RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / mtd / devices / doc2000.c
blobf2300f8635626d2ddacc158e0af2b6a83ec5ba09
2 /*
3 * Linux driver for Disk-On-Chip 2000 and Millennium
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <asm/errno.h>
11 #include <asm/io.h>
12 #include <asm/uaccess.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/mutex.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/doc2000.h>
25 #define DOC_SUPPORT_2000
26 #define DOC_SUPPORT_2000TSOP
27 #define DOC_SUPPORT_MILLENNIUM
29 #ifdef DOC_SUPPORT_2000
30 #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
31 #else
32 #define DoC_is_2000(doc) (0)
33 #endif
35 #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
36 #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
37 #else
38 #define DoC_is_Millennium(doc) (0)
39 #endif
41 /* #define ECC_DEBUG */
43 /* I have no idea why some DoC chips can not use memcpy_from|to_io().
44 * This may be due to the different revisions of the ASIC controller built-in or
45 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
46 * this:
47 #undef USE_MEMCPY
50 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
51 size_t *retlen, u_char *buf);
52 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
53 size_t *retlen, const u_char *buf);
54 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
55 struct mtd_oob_ops *ops);
56 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
57 struct mtd_oob_ops *ops);
58 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
59 size_t *retlen, const u_char *buf);
60 static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
62 static struct mtd_info *doc2klist = NULL;
64 /* Perform the required delay cycles by reading from the appropriate register */
65 static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
67 volatile char dummy;
68 int i;
70 for (i = 0; i < cycles; i++) {
71 if (DoC_is_Millennium(doc))
72 dummy = ReadDOC(doc->virtadr, NOP);
73 else
74 dummy = ReadDOC(doc->virtadr, DOCStatus);
79 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
80 static int _DoC_WaitReady(struct DiskOnChip *doc)
82 void __iomem *docptr = doc->virtadr;
83 unsigned long timeo = jiffies + (HZ * 10);
85 DEBUG(MTD_DEBUG_LEVEL3,
86 "_DoC_WaitReady called for out-of-line wait\n");
88 /* Out-of-line routine to wait for chip response */
89 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
90 /* issue 2 read from NOP register after reading from CDSNControl register
91 see Software Requirement 11.4 item 2. */
92 DoC_Delay(doc, 2);
94 if (time_after(jiffies, timeo)) {
95 DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
96 return -EIO;
98 udelay(1);
99 cond_resched();
102 return 0;
105 static inline int DoC_WaitReady(struct DiskOnChip *doc)
107 void __iomem *docptr = doc->virtadr;
109 /* This is inline, to optimise the common case, where it's ready instantly */
110 int ret = 0;
112 /* 4 read form NOP register should be issued in prior to the read from CDSNControl
113 see Software Requirement 11.4 item 2. */
114 DoC_Delay(doc, 4);
116 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
117 /* Call the out-of-line routine to wait */
118 ret = _DoC_WaitReady(doc);
120 /* issue 2 read from NOP register after reading from CDSNControl register
121 see Software Requirement 11.4 item 2. */
122 DoC_Delay(doc, 2);
124 return ret;
127 /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
128 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
129 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
131 static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
132 unsigned char xtraflags)
134 void __iomem *docptr = doc->virtadr;
136 if (DoC_is_2000(doc))
137 xtraflags |= CDSN_CTRL_FLASH_IO;
139 /* Assert the CLE (Command Latch Enable) line to the flash chip */
140 WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
141 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
143 if (DoC_is_Millennium(doc))
144 WriteDOC(command, docptr, CDSNSlowIO);
146 /* Send the command */
147 WriteDOC_(command, docptr, doc->ioreg);
148 if (DoC_is_Millennium(doc))
149 WriteDOC(command, docptr, WritePipeTerm);
151 /* Lower the CLE line */
152 WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
153 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
155 /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
156 return DoC_WaitReady(doc);
159 /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
160 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
161 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
163 static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
164 unsigned char xtraflags1, unsigned char xtraflags2)
166 int i;
167 void __iomem *docptr = doc->virtadr;
169 if (DoC_is_2000(doc))
170 xtraflags1 |= CDSN_CTRL_FLASH_IO;
172 /* Assert the ALE (Address Latch Enable) line to the flash chip */
173 WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
175 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
177 /* Send the address */
178 /* Devices with 256-byte page are addressed as:
179 Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
180 * there is no device on the market with page256
181 and more than 24 bits.
