported boards
234 * @unit: interface number to use
236 * Because MCA bus is a real bus and we can scan for cards we could do a
237 * single scan for all boards here. Right now we use the passed in device
238 * structure and scan for only one board. This needs fixing for modules
239 * in particular.
242 struct net_device *__init mc32_probe(int unit)
244 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
245 static int current_mca_slot = -1;
246 int i;
247 int err;
249 if (!dev)
250 return ERR_PTR(-ENOMEM);
252 if (unit >= 0)
253 sprintf(dev->name, "eth%d", unit);
255 /* Do not check any supplied i/o locations.
256 POS registers usually don't fail :) */
258 /* MCA cards have POS registers.
259 Autodetecting MCA cards is extremely simple.
260 Just search for the card. */
262 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
263 current_mca_slot =
264 mca_find_unused_adapter(mc32_adapters[i].id, 0);
266 if(current_mca_slot != MCA_NOTFOUND) {
267 if(!mc32_probe1(dev, current_mca_slot))
269 mca_set_adapter_name(current_mca_slot,
270 mc32_adapters[i].name);
271 mca_mark_as_used(current_mca_slot);
272 err = register_netdev(dev);
273 if (err) {
274 cleanup_card(dev);
275 free_netdev(dev);
276 dev = ERR_PTR(err);
278 return dev;
283 free_netdev(dev);
284 return ERR_PTR(-ENODEV);
287 static const struct net_device_ops netdev_ops = {
288 .ndo_open = mc32_open,
289 .ndo_stop = mc32_close,
290 .ndo_start_xmit = mc32_send_packet,
291 .ndo_get_stats = mc32_get_stats,
292 .ndo_set_multicast_list = mc32_set_multicast_list,
293 .ndo_tx_timeout = mc32_timeout,
294 .ndo_change_mtu = eth_change_mtu,
295 .ndo_set_mac_address = eth_mac_addr,
296 .ndo_validate_addr = eth_validate_addr,
300 * mc32_probe1 - Check a given slot for a board and test the card
301 * @dev: Device structure to fill in
302 * @slot: The MCA bus slot being used by this card
304 * Decode the slot data and configure the card structures. Having done this we
305 * can reset the card and configure it. The card does a full self test cycle
306 * in firmware so we have to wait for it to return and post us either a
307 * failure case or some addresses we use to find the board internals.
310 static int __init mc32_probe1(struct net_device *dev, int slot)
312 static unsigned version_printed;
313 int i, err;
314 u8 POS;
315 u32 base;
316 struct mc32_local *lp = netdev_priv(dev);
317 static u16 mca_io_bases[]={
318 0x7280,0x7290,
319 0x7680,0x7690,
320 0x7A80,0x7A90,
321 0x7E80,0x7E90
323 static u32 mca_mem_bases[]={
324 0x00C0000,
325 0x00C4000,
326 0x00C8000,
327 0x00CC000,
328 0x00D0000,
329 0x00D4000,
330 0x00D8000,
331 0x00DC000
333 static char *failures[]={
334 "Processor instruction",
335 "Processor data bus",
336 "Processor data bus",
337 "Processor data bus",
338 "Adapter bus",
339 "ROM checksum",
340 "Base RAM",
341 "Extended RAM",
342 "82586 internal loopback",
343 "82586 initialisation failure",
344 "Adapter list configuration error"
347 /* Time to play MCA games */
349 if (mc32_debug && version_printed++ == 0)
350 pr_debug("%s", version);
352 pr_info("%s: %s found in slot %d: ", dev->name, cardname, slot);
354 POS = mca_read_stored_pos(slot, 2);
356 if(!(POS&1))
358 pr_cont("disabled.\n");
359 return -ENODEV;
362 /* Fill in the 'dev' fields. */
363 dev->base_addr = mca_io_bases[(POS>>1)&7];
364 dev->mem_start = mca_mem_bases[(POS>>4)&7];
366 POS = mca_read_stored_pos(slot, 4);
367 if(!(POS&1))
369 pr_cont("memory window disabled.\n");
370 return -ENODEV;
373 POS = mca_read_stored_pos(slot, 5);
375 i=(POS>>4)&3;
376 if(i==3)
378 pr_cont("invalid memory window.\n");
379 return -ENODEV;
382 i*=16384;
383 i+=16384;
385 dev->mem_end=dev->mem_start + i;
387 dev->irq = ((POS>>2)&3)+9;
389 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
391 pr_cont("io 0x%3lX, which is busy.\n", dev->base_addr);
392 return -EBUSY;
395 pr_cont("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
396 dev->base_addr, dev->irq, dev->mem_start, i/1024);
399 /* We ought to set the cache line size here.. */
403 * Go PROM browsing
406 /* Retrieve and print the ethernet address. */
407 for (i = 0; i < 6; i++)
409 mca_write_pos(slot, 6, i+12);
410 mca_write_pos(slot, 7, 0);
412 dev->dev_addr[i] = mca_read_pos(slot,3);
415 pr_info("%s: Address %pM ", dev->name, dev->dev_addr);
417 mca_write_pos(slot, 6, 0);
418 mca_write_pos(slot, 7, 0);
420 POS = mca_read_stored_pos(slot, 4);
422 if(POS&2)
423 pr_cont(": BNC port selected.\n");
424 else
425 pr_cont(": AUI port selected.\n");
427 POS=inb(dev->base_addr+HOST_CTRL);
428 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
429 POS&=~HOST_CTRL_INTE;
430 outb(POS, dev->base_addr+HOST_CTRL);
431 /* Reset adapter */
