RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / input / keyboard / lm8323.c
bloba9434b677edfb8ad965cd7a73ba89e37bbcfbc3c
1 /*
2 * drivers/i2c/chips/lm8323.c
4 * Copyright (C) 2007-2009 Nokia Corporation
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
33 #include <linux/i2c/lm8323.h>
34 #include <linux/slab.h>
36 /* Commands to send to the chip. */
37 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
38 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
39 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
40 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
41 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
42 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
43 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
44 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
45 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
46 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
47 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
48 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
49 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
50 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
51 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
52 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
53 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
54 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
55 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
56 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
57 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
58 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
60 /* Interrupt status. */
61 #define INT_KEYPAD 0x01 /* Key event. */
62 #define INT_ROTATOR 0x02 /* Rotator event. */
63 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
64 #define INT_NOINIT 0x10 /* Lost configuration. */
65 #define INT_PWM1 0x20 /* PWM1 stopped. */
66 #define INT_PWM2 0x40 /* PWM2 stopped. */
67 #define INT_PWM3 0x80 /* PWM3 stopped. */
69 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
70 #define ERR_BADPAR 0x01 /* Bad parameter. */
71 #define ERR_CMDUNK 0x02 /* Unknown command. */
72 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
73 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
75 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
76 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
77 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
78 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
79 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
80 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
81 #define CFG_ROTEN 0x40 /* Enable rotator. */
83 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
84 #define CLK_RCPWM_INTERNAL 0x00
85 #define CLK_RCPWM_EXTERNAL 0x03
86 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
87 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
89 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
90 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
91 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
92 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
93 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
95 /* Key event fifo length */
96 #define LM8323_FIFO_LEN 15
98 /* Commands for PWM engine; feed in with PWM_WRITE. */
99 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
100 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
101 /* Go to start of script. */
102 #define PWM_GOTOSTART 0x0000
104 * Stop engine (generates interrupt). If reset is 1, clear the program
105 * counter, else leave it.
107 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
109 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
110 * Take t clock scales (up to 63) per step, for n steps (up to 126).
111 * If u is set, ramp up, else ramp down.
113 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
114 ((n) & 0x7f) | ((u) ? 0 : 0x80))
116 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
117 * If cnt is zero, execute until PWM_END is encountered.
119 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
120 ((pos) & 0x3f))
122 * Wait for trigger. Argument is a mask of channels, shifted by the channel
123 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
124 * from 1, not 0.
126 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
127 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
128 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
130 struct lm8323_pwm {
131 int id;
132 int fade_time;
133 int brightness;
134 int desired_brightness;
135 bool enabled;
136 bool running;
137 /* pwm lock */
138 struct mutex lock;
139 struct work_struct work;
140 struct led_classdev cdev;
141 struct lm8323_chip *chip;
144 struct lm8323_chip {
145 /* device lock */
146 struct mutex lock;
147 struct i2c_client *client;
148 struct work_struct work;
149 struct input_dev *idev;
150 bool kp_enabled;
151 bool pm_suspend;
152 unsigned keys_down;
153 char phys[32];
154 unsigned short keymap[LM8323_KEYMAP_SIZE];
155 int size_x;
156 int size_y;
157 int debounce_time;
158 int active_time;
159 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
164 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
165 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
166 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
168 #define LM8323_MAX_DATA 8
171 * To write, we just access the chip's address in write mode, and dump the
172 * command and data out on the bus. The command byte and data are taken as
173 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
175 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
177 int ret, i;
178 va_list ap;
179 u8 data[LM8323_MAX_DATA];
181 va_start(ap, len);
183 if (unlikely(len > LM8323_MAX_DATA)) {
184 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
185 va_end(ap);
186 return 0;
189 for (i = 0; i < len; i++)
190 data[i] = va_arg(ap, int);
192 va_end(ap);
195 * If the host is asleep while we send the data, we can get a NACK
196 * back while it wakes up, so try again, once.
198 ret = i2c_master_send(lm->client, data, len);
199 if (unlikely(ret == -EREMOTEIO))
200 ret = i2c_master_send(lm->client, data, len);
201 if (unlikely(ret != len))
202 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
203 len, ret);
205 return ret;
209 * To read, we first send the command byte to the chip and end the transaction,
210 * then access the chip in read mode, at which point it will send the data.
212 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
214 int ret;
217 * If the host is asleep while we send the byte, we can get a NACK
218 * back while it wakes up, so try again, once.