182 Devices with 512-byte page are addressed as:
183 Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
184 * 25-31 is sent only if the chip support it.
185 * bit 8 changes the read command to be sent
186 (NAND_CMD_READ0 or NAND_CMD_READ1).
189 if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
190 if (DoC_is_Millennium(doc))
191 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
192 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
195 if (doc->page256) {
196 ofs = ofs >> 8;
197 } else {
198 ofs = ofs >> 9;
201 if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
202 for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
203 if (DoC_is_Millennium(doc))
204 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
205 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
209 if (DoC_is_Millennium(doc))
210 WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
212 DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
215 /* Lower the ALE line */
216 WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
217 CDSNControl);
219 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
221 /* Wait for the chip to respond - Software requirement 11.4.1 */
222 return DoC_WaitReady(doc);
225 /* Read a buffer from DoC, taking care of Millennium odditys */
226 static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
228 volatile int dummy;
229 int modulus = 0xffff;
230 void __iomem *docptr = doc->virtadr;
231 int i;
233 if (len <= 0)
234 return;
236 if (DoC_is_Millennium(doc)) {
237 /* Read the data via the internal pipeline through CDSN IO register,
238 see Pipelined Read Operations 11.3 */
239 dummy = ReadDOC(docptr, ReadPipeInit);
241 /* Millennium should use the LastDataRead register - Pipeline Reads */
242 len--;
244 /* This is needed for correctly ECC calculation */
245 modulus = 0xff;
248 for (i = 0; i < len; i++)
249 buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
251 if (DoC_is_Millennium(doc)) {
252 buf[i] = ReadDOC(docptr, LastDataRead);
256 /* Write a buffer to DoC, taking care of Millennium odditys */
257 static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
259 void __iomem *docptr = doc->virtadr;
260 int i;
262 if (len <= 0)
263 return;
265 for (i = 0; i < len; i++)
266 WriteDOC_(buf[i], docptr, doc->ioreg + i);
268 if (DoC_is_Millennium(doc)) {
269 WriteDOC(0x00, docptr, WritePipeTerm);
274 /* DoC_SelectChip: Select a given flash chip within the current floor */
276 static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
278 void __iomem *docptr = doc->virtadr;
280 /* Software requirement 11.4.4 before writing DeviceSelect */
281 /* Deassert the CE line to eliminate glitches on the FCE# outputs */
282 WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
283 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
285 /* Select the individual flash chip requested */
286 WriteDOC(chip, docptr, CDSNDeviceSelect);
287 DoC_Delay(doc, 4);
289 /* Reassert the CE line */
290 WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
291 CDSNControl);
292 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
294 /* Wait for it to be ready */
295 return DoC_WaitReady(doc);
298 /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
300 static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
302 void __iomem *docptr = doc->virtadr;
304 /* Select the floor (bank) of chips required */
305 WriteDOC(floor, docptr, FloorSelect);
307 /* Wait for the chip to be ready */
308 return DoC_WaitReady(doc);
311 /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
313 static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
315 int mfr, id, i, j;
316 volatile char dummy;
318 /* Page in the required floor/chip */
319 DoC_SelectFloor(doc, floor);
320 DoC_SelectChip(doc, chip);
322 /* Reset the chip */
323 if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
324 DEBUG(MTD_DEBUG_LEVEL2,
325 "DoC_Command (reset) for %d,%d returned true\n",
326 floor, chip);
327 return 0;
331 /* Read the NAND chip ID: 1. Send ReadID command */
332 if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
333 DEBUG(MTD_DEBUG_LEVEL2,
334 "DoC_Command (ReadID) for %d,%d returned true\n",
335 floor, chip);
336 return 0;
339 /* Read the NAND chip ID: 2. Send address byte zero */
340 DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
342 /* Read the manufacturer and device id codes from the device */
344 if (DoC_is_Millennium(doc)) {
345 DoC_Delay(doc, 2);
346 dummy = ReadDOC(doc->virtadr, ReadPipeInit);
347 mfr = ReadDOC(doc->virtadr, LastDataRead);
349 DoC_Delay(doc, 2);
350 dummy = ReadDOC(doc->virtadr, ReadPipeInit);
351 id = ReadDOC(doc->virtadr, LastDataRead);
352 } else {
353 /* CDSN Slow IO register see Software Req 11.4 item 5. */
354 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
355 DoC_Delay(doc, 2);
356 mfr = ReadDOC_(doc->virtadr, doc->ioreg);
358 /* CDSN Slow IO register see Software Req 11.4 item 5. */
359 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
360 DoC_Delay(doc, 2);
361 id = ReadDOC_(doc->virtadr, doc->ioreg);
364 /* No response - return failure */
365 if (mfr == 0xff || mfr == 0)
366 return 0;
368 /* Check it's the same as the first chip we identified.