432 udelay(100);
433 /* Reset off */
434 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
435 outb(POS, dev->base_addr+HOST_CTRL);
437 udelay(300);
440 * Grab the IRQ
443 err = request_irq(dev->irq, mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
444 if (err) {
445 release_region(dev->base_addr, MC32_IO_EXTENT);
446 pr_err("%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
447 goto err_exit_ports;
450 memset(lp, 0, sizeof(struct mc32_local));
451 lp->slot = slot;
453 i=0;
455 base = inb(dev->base_addr);
457 while(base == 0xFF)
459 i++;
460 if(i == 1000)
462 pr_err("%s: failed to boot adapter.\n", dev->name);
463 err = -ENODEV;
464 goto err_exit_irq;
466 udelay(1000);
467 if(inb(dev->base_addr+2)&(1<<5))
468 base = inb(dev->base_addr);
471 if(base>0)
473 if(base < 0x0C)
474 pr_err("%s: %s%s.\n", dev->name, failures[base-1],
475 base<0x0A?" test failure":"");
476 else
477 pr_err("%s: unknown failure %d.\n", dev->name, base);
478 err = -ENODEV;
479 goto err_exit_irq;
482 base=0;
483 for(i=0;i<4;i++)
485 int n=0;
487 while(!(inb(dev->base_addr+2)&(1<<5)))
489 n++;
490 udelay(50);
491 if(n>100)
493 pr_err("%s: mailbox read fail (%d).\n", dev->name, i);
494 err = -ENODEV;
495 goto err_exit_irq;
499 base|=(inb(dev->base_addr)<<(8*i));
502 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
504 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
506 lp->base = dev->mem_start+base;
508 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
509 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
511 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
514 * Descriptor chains (card relative)
517 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
518 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
519 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
520 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
522 init_MUTEX_LOCKED(&lp->cmd_mutex);
523 init_completion(&lp->execution_cmd);
524 init_completion(&lp->xceiver_cmd);
526 pr_info("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
527 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
529 dev->netdev_ops = &netdev_ops;
530 dev->watchdog_timeo = HZ*5; /* Board does all the work */
531 dev->ethtool_ops = &netdev_ethtool_ops;
533 return 0;
535 err_exit_irq:
536 free_irq(dev->irq, dev);
537 err_exit_ports:
538 release_region(dev->base_addr, MC32_IO_EXTENT);
539 return err;
544 * mc32_ready_poll - wait until we can feed it a command
545 * @dev: The device to wait for
547 * Wait until the card becomes ready to accept a command via the
548 * command register. This tells us nothing about the completion
549 * status of any pending commands and takes very little time at all.
552 static inline void mc32_ready_poll(struct net_device *dev)
554 int ioaddr = dev->base_addr;
555 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
560 * mc32_command_nowait - send a command non blocking
561 * @dev: The 3c527 to issue the command to
562 * @cmd: The command word to write to the mailbox
563 * @data: A data block if the command expects one
564 * @len: Length of the data block
566 * Send a command from interrupt state. If there is a command
567 * currently being executed then we return an error of -1. It
568 * simply isn't viable to wait around as commands may be
569 * slow. This can theoretically be starved on SMP, but it's hard
570 * to see a realistic situation. We do not wait for the command
571 * to complete --- we rely on the interrupt handler to tidy up
572 * after us.
575 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
577 struct mc32_local *lp = netdev_priv(dev);
578 int ioaddr = dev->base_addr;
579 int ret = -1;
581 if (down_trylock(&lp->cmd_mutex) == 0)
583 lp->cmd_nonblocking=1;
584 lp->exec_box->mbox=0;
585 lp->exec_box->mbox=cmd;
586 memcpy((void *)lp->exec_box->data, data, len);
587 barrier(); /* the memcpy forgot the volatile so be sure */
589 /* Send the command */
590 mc32_ready_poll(dev);
591 outb(1<<6, ioaddr+HOST_CMD);
593 ret = 0;
595 /* Interrupt handler will signal mutex on completion */
598 return ret;
603 * mc32_command - send a command and sleep until completion
604 * @dev: The 3c527 card to issue the command to
605 * @cmd: The command word to write to the mailbox
606 * @data: A data block if the command expects one
607 * @len: Length of the data block
609 * Sends exec commands in a user context. This permits us to wait around
610 * for the replies and also to wait for the command buffer to complete
611 * from a previous command before we execute our command. After our
612 * command completes we will attempt any pending multicast reload
613 * we blocked off by hogging the exec buffer.
