RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / mtd / ubi / eba.c
blob277f616bd9c70eec59b473e236a7cf0ecba00781
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * The UBI Eraseblock Association (EBA) sub-system.
24 * This sub-system is responsible for I/O to/from logical eraseblock.
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
62 unsigned long long sqnum;
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
68 return sqnum;
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
99 struct rb_node *p;
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
121 return NULL;
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
138 struct ubi_ltree_entry *le, *le1, *le_free;
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
152 if (le1) {
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
166 le_free = NULL;
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
192 kfree(le_free);
193 return le;
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
207 struct ubi_ltree_entry *le;
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
224 struct ubi_ltree_entry *le;
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
235 spin_unlock(&ubi->ltree_lock);
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
249 struct ubi_ltree_entry *le;
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
271 struct ubi_ltree_entry *le;
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
287 spin_unlock(&ubi->ltree_lock);
289 return 1;
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
300 struct ubi_ltree_entry *le;
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
311 spin_unlock(&ubi->ltree_lock);
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
327 int err, pnum, vol_id = vol->vol_id;
329 if (ubi->ro_mode)
330 return -EROFS;
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
343 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 err = ubi_wl_put_peb(ubi, pnum, 0);
346 out_unlock:
347 leb_write_unlock(ubi, vol_id, lnum);
348 return err;
352 * ubi_eba_read_leb - read data.
353 * @ubi: UBI device description object
354 * @vol: volume description object
355 * @lnum: logical eraseblock number
356 * @buf: buffer to store the read data
357 * @offset: offset from where to read
358 * @len: how many bytes to read
359 * @check: data CRC check flag
361 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362 * bytes. The @check flag only makes sense for static volumes and forces
363 * eraseblock data CRC checking.
365 * In case of success this function returns zero. In case of a static volume,
366 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367 * returned for any volume type if an ECC error was detected by the MTD device
368 * driver. Other negative error cored may be returned in case of other errors.
370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 void *buf, int offset, int len, int check)
373 int err, pnum, scrub = 0, vol_id = vol->vol_id;
374 struct ubi_vid_hdr *vid_hdr;
375 uint32_t uninitialized_var(crc);
377 err = leb_read_lock(ubi, vol_id, lnum);
378 if (err)
379 return err;
381 pnum = vol->eba_tbl[lnum];
382 if (pnum < 0) {
384 * The logical eraseblock is not mapped, fill the whole buffer
385 * with 0xFF bytes. The exception is static volumes for which
386 * it is an error to read unmapped logical eraseblocks.
388 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 len, offset, vol_id, lnum);
390 leb_read_unlock(ubi, vol_id, lnum);
391 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 memset(buf, 0xFF, len);
393 return 0;
396 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 len, offset, vol_id, lnum, pnum);
399 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 check = 0;
402 retry:
403 if (check) {
404 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
405 if (!vid_hdr) {
406 err = -ENOMEM;
407 goto out_unlock;
410 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 if (err && err != UBI_IO_BITFLIPS) {
412 if (err > 0) {
413 if (err == UBI_IO_BAD_HDR_READ ||
414 err == UBI_IO_BAD_HDR) {
415 ubi_warn("corrupted VID header at PEB "
416 "%d, LEB %d:%d", pnum, vol_id,
417 lnum);
418 err = -EBADMSG;
419 } else
420 ubi_ro_mode(ubi);
422 goto out_free;
423 } else if (err == UBI_IO_BITFLIPS)
424 scrub = 1;
426 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
427 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
429 crc = be32_to_cpu(vid_hdr->data_crc);
430 ubi_free_vid_hdr(ubi, vid_hdr);
433 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
434 if (err) {
435 if (err == UBI_IO_BITFLIPS) {
436 scrub = 1;
437 err = 0;
438 } else if (err == -EBADMSG) {
439 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
440 goto out_unlock;
441 scrub = 1;
442 if (!check) {
443 ubi_msg("force data checking");
444 check = 1;
445 goto retry;
447 } else
448 goto out_unlock;
451 if (check) {
452 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
453 if (crc1 != crc) {
454 ubi_warn("CRC error: calculated %#08x, must be %#08x",
455 crc1, crc);
456 err = -EBADMSG;
457 goto out_unlock;
461 if (scrub)
462 err = ubi_wl_scrub_peb(ubi, pnum);
464 leb_read_unlock(ubi, vol_id, lnum);
465 return err;
467 out_free:
468 ubi_free_vid_hdr(ubi, vid_hdr);
469 out_unlock:
470 leb_read_unlock(ubi, vol_id, lnum);
471 return err;
475 * recover_peb - recover from write failure.