369 * M-Systems say that any given DiskOnChip device should only
370 * contain _one_ type of flash part, although that's not a
371 * hardware restriction. */
372 if (doc->mfr) {
373 if (doc->mfr == mfr && doc->id == id)
374 return 1; /* This is the same as the first */
375 else
376 printk(KERN_WARNING
377 "Flash chip at floor %d, chip %d is different:\n",
378 floor, chip);
381 /* Print and store the manufacturer and ID codes. */
382 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
383 if (id == nand_flash_ids[i].id) {
384 /* Try to identify manufacturer */
385 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
386 if (nand_manuf_ids[j].id == mfr)
387 break;
389 printk(KERN_INFO
390 "Flash chip found: Manufacturer ID: %2.2X, "
391 "Chip ID: %2.2X (%s:%s)\n", mfr, id,
392 nand_manuf_ids[j].name, nand_flash_ids[i].name);
393 if (!doc->mfr) {
394 doc->mfr = mfr;
395 doc->id = id;
396 doc->chipshift =
397 ffs((nand_flash_ids[i].chipsize << 20)) - 1;
398 doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
399 doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
400 doc->erasesize =
401 nand_flash_ids[i].erasesize;
402 return 1;
404 return 0;
409 /* We haven't fully identified the chip. Print as much as we know. */
410 printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
411 id, mfr);
413 printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
414 return 0;
417 /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
419 static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
421 int floor, chip;
422 int numchips[MAX_FLOORS];
423 int ret = 1;
425 this->numchips = 0;
426 this->mfr = 0;
427 this->id = 0;
429 /* For each floor, find the number of valid chips it contains */
430 for (floor = 0; floor < MAX_FLOORS; floor++) {
431 ret = 1;
432 numchips[floor] = 0;
433 for (chip = 0; chip < maxchips && ret != 0; chip++) {
435 ret = DoC_IdentChip(this, floor, chip);
436 if (ret) {
437 numchips[floor]++;
438 this->numchips++;
443 /* If there are none at all that we recognise, bail */
444 if (!this->numchips) {
445 printk(KERN_NOTICE "No flash chips recognised.\n");
446 return;
449 /* Allocate an array to hold the information for each chip */
450 this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
451 if (!this->chips) {
452 printk(KERN_NOTICE "No memory for allocating chip info structures\n");
453 return;
456 ret = 0;
458 /* Fill out the chip array with {floor, chipno} for each
459 * detected chip in the device. */
460 for (floor = 0; floor < MAX_FLOORS; floor++) {
461 for (chip = 0; chip < numchips[floor]; chip++) {
462 this->chips[ret].floor = floor;
463 this->chips[ret].chip = chip;
464 this->chips[ret].curadr = 0;
465 this->chips[ret].curmode = 0x50;
466 ret++;
470 /* Calculate and print the total size of the device */
471 this->totlen = this->numchips * (1 << this->chipshift);
473 printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
474 this->numchips, this->totlen >> 20);
477 static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
479 int tmp1, tmp2, retval;
480 if (doc1->physadr == doc2->physadr)
481 return 1;
483 /* Use the alias resolution register which was set aside for this
484 * purpose. If it's value is the same on both chips, they might
485 * be the same chip, and we write to one and check for a change in
486 * the other. It's unclear if this register is usuable in the
487 * DoC 2000 (it's in the Millennium docs), but it seems to work. */
488 tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
489 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
490 if (tmp1 != tmp2)
491 return 0;
493 WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
494 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
495 if (tmp2 == (tmp1 + 1) % 0xff)