615 * You feed the card a command, you wait, it interrupts you get a
616 * reply. All well and good. The complication arises because you use
617 * commands for filter list changes which come in at bh level from things
618 * like IPV6 group stuff.
621 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
623 struct mc32_local *lp = netdev_priv(dev);
624 int ioaddr = dev->base_addr;
625 int ret = 0;
627 down(&lp->cmd_mutex);
630 * My Turn
633 lp->cmd_nonblocking=0;
634 lp->exec_box->mbox=0;
635 lp->exec_box->mbox=cmd;
636 memcpy((void *)lp->exec_box->data, data, len);
637 barrier(); /* the memcpy forgot the volatile so be sure */
639 mc32_ready_poll(dev);
640 outb(1<<6, ioaddr+HOST_CMD);
642 wait_for_completion(&lp->execution_cmd);
644 if(lp->exec_box->mbox&(1<<13))
645 ret = -1;
647 up(&lp->cmd_mutex);
650 * A multicast set got blocked - try it now
653 if(lp->mc_reload_wait)
655 mc32_reset_multicast_list(dev);
658 return ret;
663 * mc32_start_transceiver - tell board to restart tx/rx
664 * @dev: The 3c527 card to issue the command to
666 * This may be called from the interrupt state, where it is used
667 * to restart the rx ring if the card runs out of rx buffers.
669 * We must first check if it's ok to (re)start the transceiver. See
670 * mc32_close for details.
673 static void mc32_start_transceiver(struct net_device *dev) {
675 struct mc32_local *lp = netdev_priv(dev);
676 int ioaddr = dev->base_addr;
678 /* Ignore RX overflow on device closure */
679 if (lp->xceiver_desired_state==HALTED)
680 return;
682 /* Give the card the offset to the post-EOL-bit RX descriptor */
683 mc32_ready_poll(dev);
684 lp->rx_box->mbox=0;
685 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
686 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
688 mc32_ready_poll(dev);
689 lp->tx_box->mbox=0;
690 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
692 /* We are not interrupted on start completion */
697 * mc32_halt_transceiver - tell board to stop tx/rx
698 * @dev: The 3c527 card to issue the command to
700 * We issue the commands to halt the card's transceiver. In fact,
701 * after some experimenting we now simply tell the card to
702 * suspend. When issuing aborts occasionally odd things happened.
704 * We then sleep until the card has notified us that both rx and
705 * tx have been suspended.
708 static void mc32_halt_transceiver(struct net_device *dev)
710 struct mc32_local *lp = netdev_priv(dev);
711 int ioaddr = dev->base_addr;
713 mc32_ready_poll(dev);
714 lp->rx_box->mbox=0;
715 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
716 wait_for_completion(&lp->xceiver_cmd);
718 mc32_ready_poll(dev);
719 lp->tx_box->mbox=0;
720 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
721 wait_for_completion(&lp->xceiver_cmd);
726 * mc32_load_rx_ring - load the ring of receive buffers
727 * @dev: 3c527 to build the ring for
729 * This initialises the on-card and driver datastructures to
730 * the point where mc32_start_transceiver() can be called.
732 * The card sets up the receive ring for us. We are required to use the
733 * ring it provides, although the size of the ring is configurable.
735 * We allocate an sk_buff for each ring entry in turn and
736 * initialise its house-keeping info. At the same time, we read
737 * each 'next' pointer in our rx_ring array. This reduces slow
738 * shared-memory reads and makes it easy to access predecessor
739 * descriptors.
741 * We then set the end-of-list bit for the last entry so that the
742 * card will know when it has run out of buffers.
745 static int mc32_load_rx_ring(struct net_device *dev)
747 struct mc32_local *lp = netdev_priv(dev);
748 int i;
749 u16 rx_base;
750 volatile struct skb_header *p;
752 rx_base=lp->rx_chain;
754 for(i=0; i<RX_RING_LEN; i++) {
755 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
756 if (lp->rx_ring[i].skb==NULL) {
757 for (;i>=0;i--)
758 kfree_skb(lp->rx_ring[i].skb);
759 return -ENOBUFS;
761 skb_reserve(lp->rx_ring[i].skb, 18);
763 p=isa_bus_to_virt(lp->base+rx_base);
765 p->control=0;
766 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
767 p->status=0;
768 p->length=1532;
770 lp->rx_ring[i].p=p;
771 rx_base=p->next;
774 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
776 lp->rx_ring_tail=0;
778 return 0;
783 * mc32_flush_rx_ring - free the ring of receive buffers
784 * @lp: Local data of 3c527 to flush the rx ring of
786 * Free the buffer for each ring slot. This may be called
787 * before mc32_load_rx_ring(), eg. on error in mc32_open().