220 ret = i2c_master_send(lm->client, &cmd, 1);
221 if (unlikely(ret == -EREMOTEIO))
222 ret = i2c_master_send(lm->client, &cmd, 1);
223 if (unlikely(ret != 1)) {
224 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
225 cmd);
226 return 0;
229 ret = i2c_master_recv(lm->client, buf, len);
230 if (unlikely(ret != len))
231 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
232 len, ret);
234 return ret;
238 * Set the chip active time (idle time before it enters halt).
240 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
242 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
246 * The signals are AT-style: the low 7 bits are the keycode, and the top
247 * bit indicates the state (1 for down, 0 for up).
249 static inline u8 lm8323_whichkey(u8 event)
251 return event & 0x7f;
254 static inline int lm8323_ispress(u8 event)
256 return (event & 0x80) ? 1 : 0;
259 static void process_keys(struct lm8323_chip *lm)
261 u8 event;
262 u8 key_fifo[LM8323_FIFO_LEN + 1];
263 int old_keys_down = lm->keys_down;
264 int ret;
265 int i = 0;
268 * Read all key events from the FIFO at once. Next READ_FIFO clears the
269 * FIFO even if we didn't read all events previously.
271 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
273 if (ret < 0) {
274 dev_err(&lm->client->dev, "Failed reading fifo \n");
275 return;
277 key_fifo[ret] = 0;
279 while ((event = key_fifo[i++])) {
280 u8 key = lm8323_whichkey(event);
281 int isdown = lm8323_ispress(event);
282 unsigned short keycode = lm->keymap[key];
284 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
285 key, isdown ? "down" : "up");
287 if (lm->kp_enabled) {
288 input_event(lm->idev, EV_MSC, MSC_SCAN, key);
289 input_report_key(lm->idev, keycode, isdown);
290 input_sync(lm->idev);
293 if (isdown)
294 lm->keys_down++;
295 else
296 lm->keys_down--;
300 * Errata: We need to ensure that the chip never enters halt mode
301 * during a keypress, so set active time to 0. When it's released,
302 * we can enter halt again, so set the active time back to normal.
304 if (!old_keys_down && lm->keys_down)
305 lm8323_set_active_time(lm, 0);
306 if (old_keys_down && !lm->keys_down)
307 lm8323_set_active_time(lm, lm->active_time);
310 static void lm8323_process_error(struct lm8323_chip *lm)
312 u8 error;
314 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
315 if (error & ERR_FIFOOVER)
316 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
317 if (error & ERR_KEYOVR)
318 dev_vdbg(&lm->client->dev,
319 "more than two keys pressed\n");
320 if (error & ERR_CMDUNK)
321 dev_vdbg(&lm->client->dev,
322 "unknown command submitted\n");
323 if (error & ERR_BADPAR)
324 dev_vdbg(&lm->client->dev, "bad command parameter\n");
328 static void lm8323_reset(struct lm8323_chip *lm)
330 /* The docs say we must pass 0xAA as the data byte. */
331 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
334 static int lm8323_configure(struct lm8323_chip *lm)
336 int keysize = (lm->size_x << 4) | lm->size_y;
337 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
338 int debounce = lm->debounce_time >> 2;
339 int active = lm->active_time >> 2;
342 * Active time must be greater than the debounce time: if it's
343 * a close-run thing, give ourselves a 12ms buffer.
345 if (debounce >= active)
346 active = debounce + 3;
348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
349 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
350 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
351 lm8323_set_active_time(lm, lm->active_time);
352 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
354 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
357 * Not much we can do about errors at this point, so just hope
358 * for the best.
361 return 0;
364 static void pwm_done(struct lm8323_pwm *pwm)
366 mutex_lock(&pwm->lock);
367 pwm->running = false;
368 if (pwm->desired_brightness != pwm->brightness)
369 schedule_work(&pwm->work);
370 mutex_unlock(&pwm->lock);
374 * Bottom half: handle the interrupt by posting key events, or dealing with
375 * errors appropriately.