496 retval = 1;
497 else
498 retval = 0;
500 /* Restore register contents. May not be necessary, but do it just to
501 * be safe. */
502 WriteDOC(tmp1, doc1->virtadr, AliasResolution);
504 return retval;
507 /* This routine is found from the docprobe code by symbol_get(),
508 * which will bump the use count of this module. */
509 void DoC2k_init(struct mtd_info *mtd)
511 struct DiskOnChip *this = mtd->priv;
512 struct DiskOnChip *old = NULL;
513 int maxchips;
515 /* We must avoid being called twice for the same device. */
517 if (doc2klist)
518 old = doc2klist->priv;
520 while (old) {
521 if (DoC2k_is_alias(old, this)) {
522 printk(KERN_NOTICE
523 "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
524 this->physadr);
525 iounmap(this->virtadr);
526 kfree(mtd);
527 return;
529 if (old->nextdoc)
530 old = old->nextdoc->priv;
531 else
532 old = NULL;
536 switch (this->ChipID) {
537 case DOC_ChipID_Doc2kTSOP:
538 mtd->name = "DiskOnChip 2000 TSOP";
539 this->ioreg = DoC_Mil_CDSN_IO;
540 /* Pretend it's a Millennium */
541 this->ChipID = DOC_ChipID_DocMil;
542 maxchips = MAX_CHIPS;
543 break;
544 case DOC_ChipID_Doc2k:
545 mtd->name = "DiskOnChip 2000";
546 this->ioreg = DoC_2k_CDSN_IO;
547 maxchips = MAX_CHIPS;
548 break;
549 case DOC_ChipID_DocMil:
550 mtd->name = "DiskOnChip Millennium";
551 this->ioreg = DoC_Mil_CDSN_IO;
552 maxchips = MAX_CHIPS_MIL;
553 break;
554 default:
555 printk("Unknown ChipID 0x%02x\n", this->ChipID);
556 kfree(mtd);
557 iounmap(this->virtadr);
558 return;
561 printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
562 this->physadr);
564 mtd->type = MTD_NANDFLASH;
565 mtd->flags = MTD_CAP_NANDFLASH;
566 mtd->size = 0;
567 mtd->erasesize = 0;
568 mtd->writesize = 512;
569 mtd->oobsize = 16;
570 mtd->owner = THIS_MODULE;
571 mtd->erase = doc_erase;
572 mtd->point = NULL;
573 mtd->unpoint = NULL;
574 mtd->read = doc_read;
575 mtd->write = doc_write;
576 mtd->read_oob = doc_read_oob;
577 mtd->write_oob = doc_write_oob;
578 mtd->sync = NULL;
580 this->totlen = 0;
581 this->numchips = 0;
583 this->curfloor = -1;
584 this->curchip = -1;
585 mutex_init(&this->lock);
587 /* Ident all the chips present. */
588 DoC_ScanChips(this, maxchips);
590 if (!this->totlen) {
591 kfree(mtd);
592 iounmap(this->virtadr);
593 } else {
594 this->nextdoc = doc2klist;
595 doc2klist = mtd;
596 mtd->size = this->totlen;
597 mtd->erasesize = this->erasesize;
598 add_mtd_device(mtd);
599 return;
602 EXPORT_SYMBOL_GPL(DoC2k_init);
604 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
605 size_t * retlen, u_char * buf)
607 struct DiskOnChip *this = mtd->priv;
608 void __iomem *docptr = this->virtadr;
609 struct Nand *mychip;
610 unsigned char syndrome[6], eccbuf[6];
611 volatile char dummy;
612 int i, len256 = 0, ret=0;
613 size_t left = len;
615 /* Don't allow read past end of device */
616 if (from >= this->totlen)
617 return -EINVAL;
619 mutex_lock(&this->lock);
621 *retlen = 0;
622 while (left) {
623 len = left;
625 /* Don't allow a single read to cross a 512-byte block boundary */
626 if (from + len > ((from | 0x1ff) + 1))
627 len = ((from | 0x1ff) + 1) - from;
629 /* The ECC will not be calculated correctly if less than 512 is read */
630 if (len != 0x200)
631 printk(KERN_WARNING
632 "ECC needs a full sector read (adr: %lx size %lx)\n",
633 (long) from, (long) len);
635 /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
638 /* Find the chip which is to be used and select it */
639 mychip = &this->chips[from >> (this->chipshift)];
641 if (this->curfloor != mychip->floor) {
642 DoC_SelectFloor(this, mychip->floor);
643 DoC_SelectChip(this, mychip->chip);
644 } else if (this->curchip != mychip->chip) {
645 DoC_SelectChip(this, mychip->chip);