788 * Requires rx skb pointers to point to a valid skb, or NULL.
791 static void mc32_flush_rx_ring(struct net_device *dev)
793 struct mc32_local *lp = netdev_priv(dev);
794 int i;
796 for(i=0; i < RX_RING_LEN; i++)
798 if (lp->rx_ring[i].skb) {
799 dev_kfree_skb(lp->rx_ring[i].skb);
800 lp->rx_ring[i].skb = NULL;
802 lp->rx_ring[i].p=NULL;
808 * mc32_load_tx_ring - load transmit ring
809 * @dev: The 3c527 card to issue the command to
811 * This sets up the host transmit data-structures.
813 * First, we obtain from the card it's current postion in the tx
814 * ring, so that we will know where to begin transmitting
815 * packets.
817 * Then, we read the 'next' pointers from the on-card tx ring into
818 * our tx_ring array to reduce slow shared-mem reads. Finally, we
819 * intitalise the tx house keeping variables.
823 static void mc32_load_tx_ring(struct net_device *dev)
825 struct mc32_local *lp = netdev_priv(dev);
826 volatile struct skb_header *p;
827 int i;
828 u16 tx_base;
830 tx_base=lp->tx_box->data[0];
832 for(i=0 ; i<TX_RING_LEN ; i++)
834 p=isa_bus_to_virt(lp->base+tx_base);
835 lp->tx_ring[i].p=p;
836 lp->tx_ring[i].skb=NULL;
838 tx_base=p->next;
841 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
842 /* see mc32_tx_ring */
844 atomic_set(&lp->tx_count, TX_RING_LEN-1);
845 atomic_set(&lp->tx_ring_head, 0);
846 lp->tx_ring_tail=0;
851 * mc32_flush_tx_ring - free transmit ring
852 * @lp: Local data of 3c527 to flush the tx ring of
854 * If the ring is non-empty, zip over the it, freeing any
855 * allocated skb_buffs. The tx ring house-keeping variables are
856 * then reset. Requires rx skb pointers to point to a valid skb,
857 * or NULL.
860 static void mc32_flush_tx_ring(struct net_device *dev)
862 struct mc32_local *lp = netdev_priv(dev);
863 int i;
865 for (i=0; i < TX_RING_LEN; i++)
867 if (lp->tx_ring[i].skb)
869 dev_kfree_skb(lp->tx_ring[i].skb);
870 lp->tx_ring[i].skb = NULL;
874 atomic_set(&lp->tx_count, 0);
875 atomic_set(&lp->tx_ring_head, 0);
876 lp->tx_ring_tail=0;
881 static int mc32_open(struct net_device *dev)
883 int ioaddr = dev->base_addr;
884 struct mc32_local *lp = netdev_priv(dev);
885 u8 one=1;
886 u8 regs;
887 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
890 * Interrupts enabled
893 regs=inb(ioaddr+HOST_CTRL);
894 regs|=HOST_CTRL_INTE;
895 outb(regs, ioaddr+HOST_CTRL);
898 * Allow ourselves to issue commands
901 up(&lp->cmd_mutex);
905 * Send the indications on command
908 mc32_command(dev, 4, &one, 2);
911 * Poke it to make sure it's really dead.
914 mc32_halt_transceiver(dev);
915 mc32_flush_tx_ring(dev);
918 * Ask card to set up on-card descriptors to our spec
921 if(mc32_command(dev, 8, descnumbuffs, 4)) {
922 pr_info("%s: %s rejected our buffer configuration!\n",
923 dev->name, cardname);
924 mc32_close(dev);
925 return -ENOBUFS;
928 /* Report new configuration */
929 mc32_command(dev, 6, NULL, 0);
931 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
932 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
933 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
934 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
936 /* Set Network Address */
937 mc32_command(dev, 1, dev->dev_addr, 6);
939 /* Set the filters */
940 mc32_set_multicast_list(dev);
942 if (WORKAROUND_82586) {
943 u16 zero_word=0;
944 mc32_command(dev, 0x0D, &zero_word, 2);
947 mc32_load_tx_ring(dev);
949 if(mc32_load_rx_ring(dev))
951 mc32_close(dev);
952 return -ENOBUFS;
955 lp->xceiver_desired_state = RUNNING;
957 /* And finally, set the ball rolling... */
958 mc32_start_transceiver(dev);
960 netif_start_queue(dev);
962 return 0;
967 * mc32_timeout - handle a timeout from the network layer
968 * @dev: 3c527 that timed out
970 * Handle a timeout on transmit from the 3c527. This normally means
971 * bad things as the hardware handles cable timeouts and mess for
972 * us.