377 static void lm8323_work(struct work_struct *work)
379 struct lm8323_chip *lm = work_to_lm8323(work);
380 u8 ints;
381 int i;
383 mutex_lock(&lm->lock);
385 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
386 if (likely(ints & INT_KEYPAD))
387 process_keys(lm);
388 if (ints & INT_ROTATOR) {
389 /* We don't currently support the rotator. */
390 dev_vdbg(&lm->client->dev, "rotator fired\n");
392 if (ints & INT_ERROR) {
393 dev_vdbg(&lm->client->dev, "error!\n");
394 lm8323_process_error(lm);
396 if (ints & INT_NOINIT) {
397 dev_err(&lm->client->dev, "chip lost config; "
398 "reinitialising\n");
399 lm8323_configure(lm);
401 for (i = 0; i < LM8323_NUM_PWMS; i++) {
402 if (ints & (1 << (INT_PWM1 + i))) {
403 dev_vdbg(&lm->client->dev,
404 "pwm%d engine completed\n", i);
405 pwm_done(&lm->pwm[i]);
410 mutex_unlock(&lm->lock);
414 * We cannot use I2C in interrupt context, so we just schedule work.
416 static irqreturn_t lm8323_irq(int irq, void *data)
418 struct lm8323_chip *lm = data;
420 schedule_work(&lm->work);
422 return IRQ_HANDLED;
426 * Read the chip ID.
428 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
430 int bytes;
432 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
433 if (unlikely(bytes != 2))
434 return -EIO;
436 return 0;
439 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
441 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
442 (cmd & 0xff00) >> 8, cmd & 0x00ff);
446 * Write a script into a given PWM engine, concluding with PWM_END.
447 * If 'kill' is nonzero, the engine will be shut down at the end
448 * of the script, producing a zero output. Otherwise the engine
449 * will be kept running at the final PWM level indefinitely.
451 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
452 int len, const u16 *cmds)
454 int i;
456 for (i = 0; i < len; i++)
457 lm8323_write_pwm_one(pwm, i, cmds[i]);
459 lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
460 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
461 pwm->running = true;
464 static void lm8323_pwm_work(struct work_struct *work)
466 struct lm8323_pwm *pwm = work_to_pwm(work);
467 int div512, perstep, steps, hz, up, kill;
468 u16 pwm_cmds[3];
469 int num_cmds = 0;
471 mutex_lock(&pwm->lock);
474 * Do nothing if we're already at the requested level,
475 * or previous setting is not yet complete. In the latter
476 * case we will be called again when the previous PWM script
477 * finishes.
479 if (pwm->running || pwm->desired_brightness == pwm->brightness)
480 goto out;
482 kill = (pwm->desired_brightness == 0);
483 up = (pwm->desired_brightness > pwm->brightness);
484 steps = abs(pwm->desired_brightness - pwm->brightness);
487 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
488 * 32768Hz), and number of ticks per step.
490 if ((pwm->fade_time / steps) > (32768 / 512)) {
491 div512 = 1;
492 hz = 32768 / 512;
493 } else {
494 div512 = 0;
495 hz = 32768 / 16;
498 perstep = (hz * pwm->fade_time) / (steps * 1000);
500 if (perstep == 0)
501 perstep = 1;
502 else if (perstep > 63)
503 perstep = 63;
505 while (steps) {
506 int s;
508 s = min(126, steps);
509 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
510 steps -= s;
513 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
514 pwm->brightness = pwm->desired_brightness;
516 out:
517 mutex_unlock(&pwm->lock);
520 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
521 enum led_brightness brightness)
523 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
524 struct lm8323_chip *lm = pwm->chip;
526 mutex_lock(&pwm->lock);
527 pwm->desired_brightness = brightness;
528 mutex_unlock(&pwm->lock);
530 if (in_interrupt()) {
531 schedule_work(&pwm->work);
532 } else {