648 this->curfloor = mychip->floor;
649 this->curchip = mychip->chip;
651 DoC_Command(this,
652 (!this->page256
653 && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
654 CDSN_CTRL_WP);
655 DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
656 CDSN_CTRL_ECC_IO);
658 /* Prime the ECC engine */
659 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
660 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
662 /* treat crossing 256-byte sector for 2M x 8bits devices */
663 if (this->page256 && from + len > (from | 0xff) + 1) {
664 len256 = (from | 0xff) + 1 - from;
665 DoC_ReadBuf(this, buf, len256);
667 DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
668 DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
669 CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
672 DoC_ReadBuf(this, &buf[len256], len - len256);
674 /* Let the caller know we completed it */
675 *retlen += len;
677 /* Read the ECC data through the DiskOnChip ECC logic */
678 /* Note: this will work even with 2M x 8bit devices as */
679 /* they have 8 bytes of OOB per 256 page. mf. */
680 DoC_ReadBuf(this, eccbuf, 6);
682 /* Flush the pipeline */
683 if (DoC_is_Millennium(this)) {
684 dummy = ReadDOC(docptr, ECCConf);
685 dummy = ReadDOC(docptr, ECCConf);
686 i = ReadDOC(docptr, ECCConf);
687 } else {
688 dummy = ReadDOC(docptr, 2k_ECCStatus);
689 dummy = ReadDOC(docptr, 2k_ECCStatus);
690 i = ReadDOC(docptr, 2k_ECCStatus);
693 /* Check the ECC Status */
694 if (i & 0x80) {
695 int nb_errors;
696 /* There was an ECC error */
697 #ifdef ECC_DEBUG
698 printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
699 #endif
700 /* Read the ECC syndrom through the DiskOnChip ECC
701 logic. These syndrome will be all ZERO when there
702 is no error */
703 for (i = 0; i < 6; i++) {
704 syndrome[i] =
705 ReadDOC(docptr, ECCSyndrome0 + i);
707 nb_errors = doc_decode_ecc(buf, syndrome);
709 #ifdef ECC_DEBUG
710 printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
711 #endif
712 if (nb_errors < 0) {
713 /* We return error, but have actually done the
714 read. Not that this can be told to
715 user-space, via sys_read(), but at least
716 MTD-aware stuff can know about it by
717 checking *retlen */
718 ret = -EIO;
722 #ifdef PSYCHO_DEBUG
723 printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
724 (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
725 eccbuf[3], eccbuf[4], eccbuf[5]);
726 #endif
728 /* disable the ECC engine */
729 WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
731 /* according to 11.4.1, we need to wait for the busy line
732 * drop if we read to the end of the page. */
733 if(0 == ((from + len) & 0x1ff))
735 DoC_WaitReady(this);
738 from += len;
739 left -= len;
740 buf += len;
743 mutex_unlock(&this->lock);
745 return ret;
748 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
749 size_t * retlen, const u_char * buf)
751 struct DiskOnChip *this = mtd->priv;
752 int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
753 void __iomem *docptr = this->virtadr;
754 unsigned char eccbuf[6];
755 volatile char dummy;
756 int len256 = 0;
757 struct Nand *mychip;
758 size_t left = len;
759 int status;
761 /* Don't allow write past end of device */
762 if (to >= this->totlen)
763 return -EINVAL;
765 mutex_lock(&this->lock);
767 *retlen = 0;
768 while (left) {
769 len = left;
771 /* Don't allow a single write to cross a 512-byte block boundary */
772 if (to + len > ((to | 0x1ff) + 1))
773 len = ((to | 0x1ff) + 1) - to;
775 /* The ECC will not be calculated correctly if less than 512 is written */
776 /* DBB-
777 if (len != 0x200 && eccbuf)
778 printk(KERN_WARNING
779 "ECC needs a full sector write (adr: %lx size %lx)\n",
780 (long) to, (long) len);