976 static void mc32_timeout(struct net_device *dev)
978 pr_warning("%s: transmit timed out?\n", dev->name);
979 /* Try to restart the adaptor. */
980 netif_wake_queue(dev);
985 * mc32_send_packet - queue a frame for transmit
986 * @skb: buffer to transmit
987 * @dev: 3c527 to send it out of
989 * Transmit a buffer. This normally means throwing the buffer onto
990 * the transmit queue as the queue is quite large. If the queue is
991 * full then we set tx_busy and return. Once the interrupt handler
992 * gets messages telling it to reclaim transmit queue entries, we will
993 * clear tx_busy and the kernel will start calling this again.
995 * We do not disable interrupts or acquire any locks; this can
996 * run concurrently with mc32_tx_ring(), and the function itself
997 * is serialised at a higher layer. However, similarly for the
998 * card itself, we must ensure that we update tx_ring_head only
999 * after we've established a valid packet on the tx ring (and
1000 * before we let the card "see" it, to prevent it racing with the
1001 * irq handler).
1005 static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
1006 struct net_device *dev)
1008 struct mc32_local *lp = netdev_priv(dev);
1009 u32 head = atomic_read(&lp->tx_ring_head);
1011 volatile struct skb_header *p, *np;
1013 netif_stop_queue(dev);
1015 if(atomic_read(&lp->tx_count)==0) {
1016 return NETDEV_TX_BUSY;
1019 if (skb_padto(skb, ETH_ZLEN)) {
1020 netif_wake_queue(dev);
1021 return NETDEV_TX_OK;
1024 atomic_dec(&lp->tx_count);
1026 /* P is the last sending/sent buffer as a pointer */
1027 p=lp->tx_ring[head].p;
1029 head = next_tx(head);
1031 /* NP is the buffer we will be loading */
1032 np=lp->tx_ring[head].p;
1034 /* We will need this to flush the buffer out */
1035 lp->tx_ring[head].skb=skb;
1037 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1038 np->data = isa_virt_to_bus(skb->data);
1039 np->status = 0;
1040 np->control = CONTROL_EOP | CONTROL_EOL;
1041 wmb();
1044 * The new frame has been setup; we can now
1045 * let the interrupt handler and card "see" it
1048 atomic_set(&lp->tx_ring_head, head);
1049 p->control &= ~CONTROL_EOL;
1051 netif_wake_queue(dev);
1052 return NETDEV_TX_OK;
1057 * mc32_update_stats - pull off the on board statistics
1058 * @dev: 3c527 to service
1061 * Query and reset the on-card stats. There's the small possibility
1062 * of a race here, which would result in an underestimation of
1063 * actual errors. As such, we'd prefer to keep all our stats
1064 * collection in software. As a rule, we do. However it can't be
1065 * used for rx errors and collisions as, by default, the card discards
1066 * bad rx packets.
1068 * Setting the SAV BP in the rx filter command supposedly
1069 * stops this behaviour. However, testing shows that it only seems to
1070 * enable the collation of on-card rx statistics --- the driver
1071 * never sees an RX descriptor with an error status set.
1075 static void mc32_update_stats(struct net_device *dev)
1077 struct mc32_local *lp = netdev_priv(dev);
1078 volatile struct mc32_stats *st = lp->stats;
1080 u32 rx_errors=0;
1082 rx_errors+=dev->stats.rx_crc_errors +=st->rx_crc_errors;
1083 st->rx_crc_errors=0;
1084 rx_errors+=dev->stats.rx_fifo_errors +=st->rx_overrun_errors;
1085 st->rx_overrun_errors=0;
1086 rx_errors+=dev->stats.rx_frame_errors +=st->rx_alignment_errors;
1087 st->rx_alignment_errors=0;
1088 rx_errors+=dev->stats.rx_length_errors+=st->rx_tooshort_errors;
1089 st->rx_tooshort_errors=0;
1090 rx_errors+=dev->stats.rx_missed_errors+=st->rx_outofresource_errors;
1091 st->rx_outofresource_errors=0;
1092 dev->stats.rx_errors=rx_errors;
1094 /* Number of packets which saw one collision */
1095 dev->stats.collisions+=st->dataC[10];
1096 st->dataC[10]=0;
1098 /* Number of packets which saw 2--15 collisions */
1099 dev->stats.collisions+=st->dataC[11];
1100 st->dataC[11]=0;
1105 * mc32_rx_ring - process the receive ring
1106 * @dev: 3c527 that needs its receive ring processing
1109 * We have received one or more indications from the card that a
1110 * receive has completed. The buffer ring thus contains dirty
1111 * entries. We walk the ring by iterating over the circular rx_ring
1112 * array, starting at the next dirty buffer (which happens to be the
1113 * one we finished up at last time around).