476 * @ubi: UBI device description object
477 * @pnum: the physical eraseblock to recover
478 * @vol_id: volume ID
479 * @lnum: logical eraseblock number
480 * @buf: data which was not written because of the write failure
481 * @offset: offset of the failed write
482 * @len: how many bytes should have been written
484 * This function is called in case of a write failure and moves all good data
485 * from the potentially bad physical eraseblock to a good physical eraseblock.
486 * This function also writes the data which was not written due to the failure.
487 * Returns new physical eraseblock number in case of success, and a negative
488 * error code in case of failure.
490 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
491 const void *buf, int offset, int len)
493 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
494 struct ubi_volume *vol = ubi->volumes[idx];
495 struct ubi_vid_hdr *vid_hdr;
497 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
498 if (!vid_hdr)
499 return -ENOMEM;
501 retry:
502 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
503 if (new_pnum < 0) {
504 ubi_free_vid_hdr(ubi, vid_hdr);
505 return new_pnum;
508 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
510 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
511 if (err && err != UBI_IO_BITFLIPS) {
512 if (err > 0)
513 err = -EIO;
514 goto out_put;
517 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
518 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
519 if (err)
520 goto write_error;
522 data_size = offset + len;
523 mutex_lock(&ubi->buf_mutex);
524 memset(ubi->peb_buf1 + offset, 0xFF, len);
526 /* Read everything before the area where the write failure happened */
527 if (offset > 0) {
528 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
529 if (err && err != UBI_IO_BITFLIPS)
530 goto out_unlock;
533 memcpy(ubi->peb_buf1 + offset, buf, len);
535 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
536 if (err) {
537 mutex_unlock(&ubi->buf_mutex);
538 goto write_error;
541 mutex_unlock(&ubi->buf_mutex);
542 ubi_free_vid_hdr(ubi, vid_hdr);
544 vol->eba_tbl[lnum] = new_pnum;
545 ubi_wl_put_peb(ubi, pnum, 1);
547 ubi_msg("data was successfully recovered");
548 return 0;
550 out_unlock:
551 mutex_unlock(&ubi->buf_mutex);
552 out_put:
553 ubi_wl_put_peb(ubi, new_pnum, 1);
554 ubi_free_vid_hdr(ubi, vid_hdr);
555 return err;
557 write_error:
559 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
560 * get another one.
562 ubi_warn("failed to write to PEB %d", new_pnum);
563 ubi_wl_put_peb(ubi, new_pnum, 1);
564 if (++tries > UBI_IO_RETRIES) {
565 ubi_free_vid_hdr(ubi, vid_hdr);
566 return err;
568 ubi_msg("try again");
569 goto retry;
573 * ubi_eba_write_leb - write data to dynamic volume.
574 * @ubi: UBI device description object
575 * @vol: volume description object
576 * @lnum: logical eraseblock number
577 * @buf: the data to write
578 * @offset: offset within the logical eraseblock where to write
579 * @len: how many bytes to write
580 * @dtype: data type
582 * This function writes data to logical eraseblock @lnum of a dynamic volume
583 * @vol. Returns zero in case of success and a negative error code in case
584 * of failure. In case of error, it is possible that something was still
585 * written to the flash media, but may be some garbage.