781 -DBB */
783 /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
785 /* Find the chip which is to be used and select it */
786 mychip = &this->chips[to >> (this->chipshift)];
788 if (this->curfloor != mychip->floor) {
789 DoC_SelectFloor(this, mychip->floor);
790 DoC_SelectChip(this, mychip->chip);
791 } else if (this->curchip != mychip->chip) {
792 DoC_SelectChip(this, mychip->chip);
795 this->curfloor = mychip->floor;
796 this->curchip = mychip->chip;
798 /* Set device to main plane of flash */
799 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
800 DoC_Command(this,
801 (!this->page256
802 && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
803 CDSN_CTRL_WP);
805 DoC_Command(this, NAND_CMD_SEQIN, 0);
806 DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
808 /* Prime the ECC engine */
809 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
810 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
812 /* treat crossing 256-byte sector for 2M x 8bits devices */
813 if (this->page256 && to + len > (to | 0xff) + 1) {
814 len256 = (to | 0xff) + 1 - to;
815 DoC_WriteBuf(this, buf, len256);
817 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
819 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
820 /* There's an implicit DoC_WaitReady() in DoC_Command */
822 dummy = ReadDOC(docptr, CDSNSlowIO);
823 DoC_Delay(this, 2);
825 if (ReadDOC_(docptr, this->ioreg) & 1) {
826 printk(KERN_ERR "Error programming flash\n");
827 /* Error in programming */
828 *retlen = 0;
829 mutex_unlock(&this->lock);
830 return -EIO;
833 DoC_Command(this, NAND_CMD_SEQIN, 0);
834 DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
835 CDSN_CTRL_ECC_IO);
838 DoC_WriteBuf(this, &buf[len256], len - len256);
840 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
842 if (DoC_is_Millennium(this)) {
843 WriteDOC(0, docptr, NOP);
844 WriteDOC(0, docptr, NOP);
845 WriteDOC(0, docptr, NOP);
846 } else {
847 WriteDOC_(0, docptr, this->ioreg);
848 WriteDOC_(0, docptr, this->ioreg);
849 WriteDOC_(0, docptr, this->ioreg);
852 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
853 CDSNControl);
855 /* Read the ECC data through the DiskOnChip ECC logic */
856 for (di = 0; di < 6; di++) {
857 eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
860 /* Reset the ECC engine */
861 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
863 #ifdef PSYCHO_DEBUG
864 printk
865 ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
866 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
867 eccbuf[4], eccbuf[5]);
868 #endif
869 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
871 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
872 /* There's an implicit DoC_WaitReady() in DoC_Command */
874 if (DoC_is_Millennium(this)) {
875 ReadDOC(docptr, ReadPipeInit);
876 status = ReadDOC(docptr, LastDataRead);
877 } else {
878 dummy = ReadDOC(docptr, CDSNSlowIO);
879 DoC_Delay(this, 2);
880 status = ReadDOC_(docptr, this->ioreg);
883 if (status & 1) {
884 printk(KERN_ERR "Error programming flash\n");
885 /* Error in programming */
886 *retlen = 0;
887 mutex_unlock(&this->lock);
888 return -EIO;
891 /* Let the caller know we completed it */
892 *retlen += len;
895 unsigned char x[8];
896 size_t dummy;
897 int ret;
899 /* Write the ECC data to flash */
900 for (di=0; di<6; di++)
901 x[di] = eccbuf[di];
903 x[6]=0x55;
904 x[7]=0x55;
906 ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
907 if (ret) {
908 mutex_unlock(&this->lock);
909 return ret;
913 to += len;
914 left -= len;
915 buf += len;
918 mutex_unlock(&this->lock);
919 return 0;
922 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
923 struct mtd_oob_ops *ops)
925 struct DiskOnChip *this = mtd->priv;
926 int len256 = 0, ret;