1115 * For each completed packet, we will either copy it and pass it up
1116 * the stack or, if the packet is near MTU sized, we allocate
1117 * another buffer and flip the old one up the stack.
1119 * We must succeed in keeping a buffer on the ring. If necessary we
1120 * will toss a received packet rather than lose a ring entry. Once
1121 * the first uncompleted descriptor is found, we move the
1122 * End-Of-List bit to include the buffers just processed.
1126 static void mc32_rx_ring(struct net_device *dev)
1128 struct mc32_local *lp = netdev_priv(dev);
1129 volatile struct skb_header *p;
1130 u16 rx_ring_tail;
1131 u16 rx_old_tail;
1132 int x=0;
1134 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1138 p=lp->rx_ring[rx_ring_tail].p;
1140 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1141 break;
1143 if(p->status & (1<<6)) /* COMPLETED_OK */
1146 u16 length=p->length;
1147 struct sk_buff *skb;
1148 struct sk_buff *newskb;
1150 /* Try to save time by avoiding a copy on big frames */
1152 if ((length > RX_COPYBREAK) &&
1153 ((newskb=dev_alloc_skb(1532)) != NULL))
1155 skb=lp->rx_ring[rx_ring_tail].skb;
1156 skb_put(skb, length);
1158 skb_reserve(newskb,18);
1159 lp->rx_ring[rx_ring_tail].skb=newskb;
1160 p->data=isa_virt_to_bus(newskb->data);
1162 else
1164 skb=dev_alloc_skb(length+2);
1166 if(skb==NULL) {
1167 dev->stats.rx_dropped++;
1168 goto dropped;
1171 skb_reserve(skb,2);
1172 memcpy(skb_put(skb, length),
1173 lp->rx_ring[rx_ring_tail].skb->data, length);
1176 skb->protocol=eth_type_trans(skb,dev);
1177 dev->stats.rx_packets++;
1178 dev->stats.rx_bytes += length;
1179 netif_rx(skb);
1182 dropped:
1183 p->length = 1532;
1184 p->status = 0;
1186 rx_ring_tail=next_rx(rx_ring_tail);
1188 while(x++<48);
1190 /* If there was actually a frame to be processed, place the EOL bit */
1191 /* at the descriptor prior to the one to be filled next */
1193 if (rx_ring_tail != rx_old_tail)
1195 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1196 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1198 lp->rx_ring_tail=rx_ring_tail;
1204 * mc32_tx_ring - process completed transmits
1205 * @dev: 3c527 that needs its transmit ring processing
1208 * This operates in a similar fashion to mc32_rx_ring. We iterate
1209 * over the transmit ring. For each descriptor which has been
1210 * processed by the card, we free its associated buffer and note
1211 * any errors. This continues until the transmit ring is emptied
1212 * or we reach a descriptor that hasn't yet been processed by the
1213 * card.
1217 static void mc32_tx_ring(struct net_device *dev)
1219 struct mc32_local *lp = netdev_priv(dev);
1220 volatile struct skb_header *np;
1223 * We rely on head==tail to mean 'queue empty'.
1224 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1225 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1226 * condition with 'queue full'
1229 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1231 u16 t;
1233 t=next_tx(lp->tx_ring_tail);
1234 np=lp->tx_ring[t].p;
1236 if(!(np->status & (1<<7)))
1238 /* Not COMPLETED */
1239 break;
1241 dev->stats.tx_packets++;
1242 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1244 dev->stats.tx_errors++;
1246 switch(np->status&0x0F)
1248 case 1:
1249 dev->stats.tx_aborted_errors++;
1250 break; /* Max collisions */
1251 case 2:
1252 dev->stats.tx_fifo_errors++;
1253 break;
1254 case 3:
1255 dev->stats.tx_carrier_errors++;
1256 break;
1257 case 4:
1258 dev->stats.tx_window_errors++;
1259 break; /* CTS Lost */
1260 case 5:
1261 dev->stats.tx_aborted_errors++;
1262 break; /* Transmit timeout */
1265 /* Packets are sent in order - this is
1266 basically a FIFO queue of buffers matching
1267 the card ring */
1268 dev->stats.tx_bytes+=lp->tx_ring[t].skb->len;
1269 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1270 lp->tx_ring[t].skb=NULL;
1271 atomic_inc(&lp->tx_count);
1272 netif_wake_queue(dev);
1274 lp->tx_ring_tail=t;
1281 * mc32_interrupt - handle an interrupt from a 3c527
1282 * @irq: Interrupt number
1283 * @dev_id: 3c527 that requires servicing
1284 * @regs: Registers (unused)
1287 * An interrupt is raised whenever the 3c527 writes to the command
1288 * register. This register contains the message it wishes to send us
1289 * packed into a single byte field. We keep reading status entries
1290 * until we have processed all the control items, but simply count
1291 * transmit and receive reports. When all reports are in we empty the
1292 * transceiver rings as appropriate. This saves the overhead of
1293 * multiple command requests.