587 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
588 const void *buf, int offset, int len, int dtype)
590 int err, pnum, tries = 0, vol_id = vol->vol_id;
591 struct ubi_vid_hdr *vid_hdr;
593 if (ubi->ro_mode)
594 return -EROFS;
596 err = leb_write_lock(ubi, vol_id, lnum);
597 if (err)
598 return err;
600 pnum = vol->eba_tbl[lnum];
601 if (pnum >= 0) {
602 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
603 len, offset, vol_id, lnum, pnum);
605 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
606 if (err) {
607 ubi_warn("failed to write data to PEB %d", pnum);
608 if (err == -EIO && ubi->bad_allowed)
609 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
610 offset, len);
611 if (err)
612 ubi_ro_mode(ubi);
614 leb_write_unlock(ubi, vol_id, lnum);
615 return err;
619 * The logical eraseblock is not mapped. We have to get a free physical
620 * eraseblock and write the volume identifier header there first.
622 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
623 if (!vid_hdr) {
624 leb_write_unlock(ubi, vol_id, lnum);
625 return -ENOMEM;
628 vid_hdr->vol_type = UBI_VID_DYNAMIC;
629 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
630 vid_hdr->vol_id = cpu_to_be32(vol_id);
631 vid_hdr->lnum = cpu_to_be32(lnum);
632 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
633 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
635 retry:
636 pnum = ubi_wl_get_peb(ubi, dtype);
637 if (pnum < 0) {
638 ubi_free_vid_hdr(ubi, vid_hdr);
639 leb_write_unlock(ubi, vol_id, lnum);
640 return pnum;
643 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
644 len, offset, vol_id, lnum, pnum);
646 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
647 if (err) {
648 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
649 vol_id, lnum, pnum);
650 goto write_error;
653 if (len) {
654 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
655 if (err) {
656 ubi_warn("failed to write %d bytes at offset %d of "
657 "LEB %d:%d, PEB %d", len, offset, vol_id,
658 lnum, pnum);
659 goto write_error;
663 vol->eba_tbl[lnum] = pnum;
665 leb_write_unlock(ubi, vol_id, lnum);
666 ubi_free_vid_hdr(ubi, vid_hdr);
667 return 0;
669 write_error:
670 if (err != -EIO || !ubi->bad_allowed) {
671 ubi_ro_mode(ubi);
672 leb_write_unlock(ubi, vol_id, lnum);
673 ubi_free_vid_hdr(ubi, vid_hdr);
674 return err;
678 * Fortunately, this is the first write operation to this physical
679 * eraseblock, so just put it and request a new one. We assume that if
680 * this physical eraseblock went bad, the erase code will handle that.
682 err = ubi_wl_put_peb(ubi, pnum, 1);
683 if (err || ++tries > UBI_IO_RETRIES) {
684 ubi_ro_mode(ubi);
685 leb_write_unlock(ubi, vol_id, lnum);
686 ubi_free_vid_hdr(ubi, vid_hdr);
687 return err;
690 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
691 ubi_msg("try another PEB");
692 goto retry;
696 * ubi_eba_write_leb_st - write data to static volume.
697 * @ubi: UBI device description object
698 * @vol: volume description object
699 * @lnum: logical eraseblock number
700 * @buf: data to write
701 * @len: how many bytes to write
702 * @dtype: data type
703 * @used_ebs: how many logical eraseblocks will this volume contain
705 * This function writes data to logical eraseblock @lnum of static volume
706 * @vol. The @used_ebs argument should contain total number of logical
707 * eraseblock in this static volume.
709 * When writing to the last logical eraseblock, the @len argument doesn't have
710 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
711 * to the real data size, although the @buf buffer has to contain the
712 * alignment. In all other cases, @len has to be aligned.
714 * It is prohibited to write more than once to logical eraseblocks of static
715 * volumes. This function returns zero in case of success and a negative error
716 * code in case of failure.