534 * Schedule PWM work as usual unless we are going into suspend
536 mutex_lock(&lm->lock);
537 if (likely(!lm->pm_suspend))
538 schedule_work(&pwm->work);
539 else
540 lm8323_pwm_work(&pwm->work);
541 mutex_unlock(&lm->lock);
545 static ssize_t lm8323_pwm_show_time(struct device *dev,
546 struct device_attribute *attr, char *buf)
548 struct led_classdev *led_cdev = dev_get_drvdata(dev);
549 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
551 return sprintf(buf, "%d\n", pwm->fade_time);
554 static ssize_t lm8323_pwm_store_time(struct device *dev,
555 struct device_attribute *attr, const char *buf, size_t len)
557 struct led_classdev *led_cdev = dev_get_drvdata(dev);
558 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
559 int ret;
560 unsigned long time;
562 ret = strict_strtoul(buf, 10, &time);
563 /* Numbers only, please. */
564 if (ret)
565 return -EINVAL;
567 pwm->fade_time = time;
569 return strlen(buf);
571 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
573 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
574 const char *name)
576 struct lm8323_pwm *pwm;
578 BUG_ON(id > 3);
580 pwm = &lm->pwm[id - 1];
582 pwm->id = id;
583 pwm->fade_time = 0;
584 pwm->brightness = 0;
585 pwm->desired_brightness = 0;
586 pwm->running = false;
587 pwm->enabled = false;
588 INIT_WORK(&pwm->work, lm8323_pwm_work);
589 mutex_init(&pwm->lock);
590 pwm->chip = lm;
592 if (name) {
593 pwm->cdev.name = name;
594 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
595 if (led_classdev_register(dev, &pwm->cdev) < 0) {
596 dev_err(dev, "couldn't register PWM %d\n", id);
597 return -1;
599 if (device_create_file(pwm->cdev.dev,
600 &dev_attr_time) < 0) {
601 dev_err(dev, "couldn't register time attribute\n");
602 led_classdev_unregister(&pwm->cdev);
603 return -1;
605 pwm->enabled = true;
608 return 0;
611 static struct i2c_driver lm8323_i2c_driver;
613 static ssize_t lm8323_show_disable(struct device *dev,
614 struct device_attribute *attr, char *buf)
616 struct lm8323_chip *lm = dev_get_drvdata(dev);
618 return sprintf(buf, "%u\n", !lm->kp_enabled);
621 static ssize_t lm8323_set_disable(struct device *dev,
622 struct device_attribute *attr,
623 const char *buf, size_t count)
625 struct lm8323_chip *lm = dev_get_drvdata(dev);
626 int ret;
627 unsigned long i;
629 ret = strict_strtoul(buf, 10, &i);
631 mutex_lock(&lm->lock);
632 lm->kp_enabled = !i;
633 mutex_unlock(&lm->lock);
635 return count;
637 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
639 static int __devinit lm8323_probe(struct i2c_client *client,
640 const struct i2c_device_id *id)
642 struct lm8323_platform_data *pdata = client->dev.platform_data;
643 struct input_dev *idev;
644 struct lm8323_chip *lm;
645 int pwm;
646 int i, err;
647 unsigned long tmo;
648 u8 data[2];
650 if (!pdata || !pdata->size_x || !pdata->size_y) {
651 dev_err(&client->dev, "missing platform_data\n");
652 return -EINVAL;
655 if (pdata->size_x > 8) {
656 dev_err(&client->dev, "invalid x size %d specified\n",
657 pdata->size_x);
658 return -EINVAL;
661 if (pdata->size_y > 12) {
662 dev_err(&client->dev, "invalid y size %d specified\n",
663 pdata->size_y);
664 return -EINVAL;
667 lm = kzalloc(sizeof *lm, GFP_KERNEL);
668 idev = input_allocate_device();
669 if (!lm || !idev) {
670 err = -ENOMEM;
671 goto fail1;
674 lm->client = client;
675 lm->idev = idev;
676 mutex_init(&lm->lock);
677 INIT_WORK(&lm->work, lm8323_work);
679 lm->size_x = pdata->size_x;
680 lm->size_y = pdata->size_y;
681 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
682 lm->size_x, lm->size_y);
684 lm->debounce_time = pdata->debounce_time;
685 lm->active_time = pdata->active_time;
687 lm8323_reset(lm);
689 /* Nothing's set up to service the IRQ yet, so just spin for max.