927 struct Nand *mychip;
928 uint8_t *buf = ops->oobbuf;
929 size_t len = ops->len;
931 BUG_ON(ops->mode != MTD_OOB_PLACE);
933 ofs += ops->ooboffs;
935 mutex_lock(&this->lock);
937 mychip = &this->chips[ofs >> this->chipshift];
939 if (this->curfloor != mychip->floor) {
940 DoC_SelectFloor(this, mychip->floor);
941 DoC_SelectChip(this, mychip->chip);
942 } else if (this->curchip != mychip->chip) {
943 DoC_SelectChip(this, mychip->chip);
945 this->curfloor = mychip->floor;
946 this->curchip = mychip->chip;
948 /* update address for 2M x 8bit devices. OOB starts on the second */
949 /* page to maintain compatibility with doc_read_ecc. */
950 if (this->page256) {
951 if (!(ofs & 0x8))
952 ofs += 0x100;
953 else
954 ofs -= 0x8;
957 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
958 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
960 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
961 /* Note: datasheet says it should automaticaly wrap to the */
962 /* next OOB block, but it didn't work here. mf. */
963 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
964 len256 = (ofs | 0x7) + 1 - ofs;
965 DoC_ReadBuf(this, buf, len256);
967 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
968 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
969 CDSN_CTRL_WP, 0);
972 DoC_ReadBuf(this, &buf[len256], len - len256);
974 ops->retlen = len;
975 /* Reading the full OOB data drops us off of the end of the page,
976 * causing the flash device to go into busy mode, so we need
977 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
979 ret = DoC_WaitReady(this);
981 mutex_unlock(&this->lock);
982 return ret;
986 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
987 size_t * retlen, const u_char * buf)
989 struct DiskOnChip *this = mtd->priv;
990 int len256 = 0;
991 void __iomem *docptr = this->virtadr;
992 struct Nand *mychip = &this->chips[ofs >> this->chipshift];
993 volatile int dummy;
994 int status;
996 // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
997 // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
999 /* Find the chip which is to be used and select it */
1000 if (this->curfloor != mychip->floor) {
1001 DoC_SelectFloor(this, mychip->floor);
1002 DoC_SelectChip(this, mychip->chip);
1003 } else if (this->curchip != mychip->chip) {
1004 DoC_SelectChip(this, mychip->chip);
1006 this->curfloor = mychip->floor;
1007 this->curchip = mychip->chip;
1009 /* disable the ECC engine */
1010 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
1011 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
1013 /* Reset the chip, see Software Requirement 11.4 item 1. */
1014 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1016 /* issue the Read2 command to set the pointer to the Spare Data Area. */
1017 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1019 /* update address for 2M x 8bit devices. OOB starts on the second */
1020 /* page to maintain compatibility with doc_read_ecc. */
1021 if (this->page256) {
1022 if (!(ofs & 0x8))
1023 ofs += 0x100;
1024 else
1025 ofs -= 0x8;
1028 /* issue the Serial Data In command to initial the Page Program process */
1029 DoC_Command(this, NAND_CMD_SEQIN, 0);
1030 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1032 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1033 /* Note: datasheet says it should automaticaly wrap to the */
1034 /* next OOB block, but it didn't work here. mf. */
1035 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1036 len256 = (ofs | 0x7) + 1 - ofs;
1037 DoC_WriteBuf(this, buf, len256);
1039 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1040 DoC_Command(this, NAND_CMD_STATUS, 0);
1041 /* DoC_WaitReady() is implicit in DoC_Command */
1043 if (DoC_is_Millennium(this)) {