718 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
719 int lnum, const void *buf, int len, int dtype,
720 int used_ebs)
722 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
723 struct ubi_vid_hdr *vid_hdr;
724 uint32_t crc;
726 if (ubi->ro_mode)
727 return -EROFS;
729 if (lnum == used_ebs - 1)
730 /* If this is the last LEB @len may be unaligned */
731 len = ALIGN(data_size, ubi->min_io_size);
732 else
733 ubi_assert(!(len & (ubi->min_io_size - 1)));
735 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
736 if (!vid_hdr)
737 return -ENOMEM;
739 err = leb_write_lock(ubi, vol_id, lnum);
740 if (err) {
741 ubi_free_vid_hdr(ubi, vid_hdr);
742 return err;
745 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
746 vid_hdr->vol_id = cpu_to_be32(vol_id);
747 vid_hdr->lnum = cpu_to_be32(lnum);
748 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
749 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
751 crc = crc32(UBI_CRC32_INIT, buf, data_size);
752 vid_hdr->vol_type = UBI_VID_STATIC;
753 vid_hdr->data_size = cpu_to_be32(data_size);
754 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
755 vid_hdr->data_crc = cpu_to_be32(crc);
757 retry:
758 pnum = ubi_wl_get_peb(ubi, dtype);
759 if (pnum < 0) {
760 ubi_free_vid_hdr(ubi, vid_hdr);
761 leb_write_unlock(ubi, vol_id, lnum);
762 return pnum;
765 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
766 len, vol_id, lnum, pnum, used_ebs);
768 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
769 if (err) {
770 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
771 vol_id, lnum, pnum);
772 goto write_error;
775 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
776 if (err) {
777 ubi_warn("failed to write %d bytes of data to PEB %d",
778 len, pnum);
779 goto write_error;
782 ubi_assert(vol->eba_tbl[lnum] < 0);
783 vol->eba_tbl[lnum] = pnum;
785 leb_write_unlock(ubi, vol_id, lnum);
786 ubi_free_vid_hdr(ubi, vid_hdr);
787 return 0;
789 write_error:
790 if (err != -EIO || !ubi->bad_allowed) {
792 * This flash device does not admit of bad eraseblocks or
793 * something nasty and unexpected happened. Switch to read-only
794 * mode just in case.
796 ubi_ro_mode(ubi);
797 leb_write_unlock(ubi, vol_id, lnum);
798 ubi_free_vid_hdr(ubi, vid_hdr);
799 return err;
802 err = ubi_wl_put_peb(ubi, pnum, 1);
803 if (err || ++tries > UBI_IO_RETRIES) {
804 ubi_ro_mode(ubi);
805 leb_write_unlock(ubi, vol_id, lnum);
806 ubi_free_vid_hdr(ubi, vid_hdr);
807 return err;
810 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
811 ubi_msg("try another PEB");
812 goto retry;
816 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
817 * @ubi: UBI device description object
818 * @vol: volume description object
819 * @lnum: logical eraseblock number
820 * @buf: data to write
821 * @len: how many bytes to write
822 * @dtype: data type
824 * This function changes the contents of a logical eraseblock atomically. @buf
825 * has to contain new logical eraseblock data, and @len - the length of the
826 * data, which has to be aligned. This function guarantees that in case of an
827 * unclean reboot the old contents is preserved. Returns zero in case of
828 * success and a negative error code in case of failure.
830 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
831 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
833 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
834 int lnum, const void *buf, int len, int dtype)
836 int err, pnum, tries = 0, vol_id = vol->vol_id;
837 struct ubi_vid_hdr *vid_hdr;
838 uint32_t crc;
840 if (ubi->ro_mode)
841 return -EROFS;
843 if (len == 0) {
845 * Special case when data length is zero. In this case the LEB
846 * has to be unmapped and mapped somewhere else.