1295 * Because MCA is level-triggered, we shouldn't miss indications.
1296 * Therefore, we needn't ask the card to suspend interrupts within
1297 * this handler. The card receives an implicit acknowledgment of the
1298 * current interrupt when we read the command register.
1302 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1304 struct net_device *dev = dev_id;
1305 struct mc32_local *lp;
1306 int ioaddr, status, boguscount = 0;
1307 int rx_event = 0;
1308 int tx_event = 0;
1310 ioaddr = dev->base_addr;
1311 lp = netdev_priv(dev);
1313 /* See whats cooking */
1315 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1317 status=inb(ioaddr+HOST_CMD);
1319 pr_debug("Status TX%d RX%d EX%d OV%d BC%d\n",
1320 (status&7), (status>>3)&7, (status>>6)&1,
1321 (status>>7)&1, boguscount);
1323 switch(status&7)
1325 case 0:
1326 break;
1327 case 6: /* TX fail */
1328 case 2: /* TX ok */
1329 tx_event = 1;
1330 break;
1331 case 3: /* Halt */
1332 case 4: /* Abort */
1333 complete(&lp->xceiver_cmd);
1334 break;
1335 default:
1336 pr_notice("%s: strange tx ack %d\n", dev->name, status&7);
1338 status>>=3;
1339 switch(status&7)
1341 case 0:
1342 break;
1343 case 2: /* RX */
1344 rx_event=1;
1345 break;
1346 case 3: /* Halt */
1347 case 4: /* Abort */
1348 complete(&lp->xceiver_cmd);
1349 break;
1350 case 6:
1351 /* Out of RX buffers stat */
1352 /* Must restart rx */
1353 dev->stats.rx_dropped++;
1354 mc32_rx_ring(dev);
1355 mc32_start_transceiver(dev);
1356 break;
1357 default:
1358 pr_notice("%s: strange rx ack %d\n",
1359 dev->name, status&7);
1361 status>>=3;
1362 if(status&1)
1365 * No thread is waiting: we need to tidy
1366 * up ourself.
1369 if (lp->cmd_nonblocking) {
1370 up(&lp->cmd_mutex);
1371 if (lp->mc_reload_wait)
1372 mc32_reset_multicast_list(dev);
1374 else complete(&lp->execution_cmd);
1376 if(status&2)
1379 * We get interrupted once per
1380 * counter that is about to overflow.
1383 mc32_update_stats(dev);
1389 * Process the transmit and receive rings
1392 if(tx_event)
1393 mc32_tx_ring(dev);
1395 if(rx_event)
1396 mc32_rx_ring(dev);
1398 return IRQ_HANDLED;
1403 * mc32_close - user configuring the 3c527 down
1404 * @dev: 3c527 card to shut down
1406 * The 3c527 is a bus mastering device. We must be careful how we
1407 * shut it down. It may also be running shared interrupt so we have
1408 * to be sure to silence it properly
1410 * We indicate that the card is closing to the rest of the
1411 * driver. Otherwise, it is possible that the card may run out
1412 * of receive buffers and restart the transceiver while we're
1413 * trying to close it.
1415 * We abort any receive and transmits going on and then wait until
1416 * any pending exec commands have completed in other code threads.
1417 * In theory we can't get here while that is true, in practice I am
1418 * paranoid
1420 * We turn off the interrupt enable for the board to be sure it can't
1421 * intefere with other devices.
1424 static int mc32_close(struct net_device *dev)
1426 struct mc32_local *lp = netdev_priv(dev);
1427 int ioaddr = dev->base_addr;
1429 u8 regs;
1430 u16 one=1;
1432 lp->xceiver_desired_state = HALTED;
1433 netif_stop_queue(dev);
1436 * Send the indications on command (handy debug check)
1439 mc32_command(dev, 4, &one, 2);
1441 /* Shut down the transceiver */
1443 mc32_halt_transceiver(dev);
1445 /* Ensure we issue no more commands beyond this point */
1447 down(&lp->cmd_mutex);
1449 /* Ok the card is now stopping */
1451 regs=inb(ioaddr+HOST_CTRL);
1452 regs&=~HOST_CTRL_INTE;
1453 outb(regs, ioaddr+HOST_CTRL);
1455 mc32_flush_rx_ring(dev);
1456 mc32_flush_tx_ring(dev);
1458 mc32_update_stats(dev);
1460 return 0;
1465 * mc32_get_stats - hand back stats to network layer
1466 * @dev: The 3c527 card to handle
1468 * We've collected all the stats we can in software already. Now
1469 * it's time to update those kept on-card and return the lot.