1044 ReadDOC(docptr, ReadPipeInit);
1045 status = ReadDOC(docptr, LastDataRead);
1046 } else {
1047 dummy = ReadDOC(docptr, CDSNSlowIO);
1048 DoC_Delay(this, 2);
1049 status = ReadDOC_(docptr, this->ioreg);
1052 if (status & 1) {
1053 printk(KERN_ERR "Error programming oob data\n");
1054 /* There was an error */
1055 *retlen = 0;
1056 return -EIO;
1058 DoC_Command(this, NAND_CMD_SEQIN, 0);
1059 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1062 DoC_WriteBuf(this, &buf[len256], len - len256);
1064 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1065 DoC_Command(this, NAND_CMD_STATUS, 0);
1066 /* DoC_WaitReady() is implicit in DoC_Command */
1068 if (DoC_is_Millennium(this)) {
1069 ReadDOC(docptr, ReadPipeInit);
1070 status = ReadDOC(docptr, LastDataRead);
1071 } else {
1072 dummy = ReadDOC(docptr, CDSNSlowIO);
1073 DoC_Delay(this, 2);
1074 status = ReadDOC_(docptr, this->ioreg);
1077 if (status & 1) {
1078 printk(KERN_ERR "Error programming oob data\n");
1079 /* There was an error */
1080 *retlen = 0;
1081 return -EIO;
1084 *retlen = len;
1085 return 0;
1089 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1090 struct mtd_oob_ops *ops)
1092 struct DiskOnChip *this = mtd->priv;
1093 int ret;
1095 BUG_ON(ops->mode != MTD_OOB_PLACE);
1097 mutex_lock(&this->lock);
1098 ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
1099 &ops->retlen, ops->oobbuf);
1101 mutex_unlock(&this->lock);
1102 return ret;
1105 static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1107 struct DiskOnChip *this = mtd->priv;
1108 __u32 ofs = instr->addr;
1109 __u32 len = instr->len;
1110 volatile int dummy;
1111 void __iomem *docptr = this->virtadr;
1112 struct Nand *mychip;
1113 int status;
1115 mutex_lock(&this->lock);
1117 if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1118 mutex_unlock(&this->lock);
1119 return -EINVAL;
1122 instr->state = MTD_ERASING;
1124 while(len) {
1125 mychip = &this->chips[ofs >> this->chipshift];
1127 if (this->curfloor != mychip->floor) {
1128 DoC_SelectFloor(this, mychip->floor);
1129 DoC_SelectChip(this, mychip->chip);
1130 } else if (this->curchip != mychip->chip) {
1131 DoC_SelectChip(this, mychip->chip);
1133 this->curfloor = mychip->floor;
1134 this->curchip = mychip->chip;
1136 DoC_Command(this, NAND_CMD_ERASE1, 0);
1137 DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1138 DoC_Command(this, NAND_CMD_ERASE2, 0);
1140 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1142 if (DoC_is_Millennium(this)) {
1143 ReadDOC(docptr, ReadPipeInit);
1144 status = ReadDOC(docptr, LastDataRead);
1145 } else {
1146 dummy = ReadDOC(docptr, CDSNSlowIO);
1147 DoC_Delay(this, 2);
1148 status = ReadDOC_(docptr, this->ioreg);
1151 if (status & 1) {
1152 printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1153 /* There was an error */
1154 instr->state = MTD_ERASE_FAILED;
1155 goto callback;
1157 ofs += mtd->erasesize;
1158 len -= mtd->erasesize;
1160 instr->state = MTD_ERASE_DONE;
1162 callback:
1163 mtd_erase_callback(instr);
1165 mutex_unlock(&this->lock);
1166 return 0;
1170 /****************************************************************************
1172 * Module stuff
1174 ****************************************************************************/
1176 static void __exit cleanup_doc2000(void)
1178 struct mtd_info *mtd;
1179 struct DiskOnChip *this;
1181 while ((mtd = doc2klist)) {
1182 this = mtd->priv;
1183 doc2klist = this->nextdoc;
1185 del_mtd_device(mtd);
1187 iounmap(this->virtadr);
1188 kfree(this->chips);
1189 kfree(mtd);
1193 module_exit(cleanup_doc2000);
1195 MODULE_LICENSE("GPL");
1196 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
1197 MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");