848 err = ubi_eba_unmap_leb(ubi, vol, lnum);
849 if (err)
850 return err;
851 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
854 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
855 if (!vid_hdr)
856 return -ENOMEM;
858 mutex_lock(&ubi->alc_mutex);
859 err = leb_write_lock(ubi, vol_id, lnum);
860 if (err)
861 goto out_mutex;
863 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
864 vid_hdr->vol_id = cpu_to_be32(vol_id);
865 vid_hdr->lnum = cpu_to_be32(lnum);
866 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
867 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
869 crc = crc32(UBI_CRC32_INIT, buf, len);
870 vid_hdr->vol_type = UBI_VID_DYNAMIC;
871 vid_hdr->data_size = cpu_to_be32(len);
872 vid_hdr->copy_flag = 1;
873 vid_hdr->data_crc = cpu_to_be32(crc);
875 retry:
876 pnum = ubi_wl_get_peb(ubi, dtype);
877 if (pnum < 0) {
878 err = pnum;
879 goto out_leb_unlock;
882 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
883 vol_id, lnum, vol->eba_tbl[lnum], pnum);
885 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
886 if (err) {
887 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
888 vol_id, lnum, pnum);
889 goto write_error;
892 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
893 if (err) {
894 ubi_warn("failed to write %d bytes of data to PEB %d",
895 len, pnum);
896 goto write_error;
899 if (vol->eba_tbl[lnum] >= 0) {
900 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
901 if (err)
902 goto out_leb_unlock;
905 vol->eba_tbl[lnum] = pnum;
907 out_leb_unlock:
908 leb_write_unlock(ubi, vol_id, lnum);
909 out_mutex:
910 mutex_unlock(&ubi->alc_mutex);
911 ubi_free_vid_hdr(ubi, vid_hdr);
912 return err;
914 write_error:
915 if (err != -EIO || !ubi->bad_allowed) {
917 * This flash device does not admit of bad eraseblocks or
918 * something nasty and unexpected happened. Switch to read-only
919 * mode just in case.
921 ubi_ro_mode(ubi);
922 goto out_leb_unlock;
925 err = ubi_wl_put_peb(ubi, pnum, 1);
926 if (err || ++tries > UBI_IO_RETRIES) {
927 ubi_ro_mode(ubi);
928 goto out_leb_unlock;
931 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
932 ubi_msg("try another PEB");
933 goto retry;
937 * is_error_sane - check whether a read error is sane.
938 * @err: code of the error happened during reading
940 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
941 * cannot read data from the target PEB (an error @err happened). If the error
942 * code is sane, then we treat this error as non-fatal. Otherwise the error is
943 * fatal and UBI will be switched to R/O mode later.
945 * The idea is that we try not to switch to R/O mode if the read error is
946 * something which suggests there was a real read problem. E.g., %-EIO. Or a
947 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
948 * mode, simply because we do not know what happened at the MTD level, and we
949 * cannot handle this. E.g., the underlying driver may have become crazy, and
950 * it is safer to switch to R/O mode to preserve the data.
952 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
953 * which we have just written.
955 static int is_error_sane(int err)
957 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
958 err == UBI_IO_BAD_HDR_READ || err == -ETIMEDOUT)
959 return 0;
960 return 1;
964 * ubi_eba_copy_leb - copy logical eraseblock.
965 * @ubi: UBI device description object
966 * @from: physical eraseblock number from where to copy
967 * @to: physical eraseblock number where to copy
968 * @vid_hdr: VID header of the @from physical eraseblock
970 * This function copies logical eraseblock from physical eraseblock @from to
971 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
972 * function. Returns:
973 * o %0 in case of success;
974 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc;
975 * o a negative error code in case of failure.
977 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
978 struct ubi_vid_hdr *vid_hdr)
980 int err, vol_id, lnum, data_size, aldata_size, idx;
981 struct ubi_volume *vol;
982 uint32_t crc;
984 vol_id = be32_to_cpu(vid_hdr->vol_id);
985 lnum = be32_to_cpu(vid_hdr->lnum);
987 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
989 if (vid_hdr->vol_type == UBI_VID_STATIC) {
990 data_size = be32_to_cpu(vid_hdr->data_size);
991 aldata_size = ALIGN(data_size, ubi->min_io_size);
992 } else
993 data_size = aldata_size =
994 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
996 idx = vol_id2idx(ubi, vol_id);
997 spin_lock(&ubi->volumes_lock);
999 * Note, we may race with volume deletion, which means that the volume
1000 * this logical eraseblock belongs to might be being deleted. Since the
1001 * volume deletion un-maps all the volume's logical eraseblocks, it will
1002 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1004 vol = ubi->volumes[idx];
1005 spin_unlock(&ubi->volumes_lock);
1006 if (!vol) {
1007 /* No need to do further work, cancel */
1008 dbg_wl("volume %d is being removed, cancel", vol_id);
1009 return MOVE_CANCEL_RACE;
1013 * We do not want anybody to write to this logical eraseblock while we
1014 * are moving it, so lock it.