1473 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1475 mc32_update_stats(dev);
1476 return &dev->stats;
1481 * do_mc32_set_multicast_list - attempt to update multicasts
1482 * @dev: 3c527 device to load the list on
1483 * @retry: indicates this is not the first call.
1486 * Actually set or clear the multicast filter for this adaptor. The
1487 * locking issues are handled by this routine. We have to track
1488 * state as it may take multiple calls to get the command sequence
1489 * completed. We just keep trying to schedule the loads until we
1490 * manage to process them all.
1492 * num_addrs == -1 Promiscuous mode, receive all packets
1494 * num_addrs == 0 Normal mode, clear multicast list
1496 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1497 * and do best-effort filtering.
1499 * See mc32_update_stats() regards setting the SAV BP bit.
1503 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1505 struct mc32_local *lp = netdev_priv(dev);
1506 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1508 if ((dev->flags&IFF_PROMISC) ||
1509 (dev->flags&IFF_ALLMULTI) ||
1510 netdev_mc_count(dev) > 10)
1511 /* Enable promiscuous mode */
1512 filt |= 1;
1513 else if (!netdev_mc_empty(dev))
1515 unsigned char block[62];
1516 unsigned char *bp;
1517 struct netdev_hw_addr *ha;
1519 if(retry==0)
1520 lp->mc_list_valid = 0;
1521 if(!lp->mc_list_valid)
1523 block[1]=0;
1524 block[0]=netdev_mc_count(dev);
1525 bp=block+2;
1527 netdev_for_each_mc_addr(ha, dev) {
1528 memcpy(bp, ha->addr, 6);
1529 bp+=6;
1531 if(mc32_command_nowait(dev, 2, block,
1532 2+6*netdev_mc_count(dev))==-1)
1534 lp->mc_reload_wait = 1;
1535 return;
1537 lp->mc_list_valid=1;
1541 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1543 lp->mc_reload_wait = 1;
1545 else {
1546 lp->mc_reload_wait = 0;
1552 * mc32_set_multicast_list - queue multicast list update
1553 * @dev: The 3c527 to use
1555 * Commence loading the multicast list. This is called when the kernel
1556 * changes the lists. It will override any pending list we are trying to
1557 * load.
1560 static void mc32_set_multicast_list(struct net_device *dev)
1562 do_mc32_set_multicast_list(dev,0);
1567 * mc32_reset_multicast_list - reset multicast list
1568 * @dev: The 3c527 to use
1570 * Attempt the next step in loading the multicast lists. If this attempt
1571 * fails to complete then it will be scheduled and this function called
1572 * again later from elsewhere.
1575 static void mc32_reset_multicast_list(struct net_device *dev)
1577 do_mc32_set_multicast_list(dev,1);
1580 static void netdev_get_drvinfo(struct net_device *dev,
1581 struct ethtool_drvinfo *info)
1583 strcpy(info->driver, DRV_NAME);
1584 strcpy(info->version, DRV_VERSION);
1585 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1588 static u32 netdev_get_msglevel(struct net_device *dev)
1590 return mc32_debug;
1593 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1595 mc32_debug = level;
1598 static const struct ethtool_ops netdev_ethtool_ops = {
1599 .get_drvinfo = netdev_get_drvinfo,
1600 .get_msglevel = netdev_get_msglevel,
1601 .set_msglevel = netdev_set_msglevel,
1604 #ifdef MODULE
1606 static struct net_device *this_device;
1609 * init_module - entry point
1611 * Probe and locate a 3c527 card. This really should probe and locate
1612 * all the 3c527 cards in the machine not just one of them. Yes you can
1613 * insmod multiple modules for now but it's a hack.
1616 int __init init_module(void)
1618 this_device = mc32_probe(-1);
1619 if (IS_ERR(this_device))
1620 return PTR_ERR(this_device);
1621 return 0;
1625 * cleanup_module - free resources for an unload
1627 * Unloading time. We release the MCA bus resources and the interrupt
1628 * at which point everything is ready to unload. The card must be stopped
1629 * at this point or we would not have been called. When we unload we
1630 * leave the card stopped but not totally shut down. When the card is
1631 * initialized it must be rebooted or the rings reloaded before any
1632 * transmit operations are allowed to start scribbling into memory.
1635 void __exit cleanup_module(void)
1637 unregister_netdev(this_device);
1638 cleanup_card(this_device);
1639 free_netdev(this_device);
1642 #endif /* MODULE */