690 * 100ms until we can configure. */
691 tmo = jiffies + msecs_to_jiffies(100);
692 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
693 if (data[0] & INT_NOINIT)
694 break;
696 if (time_after(jiffies, tmo)) {
697 dev_err(&client->dev,
698 "timeout waiting for initialisation\n");
699 break;
702 msleep(1);
705 lm8323_configure(lm);
707 /* If a true probe check the device */
708 if (lm8323_read_id(lm, data) != 0) {
709 dev_err(&client->dev, "device not found\n");
710 err = -ENODEV;
711 goto fail1;
714 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
715 err = init_pwm(lm, pwm + 1, &client->dev,
716 pdata->pwm_names[pwm]);
717 if (err < 0)
718 goto fail2;
721 lm->kp_enabled = true;
722 err = device_create_file(&client->dev, &dev_attr_disable_kp);
723 if (err < 0)
724 goto fail2;
726 idev->name = pdata->name ? : "LM8323 keypad";
727 snprintf(lm->phys, sizeof(lm->phys),
728 "%s/input-kp", dev_name(&client->dev));
729 idev->phys = lm->phys;
731 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
732 __set_bit(MSC_SCAN, idev->mscbit);
733 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
734 __set_bit(pdata->keymap[i], idev->keybit);
735 lm->keymap[i] = pdata->keymap[i];
737 __clear_bit(KEY_RESERVED, idev->keybit);
739 if (pdata->repeat)
740 __set_bit(EV_REP, idev->evbit);
742 err = input_register_device(idev);
743 if (err) {
744 dev_dbg(&client->dev, "error registering input device\n");
745 goto fail3;
748 err = request_irq(client->irq, lm8323_irq,
749 IRQF_TRIGGER_FALLING | IRQF_DISABLED,
750 "lm8323", lm);
751 if (err) {
752 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
753 goto fail4;
756 i2c_set_clientdata(client, lm);
758 device_init_wakeup(&client->dev, 1);
759 enable_irq_wake(client->irq);
761 return 0;
763 fail4:
764 input_unregister_device(idev);
765 idev = NULL;
766 fail3:
767 device_remove_file(&client->dev, &dev_attr_disable_kp);
768 fail2:
769 while (--pwm >= 0)
770 if (lm->pwm[pwm].enabled)
771 led_classdev_unregister(&lm->pwm[pwm].cdev);
772 fail1:
773 input_free_device(idev);
774 kfree(lm);
775 return err;
778 static int __devexit lm8323_remove(struct i2c_client *client)
780 struct lm8323_chip *lm = i2c_get_clientdata(client);
781 int i;
783 disable_irq_wake(client->irq);
784 free_irq(client->irq, lm);
785 cancel_work_sync(&lm->work);
787 input_unregister_device(lm->idev);
789 device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
791 for (i = 0; i < 3; i++)
792 if (lm->pwm[i].enabled)
793 led_classdev_unregister(&lm->pwm[i].cdev);
795 kfree(lm);
797 return 0;
800 #ifdef CONFIG_PM
802 * We don't need to explicitly suspend the chip, as it already switches off
803 * when there's no activity.
805 static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg)
807 struct lm8323_chip *lm = i2c_get_clientdata(client);
808 int i;
810 set_irq_wake(client->irq, 0);
811 disable_irq(client->irq);
813 mutex_lock(&lm->lock);
814 lm->pm_suspend = true;
815 mutex_unlock(&lm->lock);
817 for (i = 0; i < 3; i++)
818 if (lm->pwm[i].enabled)
819 led_classdev_suspend(&lm->pwm[i].cdev);
821 return 0;
824 static int lm8323_resume(struct i2c_client *client)
826 struct lm8323_chip *lm = i2c_get_clientdata(client);
827 int i;
829 mutex_lock(&lm->lock);
830 lm->pm_suspend = false;
831 mutex_unlock(&lm->lock);
833 for (i = 0; i < 3; i++)
834 if (lm->pwm[i].enabled)
835 led_classdev_resume(&lm->pwm[i].cdev);
837 enable_irq(client->irq);
838 set_irq_wake(client->irq, 1);
840 return 0;
842 #else
843 #define lm8323_suspend NULL
844 #define lm8323_resume NULL
845 #endif
847 static const struct i2c_device_id lm8323_id[] = {
848 { "lm8323", 0 },
852 static struct i2c_driver lm8323_i2c_driver = {
853 .driver = {
854 .name = "lm8323",
856 .probe = lm8323_probe,
857 .remove = __devexit_p(lm8323_remove),
858 .suspend = lm8323_suspend,
859 .resume = lm8323_resume,
860 .id_table = lm8323_id,
862 MODULE_DEVICE_TABLE(i2c, lm8323_id);
864 static int __init lm8323_init(void)
866 return i2c_add_driver(&lm8323_i2c_driver);
868 module_init(lm8323_init);
870 static void __exit lm8323_exit(void)
872 i2c_del_driver(&lm8323_i2c_driver);
874 module_exit(lm8323_exit);
876 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
877 MODULE_AUTHOR("Daniel Stone");
878 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
879 MODULE_DESCRIPTION("LM8323 keypad driver");
880 MODULE_LICENSE("GPL");