1016 * Note, we are using non-waiting locking here, because we cannot sleep
1017 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1018 * unmapping the LEB which is mapped to the PEB we are going to move
1019 * (@from). This task locks the LEB and goes sleep in the
1020 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1021 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1022 * LEB is already locked, we just do not move it and return
1023 * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later.
1025 err = leb_write_trylock(ubi, vol_id, lnum);
1026 if (err) {
1027 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1028 return MOVE_CANCEL_RACE;
1032 * The LEB might have been put meanwhile, and the task which put it is
1033 * probably waiting on @ubi->move_mutex. No need to continue the work,
1034 * cancel it.
1036 if (vol->eba_tbl[lnum] != from) {
1037 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1038 "PEB %d, cancel", vol_id, lnum, from,
1039 vol->eba_tbl[lnum]);
1040 err = MOVE_CANCEL_RACE;
1041 goto out_unlock_leb;
1045 * OK, now the LEB is locked and we can safely start moving it. Since
1046 * this function utilizes the @ubi->peb_buf1 buffer which is shared
1047 * with some other functions - we lock the buffer by taking the
1048 * @ubi->buf_mutex.
1050 mutex_lock(&ubi->buf_mutex);
1051 dbg_wl("read %d bytes of data", aldata_size);
1052 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1053 if (err && err != UBI_IO_BITFLIPS) {
1054 ubi_warn("error %d while reading data from PEB %d",
1055 err, from);
1056 err = MOVE_SOURCE_RD_ERR;
1057 goto out_unlock_buf;
1061 * Now we have got to calculate how much data we have to copy. In
1062 * case of a static volume it is fairly easy - the VID header contains
1063 * the data size. In case of a dynamic volume it is more difficult - we
1064 * have to read the contents, cut 0xFF bytes from the end and copy only
1065 * the first part. We must do this to avoid writing 0xFF bytes as it
1066 * may have some side-effects. And not only this. It is important not
1067 * to include those 0xFFs to CRC because later the they may be filled
1068 * by data.
1070 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1071 aldata_size = data_size =
1072 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1074 cond_resched();
1075 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1076 cond_resched();
1079 * It may turn out to be that the whole @from physical eraseblock
1080 * contains only 0xFF bytes. Then we have to only write the VID header
1081 * and do not write any data. This also means we should not set
1082 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1084 if (data_size > 0) {
1085 vid_hdr->copy_flag = 1;
1086 vid_hdr->data_size = cpu_to_be32(data_size);
1087 vid_hdr->data_crc = cpu_to_be32(crc);
1089 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1091 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1092 if (err) {
1093 if (err == -EIO)
1094 err = MOVE_TARGET_WR_ERR;
1095 goto out_unlock_buf;
1098 cond_resched();
1100 /* Read the VID header back and check if it was written correctly */
1101 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1102 if (err) {
1103 if (err != UBI_IO_BITFLIPS) {
1104 ubi_warn("error %d while reading VID header back from "
1105 "PEB %d", err, to);
1106 if (is_error_sane(err))
1107 err = MOVE_TARGET_RD_ERR;
1108 } else
1109 err = MOVE_CANCEL_BITFLIPS;
1110 goto out_unlock_buf;
1113 if (data_size > 0) {
1114 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1115 if (err) {
1116 if (err == -EIO)
1117 err = MOVE_TARGET_WR_ERR;
1118 goto out_unlock_buf;
1121 cond_resched();
1124 * We've written the data and are going to read it back to make
1125 * sure it was written correctly.
1128 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1129 if (err) {
1130 if (err != UBI_IO_BITFLIPS) {
1131 ubi_warn("error %d while reading data back "
1132 "from PEB %d", err, to);
1133 if (is_error_sane(err))
1134 err = MOVE_TARGET_RD_ERR;
1135 } else
1136 err = MOVE_CANCEL_BITFLIPS;
1137 goto out_unlock_buf;
1140 cond_resched();
1142 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1143 ubi_warn("read data back from PEB %d and it is "
1144 "different", to);
1145 err = -EINVAL;
1146 goto out_unlock_buf;
1150 ubi_assert(vol->eba_tbl[lnum] == from);
1151 vol->eba_tbl[lnum] = to;
1153 out_unlock_buf:
1154 mutex_unlock(&ubi->buf_mutex);
1155 out_unlock_leb:
1156 leb_write_unlock(ubi, vol_id, lnum);
1157 return err;
1161 * print_rsvd_warning - warn about not having enough reserved PEBs.
1162 * @ubi: UBI device description object
1164 * This is a helper function for 'ubi_eba_init_scan()' which is called when UBI
1165 * cannot reserve enough PEBs for bad block handling. This function makes a
1166 * decision whether we have to print a warning or not. The algorithm is as
1167 * follows:
1168 * o if this is a new UBI image, then just print the warning
1169 * o if this is an UBI image which has already been used for some time, print
1170 * a warning only if we can reserve less than 10% of the expected amount of
1171 * the reserved PEB.
1173 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1174 * of PEBs becomes smaller, which is normal and we do not want to scare users
1175 * with a warning every time they attach the MTD device. This was an issue
1176 * reported by real users.
1178 static void print_rsvd_warning(struct ubi_device *ubi,
1179 struct ubi_scan_info *si)
1182 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1183 * large number to distinguish between newly flashed and used images.
1185 if (si->max_sqnum > (1 << 18)) {
1186 int min = ubi->beb_rsvd_level / 10;
1188 if (!min)
1189 min = 1;
1190 if (ubi->beb_rsvd_pebs > min)
1191 return;
1194 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d,"
1195 " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1199 * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
1200 * @ubi: UBI device description object
1201 * @si: scanning information
1203 * This function returns zero in case of success and a negative error code in
1204 * case of failure.
1206 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1208 int i, j, err, num_volumes;
1209 struct ubi_scan_volume *sv;
1210 struct ubi_volume *vol;
1211 struct ubi_scan_leb *seb;
1212 struct rb_node *rb;
1214 dbg_eba("initialize EBA sub-system");
1216 spin_lock_init(&ubi->ltree_lock);
1217 mutex_init(&ubi->alc_mutex);
1218 ubi->ltree = RB_ROOT;
1220 ubi->global_sqnum = si->max_sqnum + 1;
1221 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1223 for (i = 0; i < num_volumes; i++) {
1224 vol = ubi->volumes[i];
1225 if (!vol)
1226 continue;
1228 cond_resched();
1230 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1231 GFP_KERNEL);
1232 if (!vol->eba_tbl) {
1233 err = -ENOMEM;
1234 goto out_free;
1237 for (j = 0; j < vol->reserved_pebs; j++)
1238 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1240 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1241 if (!sv)
1242 continue;
1244 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1245 if (seb->lnum >= vol->reserved_pebs)
1247 * This may happen in case of an unclean reboot
1248 * during re-size.
1250 ubi_scan_move_to_list(sv, seb, &si->erase);
1251 vol->eba_tbl[seb->lnum] = seb->pnum;
1255 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1256 ubi_err("no enough physical eraseblocks (%d, need %d)",
1257 ubi->avail_pebs, EBA_RESERVED_PEBS);
1258 err = -ENOSPC;
1259 goto out_free;
1261 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1262 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1264 if (ubi->bad_allowed) {
1265 ubi_calculate_reserved(ubi);
1267 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1268 /* No enough free physical eraseblocks */
1269 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1270 print_rsvd_warning(ubi, si);
1271 } else
1272 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1274 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1275 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1278 dbg_eba("EBA sub-system is initialized");
1279 return 0;
1281 out_free:
1282 for (i = 0; i < num_volumes; i++) {
1283 if (!ubi->volumes[i])
1284 continue;
1285 kfree(ubi->volumes[i]->eba_tbl);
1286 ubi->volumes[i]->eba_tbl = NULL;
1288 return err;